# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 10 | 0 | 0.8966 | YODA Kinase Controls a Novel Immune Pathway of Tomato Conferring Enhanced Disease Resistance to the Bacterium Pseudomonas syringae. Mitogen-activated protein kinases (MAPK) play pivotal roles in transducing developmental cues and environmental signals into cellular responses through pathways initiated by MAPK kinase kinases (MAP3K). AtYODA is a MAP3K of Arabidopsis thaliana that controls stomatal development and non-canonical immune responses. Arabidopsis plants overexpressing a constitutively active YODA protein (AtCA-YDA) show broad-spectrum disease resistance and constitutive expression of defensive genes. We tested YDA function in crops immunity by heterologously overexpressing AtCA-YDA in Solanum lycopersicum. We found that these tomato AtCA-YDA plants do not show developmental phenotypes and fitness alterations, except a reduction in stomatal index, as reported in Arabidopsis AtCA-YDA plants. Notably, AtCA-YDA tomato plants show enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and constitutive upregulation of defense-associated genes, corroborating the functionality of YDA in tomato immunity. This function was further supported by generating CRISPR/Cas9-edited tomato mutants impaired in the closest orthologs of AtYDA [Solyc08g081210 (SlYDA1) and Solyc03g025360 (SlYDA2)]. Slyda1 and Slyda2 mutants are highly susceptible to P. syringae pv. tomato DC3000 in comparison to wild-type plants but only Slyda2 shows altered stomatal index. These results indicate that tomato orthologs have specialized functions and support that YDA also regulates immune responses in tomato and may be a trait for breeding disease resistance. | 2020 | 33154763 |
| 743 | 1 | 0.8949 | Expression Profile of Multidrug Resistance Efflux Pumps During Intracellular Life of Adherent-Invasive Escherichia coli Strain LF82. Efflux pumps (EPs) are present in all living cells and represent a large and important group of transmembrane proteins involved in transport processes. In bacteria, multidrug resistance efflux pumps (MDR EPs) confer resistance to antibiotics at different levels and are deeply implicated in the fast and dramatic emergence of antibiotic resistance. Recently, several reports have outlined the great versatility of MDR EPs in exporting a large variety of compounds other than antibiotics, thus promoting bacterial adaptation to a wide range of habitats. In several bacterial pathogens, MDR EPs contribute to increase the virulence potential and are directly involved in the crosstalk with host cells. In this work, we have investigated the possible role of MDR EPs in the infectious process of the adherent-invasive Escherichia coli (AIEC), a group of pathogenic E. coli that colonize the ileal mucosa of Crohn disease (CD) patients causing a strong intestinal inflammation. The results we have obtained indicate that, with the exception of mdtM, all MDR-EPs encoding genes present in E.coli K12 are conserved in the AIEC prototype strain LF82. The analysis of MDR EP expression during LF82 infection of macrophages and epithelial cells reveals that their transcription is highly modulated during the bacterial intracellular life. Notably, some EP genes are regulated in a cell-type specific manner, strongly suggesting that their function is required for LF82 successful infection. AIEC are able to adhere to and invade intestinal epithelial cells and, importantly, to survive and multiply within macrophages. Thus, we further investigated the role of EPs specifically induced by macrophage environment. We present evidence indicating that deletion of mdtEF genes, encoding an MDR EP belonging to the resistance nodulation division (RND) family, significantly impairs survival of LF82 in macrophages and that the wild type phenotype can be restored by trans-complementation with functional MdtEF pump. Altogether, our results indicate a strong involvement of MDR EPs in host pathogen interaction also in AIEC and highlight the contribution of MdtEF to the fitness of LF82 in the macrophage environment. | 2020 | 33013734 |
| 128 | 2 | 0.8928 | Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast. Boron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1Delta mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1Delta cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1Delta cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance. | 2009 | 19414602 |
| 587 | 3 | 0.8921 | The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. The Dictyostelium discoideum genome harbors two genes encoding members of the Nramp superfamily, which is conserved from bacteria (MntH proteins) to humans (Slc11 proteins). Nramps are proton-driven metal ion transporters with a preference for iron and manganese. Acquisition of these metal cations is vital for all cells, as they act as redox cofactors and regulate key cellular processes, such as DNA synthesis, electron transport, energy metabolism and oxidative stress. Dictyostelium Nramp1 (Slc11a1), like its mammalian ortholog, mediates resistance to infection by invasive bacteria. We have extended the analysis to the nramp2 gene, by generating single and double nramp1/nramp2 knockout mutants and cells expressing GFP fusion proteins. In contrast to Nramp1, which is recruited to phagosomes and macropinosomes, the Nramp2 protein is localized exclusively in the membrane of the contractile vacuole, a vesicular tubular network regulating cellular osmolarity. Both proteins colocalize with the V-H(+)-ATPase, which can provide the electrogenic force for vectorial transport. Like nramp1, nramp2 gene disruption affects resistance to Legionella pneumophila. Disrupting both genes additionally leads to defects in development, with strong delay in cell aggregation, formation of large streams and multi-tipped aggregates. Single and double mutants display differential sensitivity to cell growth under conditions of iron overload or depletion. The data favor the hypothesis that Nramp1 and Nramp2, under control of the V-H(+)-ATPase, synergistically regulate iron homeostasis, with the contractile vacuole possibly acting as a store for metal cations. | 2013 | 22992462 |
| 751 | 4 | 0.8920 | Global transcriptomics and targeted metabolite analysis reveal the involvement of the AcrAB efflux pump in physiological functions by exporting signaling molecules in Photorhabdus laumondii. In Gram-negative bacteria, resistance-nodulation-division (RND)-type efflux pumps, particularly AcrAB-TolC, play a critical role in mediating resistance to antimicrobial agents and toxic metabolites, contributing to multidrug resistance. Photorhabdus laumondii is an entomopathogenic bacterium that has garnered significant interest due to its production of bioactive specialized metabolites with anti-inflammatory, antimicrobial, and scavenger deterrent properties. In previous work, we demonstrated that AcrAB confers self-resistance to stilbenes in P. laumondii TT01. Here, we explore the pleiotropic effects of AcrAB in this bacterium. RNA sequencing of ∆acrA compared to wild type revealed growth-phase-specific gene regulation, with stationary-phase cultures showing significant downregulation of genes involved in stilbene, fatty acid, and anthraquinone pigment biosynthesis, as well as genes related to cellular clumping and fimbrial pilin formation. Genes encoding putative LuxR regulators, type VI secretion systems, two-partner secretion systems, and contact-dependent growth inhibition systems were upregulated in ∆acrA. Additionally, exponential-phase cultures revealed reduced expression of genes related to motility in ∆acrA. The observed transcriptional changes were consistent with phenotypic assays, demonstrating that the ∆acrA mutant had altered bioluminescence and defective orange pigmentation due to disrupted anthraquinone production. These findings confirm the role of stilbenes as signaling molecules involved in gene expression, thereby shaping these phenotypes. Furthermore, we showed that AcrAB contributes to swarming and swimming motilities independently of stilbenes. Collectively, these results highlight that disrupting acrAB causes transcriptional and metabolic dysregulation in P. laumondii, likely by impeding the export of key signaling molecules such as stilbenes, which may serve as a ligand for global transcriptional regulators.IMPORTANCERecent discoveries have highlighted Photorhabdus laumondii as a promising source of novel anti-infective compounds, including non-ribosomal peptides and polyketides. One key player in the self-resistance of this bacterium to stilbene derivatives is the AcrAB-TolC complex, which is also a well-known contributor to multidrug resistance. Here, we demonstrate the pleiotropic effects of the AcrAB efflux pump in P. laumondii TT01, impacting secondary metabolite biosynthesis, motility, and bioluminescence. These effects are evident at transcriptional, metabolic, and phenotypic levels and are likely mediated by the efflux of signaling molecules such as stilbenes. These findings shed light on the multifaceted roles of efflux pumps and open avenues to better explore the complexity of resistance-nodulation-division (RND) pump-mediated signaling pathways in bacteria, thereby aiding in combating multidrug-resistant infections. | 2025 | 40920493 |
| 605 | 5 | 0.8915 | Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species. | 2017 | 28397370 |
| 742 | 6 | 0.8912 | Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents. The Salmonella typhimurium genome contains two pathogenicity islands (SPI) with genes encoding type III secretion systems for virulence proteins. SPI1 is required for the penetration of the epithelial layer of the intestine. SPI2 is important for the subsequent proliferation of bacteria in the spleens of infected hosts. Although most mutations in SPI2 lead to a strong reduction of virulence, they have different effects in vitro, with some mutants having significantly increased sensitivity to gentamicin and the antibacterial peptide polymyxin B. Previously we showed that certain mutations in SPI2 affect the ability of S. typhimurium to secrete SPI1 effector proteins and to invade cultured eukaryotic cells. In this study, we show that these SPI2 mutations affect the expression of the SPI1 invasion genes. Analysis of reporter fusions to various SPI1 genes reveals highly reduced expression of sipC, prgK, and hilA, the transcriptional activator of SPI1 genes. These observations indicate that the expression of one type III secretion system can be influenced dramatically by mutations in genes encoding a second type III secretion system in the same cell. | 1998 | 9733677 |
| 626 | 7 | 0.8909 | Enterococcus faecalis Adapts to Antimicrobial Conjugated Oligoelectrolytes by Lipid Rearrangement and Differential Expression of Membrane Stress Response Genes. Conjugated oligoelectrolytes (COEs) are emerging antimicrobials with broad spectrum activity against Gram positive and Gram negative bacteria as well as fungi. Our previous in vitro evolution studies using Enterococcus faecalis grown in the presence of two related COEs (COE1-3C and COE1-3Py) led to the emergence of mutants (changes in liaF and liaR) with a moderate 4- to16-fold increased resistance to COEs. The contribution of liaF and liaR mutations to COE resistance was confirmed by complementation of the mutants, which restored sensitivity to COEs. To better understand the cellular target of COEs, and the mechanism of resistance to COEs, transcriptional changes associated with resistance in the evolved mutants were investigated in this study. The differentially transcribed genes encoded membrane transporters, in addition to proteins associated with cell envelope synthesis and stress responses. Genes encoding membrane transport proteins from the ATP binding cassette superfamily were the most significantly induced or repressed in COE tolerant mutants compared to the wild type when exposed to COEs. Additionally, differences in the membrane localization of a lipophilic dye in E. faecalis exposed to COEs suggested that resistance was associated with lipid rearrangement in the cell membrane. The membrane adaptation to COEs in EFC3C and EFC3Py resulted in an improved tolerance to bile salt and sodium chloride stress. Overall, this study showed that bacterial cell membranes are the primary target of COEs and that E. faecalis adapts to membrane interacting COE molecules by both lipid rearrangement and changes in membrane transporter activity. The level of resistance to COEs suggests that E. faecalis does not have a specific response pathway to elicit resistance against these molecules and this is supported by the rather broad and diverse suite of genes that are induced upon COE exposure as well as cross-resistance to membrane perturbing stressors. | 2020 | 32117172 |
| 543 | 8 | 0.8905 | OxyR2 Modulates OxyR1 Activity and Vibrio cholerae Oxidative Stress Response. Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H(2)O(2) A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H(2)O(2) RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H(2)O(2) Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H(2)O(2) Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H(2)O(2) or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response. | 2017 | 28138024 |
| 579 | 9 | 0.8903 | Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. There is accumulating evidence that transenvelope efflux pumps of the resistance, nodulation, cell division protein family (RND) are excreting toxic substances from the periplasm across the outer membrane directly to the outside. This would mean that resistance of Gram-negative bacteria to organic toxins and heavy metals is in fact a two-step process: one set of resistance factors control the concentration of a toxic substance in the periplasm, another one that in the cytoplasm. Efficient periplasmic detoxification requires periplasmic toxin sensing and transduction of this signal into the cytoplasm to control expression of the periplasmic detoxification system. Such a signal transduction system was analyzed using the Cnr nickel resistance system from Cupriavidus (Wautersia, Ralstonia, Alcaligenes) metallidurans strain CH34. Resistance is based on nickel efflux mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins probably functioning as anti sigma factors while CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factors. Experimental data provided here indicate a signal transduction chain leading from nickel in the periplasm to transcription initiation at the cnr promoters cnrYp and cnrCp, which control synthesis of the nickel efflux pump CnrCBA. | 2005 | 16158236 |
| 726 | 10 | 0.8900 | Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Extracytoplasmic function (ECF) sigma factors are a subfamily of σ(70) sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens. | 2017 | 28153747 |
| 730 | 11 | 0.8897 | How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. Bacterial pathogens regulate the expression of virulence factors in response to environmental signals. In the case of salmonellae, many virulence factors are regulated via PhoP/PhoQ, a two-component signal transduction system that is repressed by magnesium and calcium in vitro. PhoP/PhoQ-activated genes promote intracellular survival within macrophages, whereas PhoP-repressed genes promote entrance into epithelial cells and macrophages by macropinocytosis and stimulate epithelial cell cytokine production. PhoP-activated genes include those that alter the cell envelope through structural alterations of lipopolysaccharide and lipid A, the bioactive component of lipopolysaccharide. PhoP-activated changes in the bacterial envelope likely promote intracellular survival by increasing resistance to host cationic antimicrobial peptides and decreasing host cell cytokine production. | 1999 | 10081503 |
| 571 | 12 | 0.8897 | Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Bacteria have evolved different systems to tightly control both cytosolic and envelope copper concentration to fulfil their requirements and at the same time, avoid copper toxicity. We have previously demonstrated that, as in Escherichia coli, the Salmonella cue system protects the cytosol from copper excess. On the other hand, and even though Salmonella lacks the CusCFBA periplasmic copper efflux system, it can support higher copper concentrations than E. coli under anaerobic conditions. Here we show that the Salmonella cue regulon is also responsible for the control of copper toxicity in anaerobiosis. We establish that resistance in this condition requires a novel CueR-controlled gene named cueP. A DeltacueP mutant is highly susceptible to copper in the absence of oxygen, but shows a faint phenotype in aerobic conditions unless other copper-resistance genes are also deleted, resembling the E. coli CusCFBA behaviour. Species that contain a cueP homologue under CueR regulation have no functional CusR/CusS-dependent Cus-coding operon. Conversely, species that carry a CusR/CusS-regulated cus operon have no cueP homologues. Even more, we show that the CueR-controlled cueP expression increases copper resistance of a Deltacus E. coli. We posit that CueP can functionally replace the Cus complex for periplasmic copper resistance, in particular under anaerobic conditions. | 2009 | 19538445 |
| 732 | 13 | 0.8897 | Extracellular ATP is an environmental cue in bacteria. In animals and plants, extracellular ATP (eATP) functions as a signal and regulates the immune response. During inflammation, intestinal bacteria are exposed to elevated eATP originating from the mucosa. However, whether bacteria respond to eATP is unclear. Here, we show that non-pathogenic Escherichia coli responds to eATP by modifying its transcriptional and metabolic landscapes. A genome-scale promoter library showed that the response is dependent on time, concentration, and medium and ATP specific. Second messengers and genes related to metabolism, biofilm formation, and envelope stress were regulated downstream of eATP. Metabolomics confirmed that eATP triggers enrichment of compounds with bioactive properties in the host or bacteria. Combined genome-scale modeling revealed modifications to global metabolic and biomass building blocks. Consequently, eATP altered the sensitivity to antibiotics and antimicrobial peptides. Finally, in pathogens, eATP controlled virulence factor expression. Our results indicate that eATP is an environmental cue in prokaryotes, which broadly regulates physiology, antimicrobial resistance, and virulence. | 2025 | 41071676 |
| 623 | 14 | 0.8897 | The Efflux Pump MexXY/OprM Contributes to the Tolerance and Acquired Resistance of Pseudomonas aeruginosa to Colistin. The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors. | 2020 | 31964794 |
| 745 | 15 | 0.8895 | TLR signaling is required for Salmonella typhimurium virulence. Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection. | 2011 | 21376231 |
| 6189 | 16 | 0.8894 | Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus. Resistance nodulation cell division (RND)-type efflux transporters play the main role in intrinsic resistance to various antimicrobial agents in many gram-negative bacteria. Here, we estimated 12 RND-type efflux transporter genes in Vibrio parahaemolyticus. Because VmeAB has already been characterized, we cloned the other 11 RND-type efflux transporter genes and characterized them in Escherichia coli KAM33 cells, a drug hypersusceptible strain. KAM33 expressing either VmeCD, VmeEF, or VmeYZ showed increased minimum inhibitory concentrations (MICs) for several antimicrobial agents. Additional four RND-type transporters were functional as efflux pumps only when co-expressed with VpoC, an outer membrane component in V. parahaemolyticus. Furthermore, VmeCD, VmeEF, and VmeYZ co-expressed with VpoC exhibited a broader substrate specificity and conferred higher resistance than that with TolC of E. coli. Deletion mutants of these transporter genes were constructed in V. parahaemolyticus. TM32 (ΔvmeAB and ΔvmeCD) had significantly decreased MICs for many antimicrobial agents and the number of viable cells after exposure to deoxycholate were markedly reduced. Strains in which 12 operons were all disrupted had very low MICs and much lower fluid accumulation in rabbit ileal loops. These results indicate that resistance nodulation cell division-type efflux transporters contribute not only to intrinsic resistance but also to exerting the virulence of V. parahaemolyticus. | 2013 | 23894076 |
| 55 | 17 | 0.8893 | Effector-triggered and pathogen-associated molecular pattern-triggered immunity differentially contribute to basal resistance to Pseudomonas syringae. Pathogens induce pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants. PAMPs are microbial molecules recognized by host plants as nonself signals, whereas pathogen effectors are evolved to aid in parasitism but are sometimes recognized by specific intracellular resistance proteins. In the absence of detectable ETI determining classical incompatible interactions, basal resistance exists during compatible and nonhost interactions. What triggers the basal resistance has remained elusive. Here, we provide evidence that ETI contributes to basal resistance during both compatible and nonhost Arabidopsis-Pseudomonas syringae interactions. Mutations in RAR1 and NDR1, two genes required for ETI, compromise basal resistance in both compatible and nonhost interactions. Complete nonhost resistance to P. syringae pv. tabaci required a functional type III secretion system. PTI appears to play a greater role in nonhost resistance than basal resistance during compatible interactions, because abrogation of PTI compromises basal resistance during nonhost but not compatible interactions. Strikingly, simultaneous abrogation of ETI and flagellin-induced PTI rendered plants completely susceptible to the nonadapted bacterium P. syringae pv. tabaci, indicating that ETI and PTI act synergistically during nonhost resistance. Thus, both nonhost resistance and basal resistance to virulent bacteria can be unified under PTI and ETI. | 2010 | 20521956 |
| 731 | 18 | 0.8892 | Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Bacterial pathogenesis requires proteins that sense host microenvironments and respond by regulating virulence gene transcription. For Salmonellae, one such regulatory system is PhoP-PhoQ, which regulates genes required for intracellular survival and resistance to cationic peptides. Analysis by mass spectrometry revealed that Salmonella typhimurium PhoP-PhoQ regulated structural modifications of lipid A, the host signaling portion of lipopolysaccharide (LPS), by the addition of aminoarabinose and 2-hydroxymyristate. Structurally modified lipid A altered LPS-mediated expression of the adhesion molecule E-selectin by endothelial cells and tumor necrosis factor-alpha expression by adherent monocytes. Thus, altered responses to environmentally induced lipid A structural modifications may represent a mechanism for bacteria to gain advantage within host tissues. | 1997 | 9092473 |
| 725 | 19 | 0.8892 | The Bacillus subtilis extracytoplasmic function σ factor σ(V) is induced by lysozyme and provides resistance to lysozyme. Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors. In this paper, we demonstrate that the expression of the ECF σ factor σ(V) in Bacillus subtilis is induced specifically by lysozyme but not other cell wall-damaging agents. A mutation in sigV results in increased sensitivity to lysozyme killing, suggesting that σ(V) is required for lysozyme resistance. Using reverse transcription (RT)-PCR, we show that the previously uncharacterized gene yrhL (here referred to as oatA for O-acetyltransferase) is in a four-gene operon which includes sigV and rsiV. In quantitative RT-PCR experiments, the expression of oatA is induced by lysozyme stress. Lysozyme induction of oatA is dependent upon σ(V). Overexpression of oatA in a sigV mutant restores lysozyme resistance to wild-type levels. This suggests that OatA is required for σ(V)-dependent resistance to lysozyme. We also tested the ability of lysozyme to induce the other ECF σ factors and found that only the expression of sigV is lysozyme inducible. However, we found that the other ECF σ factors contributed to lysozyme resistance. We found that sigX and sigM mutations alone had very little effect on lysozyme resistance but when combined with a sigV mutation resulted in significantly greater lysozyme sensitivity than the sigV mutation alone. This suggests that sigV, sigX, and sigM may act synergistically to control lysozyme resistance. In addition, we show that two ECF σ factor-regulated genes, dltA and pbpX, are required for lysozyme resistance. Thus, we have identified three independent mechanisms which B. subtilis utilizes to avoid killing by lysozyme. | 2011 | 21856855 |