# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2495 | 0 | 0.9902 | Transmission of Mobile Colistin Resistance (mcr-1) by Duodenoscope. BACKGROUND: Clinicians increasingly utilize polymyxins for treatment of serious infections caused by multidrug-resistant gram-negative bacteria. Emergence of plasmid-mediated, mobile colistin resistance genes creates potential for rapid spread of polymyxin resistance. We investigated the possible transmission of Klebsiella pneumoniae carrying mcr-1 via duodenoscope and report the first documented healthcare transmission of mcr-1-harboring bacteria in the United States. METHODS: A field investigation, including screening targeted high-risk groups, evaluation of the duodenoscope, and genome sequencing of isolated organisms, was conducted. The study site included a tertiary care academic health center in Boston, Massachusetts, and extended to community locations in New England. RESULTS: Two patients had highly related mcr-1-positive K. pneumoniae isolated from clinical cultures; a duodenoscope was the only identified epidemiological link. Screening tests for mcr-1 in 20 healthcare contacts and 2 household contacts were negative. Klebsiella pneumoniae and Escherichia coli were recovered from the duodenoscope; neither carried mcr-1. Evaluation of the duodenoscope identified intrusion of biomaterial under the sealed distal cap; devices were recalled to repair this defect. CONCLUSIONS: We identified transmission of mcr-1 in a United States acute care hospital that likely occurred via duodenoscope despite no identifiable breaches in reprocessing or infection control practices. Duodenoscope design flaws leading to transmission of multidrug-resistant organsisms persist despite recent initiatives to improve device safety. Reliable detection of colistin resistance is currently challenging for clinical laboratories, particularly given the absence of a US Food and Drug Administration-cleared test; improved clinical laboratory capacity for colistin susceptibility testing is needed to prevent the spread of mcr-carrying bacteria in healthcare settings. | 2019 | 30204838 |
| 1720 | 1 | 0.9902 | Elucidation of molecular mechanism for colistin resistance among Gram-negative isolates from tertiary care hospitals. Antimicrobial resistance is a growing concern of global public health. The emergence of colistin-resistance among carbapenem-resistant (CPR) Gram-negative bacteria causing fear of pan-resistance, treatment failure, and high mortality across the globe. AIM: To determine the genotypic colistin-resistance mechanisms among colistin-resistant (CR)Gram-negative clinical isolates along with genomic insight into hypermucoviscous(hv)-CR-Klebsiella pneumoniae. METHODS: Phenotypic colistin-resistance via broth-microdilution method. PCR-based detection of plasmid-mediated colistin resistance genes(mcr-1,2,3). Characterization of selected hvCR-K. pneumoniae via Whole-genome sequencing. RESULTS: Phenotypic colistin-resistance was 28% among CPR-Gram-negative isolates of which 90% of CR-isolates displayed MDR profile with overall low plasmid-mediated colistin resistance (mcr-2 = 9.4%;mcr-3 = 6%). Although K. pneumoniae isolates showed the highest phenotypic colistin-resistance (51%) however, relatively low plasmid-mediated gene-carriage (mcr-2 = 11.5%;mcr-3 = 3.4%) pointed toward other mechanisms of colistin-resistance. mcr-negative CR-K. pneumoniae displaying hv-phenotype were subjected to WGS. In-silico analysis detected 7-novel mutations in lipid-A modification genes includes eptA(I38V; V50L; A135P), opgE(M53L; T486A; G236S), and arnD(S164P) in addition to several non-synonymous mutations in lipid-A modification genes conferring resistance to colistin. Insertion of 6.6-kb region harboring putative-PEA-encoding gene(yjgX) was detected for the first time in K. pneumoniae (hvCRKP4771). In-silico analysis further confirmed the acquisition of not only MDR determinants but several hypervirulent-determinants displaying a convergent phenotype. CONCLUSION: overall high prevalence of phenotypic colistin resistance but low mcr-gene carriage suggested complex chromosomal mediated resistance mechanism especially in K. pneumoniae isolates. The presence of novel mutations in lipid-A modification genes and the acquisition of putative-PEA-encoding gene by hvCR-K. pneumoniae points toward the role of chromosomal determinants conferring resistance to colistin in the absence of mcr-genes. | 2022 | 35058128 |
| 5051 | 2 | 0.9899 | Octapeptin C4 and polymyxin resistance occur via distinct pathways in an epidemic XDR Klebsiella pneumoniae ST258 isolate. BACKGROUND: Polymyxin B and E (colistin) have been pivotal in the treatment of XDR Gram-negative bacterial infections; however, resistance has emerged. A structurally related lipopeptide, octapeptin C4, has shown significant potency against XDR bacteria, including polymyxin-resistant strains, but its mode of action remains undefined. OBJECTIVES: We sought to compare and contrast the acquisition of resistance in an XDR Klebsiella pneumoniae (ST258) clinical isolate in vitro with all three lipopeptides to potentially unveil variations in their mode of action. METHODS: The isolate was exposed to increasing concentrations of polymyxins and octapeptin C4 over 20 days. Day 20 strains underwent WGS, complementation assays, antimicrobial susceptibility testing and lipid A analysis. RESULTS: Twenty days of exposure to the polymyxins resulted in a 1000-fold increase in the MIC, whereas for octapeptin C4 a 4-fold increase was observed. There was no cross-resistance observed between the polymyxin- and octapeptin-resistant strains. Sequencing of polymyxin-resistant isolates revealed mutations in previously known resistance-associated genes, including crrB, mgrB, pmrB, phoPQ and yciM, along with novel mutations in qseC. Octapeptin C4-resistant isolates had mutations in mlaDF and pqiB, genes related to phospholipid transport. These genetic variations were reflected in distinct phenotypic changes to lipid A. Polymyxin-resistant isolates increased 4-amino-4-deoxyarabinose fortification of lipid A phosphate groups, whereas the lipid A of octapeptin C4-resistant strains harboured a higher abundance of hydroxymyristate and palmitoylate. CONCLUSIONS: Octapeptin C4 has a distinct mode of action compared with the polymyxins, highlighting its potential as a future therapeutic agent to combat the increasing threat of XDR bacteria. | 2019 | 30445429 |
| 1665 | 3 | 0.9898 | Colistin resistance emerges in pandrug-resistant Klebsiella pneumoniae epidemic clones in Rio de Janeiro, Brazil. Klebsiella pneumoniae is an important human pathogen, able to accumulate and disseminate a variety of antimicrobial resistance genes. Resistance to colistin, one of the last therapeutic options for multi-drug-resistant bacteria, has been reported increasingly. Colistin-resistant K. pneumoniae (ColRKp) emerged in two hospitals in Rio de Janeiro state, Brazil in 2016. The aim of this study was to investigate if these ColRKp isolates were clonally related when compared between hospitals, to identify the molecular mechanisms of colistin resistance, and to describe other antimicrobial resistance genes carried by isolates. Twenty-three isolates were successively recovered, and the whole-genome sequence was analysed for 10, each of a different pulsed-field gel electrophoresis (PFGE) type. Although some PFGE clusters were found, none of them included isolates from both hospitals. Half of the isolates were assigned to CC258, three to ST152 and two to ST15. One isolate was pandrug resistant, one was extensively drug resistant, and the others were multi-drug resistant. Colistin resistance was related to mutations in mgrB, pmrB, phoQ and crrB. Eleven new mutations were found in these genes, including two nucleotide deletions in mgrB. All isolates were carbapenem resistant, and seven were associated with carbapenemase carriage (bla(KPC-2) in six isolates and bla(OXA-370) in one isolate). All isolates had a bla(CTX-M), and two had a 16S ribosomal RNA methyltransferase encoding gene (armA and rmtB). ColRKp were composed of epidemic clones, but cross-dissemination between hospitals was not detected. Colistin resistance emerged with several novel mutations amid highly resistant strains, further restricting the number of drugs available and leading to pandrug resistance. | 2019 | 31479740 |
| 1562 | 4 | 0.9898 | Detection of an IMI-2 carbapenemase-producing Enterobacter asburiae at a Swedish feed mill. Occurrence of multidrug resistant Enterobacteriaceae in livestock is of concern as they can spread to humans. A potential introduction route for these bacteria to livestock could be animal feed. We therefore wanted to identify if Escherichia spp., Enterobacter spp., Klebsiella spp., or Raoutella spp. with transferable resistance to extended spectrum cephalosporins, carbapenems or colistin could be detected in the environment at feed mills in Sweden. A second aim was to compare detected isolates to previous described isolates from humans and animals in Sweden to establish relatedness which could indicate a potential transmission between sectors and feed mills as a source for antibiotic resistant bacteria. However, no isolates with transferable resistance to extended-cephalosporins or colistin could be identified, but one isolate belonging to the Enterobacter cloacae complex was shown to be carbapenem-resistant and showing carbapenemase-activity. Based on sequencing by both short-read Illumina and long-read Oxford Nanopore MinIon technologies it was shown that this isolate was an E. asburiae carrying a bla (IMI-2) gene on a 216 Kbp plasmid, designated pSB89A/IMI-2, and contained the plasmid replicons IncFII, IncFIB, and a third replicon showing highest similarity to the IncFII(Yp). In addition, the plasmid contained genes for various functions such as plasmid segregation and stability, plasmid transfer and arsenical transport, but no additional antibiotic resistance genes. This isolate and the pSB89A/IMI-2 was compared to three human clinical isolates positive for bla (IMI-2) available from the Swedish antibiotic monitoring program Swedres. It was shown that one of the human isolates carried a plasmid similar with regards to gene content to the pSB89A/IMI-2 except for the plasmid transfer system, but that the order of genes was different. The pSB89A/IMI-2 did however share the same transfer system as the bla (IMI-2) carrying plasmids from the other two human isolates. The pSB89A/IMI-2 was also compared to previously published plasmids carrying bla (IMI-2), but no identical plasmids could be identified. However, most shared part of the plasmid transfer system and DNA replication genes, and the bla (IMI-2) gene was located next the transcription regulator imiR. The IS3-family insertion element downstream of imiR in the pSB89A was also related to the IS elements in other bla (IMI)-carrying plasmids. | 2022 | 36338068 |
| 1883 | 5 | 0.9897 | Whole genome sequence of colistin-resistant Escherichia coli from western India. BACKGROUND: With virtually dried out new antibiotic discovery pipeline, emergence and spread of antimicrobial resistance is a cause for global concern. Colistin, a cyclic polypeptide antibiotic, often regarded as last resort for multi drug resistance gram-negative bacteria, is also rendered ineffective by horizontal transfer of resistance genes. Surveillance of colistin resistance in GNB is essential to ascertain molecular epidemiology. METHODS: Whole genome sequencing (WGS) of an unusual colistin resistant urinary isolate of Escherichia coli was performed using Illumina MiSeq platform using 2x250bp V2 chemistry by following the manufactures protocol (Illumina Inc. USA). Multiple web-based bio-informatic tools were utilized to ascertain antibiotic resistant genes. RESULTS: An approximate 5.4 Mb of genome of the urinary isolate AFMC_UC19 was sequenced successfully. Mobile colistin resistance gene (mcr) on the plasmid responsible for horizontal spread was absent in the isolate. CONCLUSION: Colistin resistance has been reported previously in Klebsiella pneumoniae and it is a rare occurrence in Escherichia coli in Indian setting. Although the isolate lack mcr mediated colistin resistance, emergence and spread of colistin resistant in gram-negative bacteria pose a threat. | 2021 | 34305283 |
| 5119 | 6 | 0.9896 | ROCker models for reliable detection and typing of short-read sequences carrying mcr, erm, mph, and lnu antibiotic resistance genes. Quantitative monitoring of emerging antimicrobial resistance genes (ARGs) using short-read sequences remains challenging due to the high frequency of amino acid functional domains and motifs shared with related but functionally distinct (non-target) proteins. To facilitate ARG monitoring efforts using unassembled short reads, we present novel ROCker models for mcr, mph, erm, and lnu ARG families, as well as models for variants of special public health concern within these families, including mcr-1, mphA, ermB, lnuF, lnuB, and lnuG genes. For this, we curated target gene sequence sets for model training and built these models using the recently updated ROCker V2 pipeline (Gerhardt et al., in review). To validate our models, we simulated reads from the whole genome of ARG-carrying isolates spanning a range of common read lengths and used them to challenge the filtering efficacy of ROCker versus common static filtering approaches, such as similarity searches using BLASTx with various e-value thresholds or hidden Markov models. ROCker models consistently showed F1 scores up to 10× higher (31% higher on average) and lower false-positive (by 30%, on average) and false-negative (by 16%, on average) rates based on 250 bp reads compared to alternative methods. The ROCker models and all related reference materials and data are freely available through http://enve-omics.ce.gatech.edu/rocker/models, further expanding the available model collection previously developed for other genes. Their application to short-read metagenomes, metatranscriptomes, and PCR amplicon data should facilitate more accurate classification and quantification of unassembled short-read sequences for these ARG families and specific genes.IMPORTANCEAntimicrobial resistance gene families encoding erm and mph genes confer resistance to the macrolide class of antimicrobials, which are used to treat a wide range of infections. Similarly, the mcr gene family confers resistance to polymyxin E (colistin), a drug of last resort for many serious drug-resistant bacterial infections, and the lnu gene family confers resistance to lincomycin, which is reserved for patients allergic to penicillin or where bacteria have developed resistance to other antimicrobials. Assessing the prevalence of these genes in clinical or environmental samples and monitoring their spread to new pathogens are thus important for quantifying the associated public health risk. However, detecting these and other resistance genes in short-read sequence data is technically challenging. Our ROCker bioinformatic pipeline achieves reliable detection and typing of broad-range target gene sequences in complex data sets, thus contributing toward solving an important problem in ongoing surveillance efforts of antimicrobial resistance. | 2025 | 41143534 |
| 904 | 7 | 0.9896 | High prevalence of contamination of sink drains with carbapenemase-producing Enterobacteriaceae in 4 intensive care units apart from any epidemic context. We report a high prevalence (28%) of sink drains contaminated with carbapenemase-producing Enterobacteriaceae (CPE) in 4 intensive care units with a history of CPE carriage in hospitalized patients within the previous 5 years, but apart from any current epidemic context. Carbapenemase genes, particularly bla(VIM) and bla(NDM), were identified by polymerase chain reaction in sink drains in which no CPE was detected, but very few data are available in the literature concerning their presence in sink drains. | 2020 | 31495643 |
| 1842 | 8 | 0.9896 | Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. Extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae are critical-priority pathogens that cause substantial fatalities. With the emergence of mobile mcr genes mediating resistance to colistin in Enterobacteriaceae, clinicians are now left with few therapeutic options. Eleven clinical Enterobacteriaceae strains with resistance to cephems and/or colistin were genomically analyzed to determine their resistomes, mobilomes, and evolutionary relationships to global strains. The global phylogenomics of mcr genes and mcr-9.1-bearing genomes were further analyzed. Ten isolates were ESBL positive. The isolates were multidrug resistant and phylogenetically related to global clones but distant from local strains. Multiple resistance genes, including bla (CTX-M-15) bla (TEM-1), and mcr-9.1, were found in single isolates; ISEc9, IS19, and Tn3 transposons bracketed bla (CTX-M-15) and bla (TEM-1) Common plasmid types included IncF, IncH, and ColRNAI. mcr-9 was of close sequence identity to mcr-3, mcr-5, mcr-7, mcr-8, and mcr-10. Genomes bearing mcr-9.1 clustered into six main phyletic groups (A to F), with those of this study belonging to clade B. Enterobacter species and Salmonella species are the main hosts of mcr-9.1 globally, although diverse promiscuous plasmids disseminate mcr-9.1 across different bacterial species. Emergence of mcr-9.1 in ESBL-producing Enterobacteriaceae in South Africa is worrying, due to the restricted therapeutic options. Intensive One Health molecular surveillance might discover other mcr alleles and inform infection management and antibiotic choices.IMPORTANCE Colistin is currently the last-resort antibiotic for difficult-to-treat bacterial infections. However, colistin resistance genes that can move from bacteria to bacteria have emerged, threatening the safe treatment of many bacterial infections. One of these genes, mcr-9.1, has emerged in South Africa in bacteria that are multidrug resistant, further limiting treatment options for clinicians. In this work, we show that this new gene is disseminating worldwide through Enterobacter and Salmonella species through multiple plasmids. This worrying observation requires urgent action to prevent further escalation of this gene in South Africa and Africa. | 2020 | 32430406 |
| 1884 | 9 | 0.9896 | Genomic analysis of Klebsiella pneumoniae high-risk clone ST11 co-harbouring MCR-1.27 and KPC-2 recovered at a paediatric oncologic hospital in the Brazilian Amazon region. OBJECTIVES: The horizontal transfer of antibiotic resistance genes in Gram-negative bacteria, mainly through plasmids, is one of the greatest concerns for health systems worldwide and has been a growing threat in hospitals related to healthcare-associated infections by multidrug-resistant bacteria. Here we present p henotypic and genomic characterization of a KPC-2 and MCR-1.27-producing Klebsiella pneumoniae strain isolated from a paediatric patient at an oncologic hospital in Belém, Pará State, Brazilian Amazon region. METHODS: Antibiotic susceptibility test, whole genome sequencing, and in silico analysis were used to characterize the bacterial isolate (IEC48020) received in the Evandro Chagas Institute. RESULTS: The isolate was resistant to carbapenems, colistin, polymyxin B, and several other antimicrobials and was susceptible in vitro just to tigecycline, classified as an extensively drug-resistant phenotype. Genomic analysis revealed IEC48020 strain belonged to sequence type 11, clonal complex 258 high-risk clone and the presence of eight plasmids, two of them harbouring mcr-1.27 and bla(KPC-2) genes, and the presence of virulence-related genes encoding yersiniabactin, phospholipase D, and traT genes. CONCLUSIONS: The presence and dissemination of high-risk clone bacteria with high disseminating plasmids containing antibiotic resistance genes for last resource antibiotics treatment options is a threat to the healthcare system and demands efforts in surveillance and epidemiological research for better knowledge of the actual situation of antibiotic resistance in the healthcare system, especially in the Amazon region, Brazil. | 2023 | 37088246 |
| 5031 | 10 | 0.9895 | Rapid Tracing of Resistance Plasmids in a Nosocomial Outbreak Using Optical DNA Mapping. Resistance to life-saving antibiotics increases rapidly worldwide, and multiresistant bacteria have become a global threat to human health. Presently, the most serious threat is the increasing spread of Enterobacteriaceae carrying genes coding for extended spectrum β-lactamases (ESBL) and carbapenemases on highly mobile plasmids. We here demonstrate how optical DNA maps of single plasmids can be used as fingerprints to trace plasmids, for example, during resistance outbreaks. We use the assay to demonstrate a potential transmission route of an ESBL-carrying plasmid between bacterial strains/species and between patients, during a polyclonal outbreak at a neonatal ward at Sahlgrenska University Hospital (Gothenburg, Sweden). Our results demonstrate that optical DNA mapping is an easy and rapid method for detecting the spread of plasmids mediating resistance. With the increasing prevalence of multiresistant bacteria, diagnostic tools that can aid in solving ongoing routes of transmission, in particular in hospital settings, will be of paramount importance. | 2016 | 27627201 |
| 1823 | 11 | 0.9895 | Finding the Missing IMP Gene: Overcoming the Imipenemase IMP Gene Drop-Out in Automated Molecular Testing for Carbapenem-Resistant Bacteria Circulating in Latin America. Carbapenem resistance is considered one of the greatest current threats to public health, particularly in the management of infections in clinical settings. Carbapenem resistance in bacteria is mainly due to mechanisms such as the production of carbapenemases (such as the imipenemase IMP, or other enzymes like VIM, NDM, and KPC), that can be detected by several laboratory tests, including immunochromatography and automated real-time PCR (qPCR). Methods: As part of local studies to monitor carbapenem-resistant bacteria in Costa Rica, two cases were initially identified with inconsistent IMP detection results. A possible gene drop-out in the automated qPCR test was suggested based on the negative result, contrasting with the positive result by immunochromatography and whole-genome sequencing. We hypothesized that molecular testing could be optimized through the development of tailored assays to improve the detection of IMP genes. Thus, using IMP gene sequences from the local isolates and regional sequences in databases, primers were redesigned to extend the detection of IMP alleles of regional relevance. Results: The tailored qPCR was applied to a local collection of 119 carbapenem-resistant isolates. The genomes of all 14 positive cases were sequenced, verifying the results of the custom qPCR, despite the negative results of the automated testing. Conclusions: Guided by whole-genome sequencing, it was possible to extend the molecular detection of IMP alleles circulating in Latin America using a tailored qPCR to overcome IMP gene drop-out and false-negative results in an automated qPCR. | 2025 | 40867967 |
| 4926 | 12 | 0.9895 | Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts. The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes bla(CTX-M-14), bla(CTX-M-15), and bla(CTX-M-27), which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding bla(CTX-M) genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with bla(CTX-M-15), bla(CTX-M-14), and bla(CTX-M-27) genes identified in three, one, and one isolates, respectively. One sample had no bla(CTX-M) gene. Two samples had chromosomal bla(CTX-M-14) and bla(CTX-M-15) genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes. | 2019 | 31068432 |
| 5040 | 13 | 0.9895 | Rapid detection and differentiation of mobile colistin resistance (mcr-1 to mcr-10) genes by real-time PCR and melt-curve analysis. BACKGROUND: The emergence of multi-drug-resistant (MDR) micro-organisms prompted new interest in older antibiotics, such as colistin, that had been abandoned previously due to limited efficacy or high toxicity. Over the years, several chromosomal-encoded colistin resistance mechanisms have been described; more recently, 10 plasmid-mediated mobile colistin resistance (mcr) genes have been identified. Spread of these genes among MDR Gram-negative bacteria is a matter of serious concern; therefore, reliable and timely mcr detection is paramount. AIM: To design and validate a multiplex real-time polymerase chain reaction (PCR) assay for detection and differentiation of mcr genes. METHODS: All available mcr alleles were downloaded from the National Center for Biotechnology Information Reference Gene Catalogue, aligned with Clustal Omega and primers designed using Primer-BLAST. Real-time PCR monoplexes were optimized and validated using a panel of 120 characterized Gram-negative strains carrying a wide range of resistance genes, often in combination. Melt-curve analysis was used to confirm positive results. FINDINGS: In-silico analysis enabled the design of a 'screening' assay for detection of mcr-1/2/6, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8 and mcr-9/10, paired with an internal control assay to discount inhibition. A 'supplementary' assay was subsequently designed to differentiate mcr-1, mcr-2, mcr-6, mcr-9 and mcr-10. Expected results were obtained for all strains (100% sensitivity and specificity). Melt-curve analysis showed consistent melting temperature results. Inhibition was not observed. CONCLUSIONS: The assay is rapid and easy to perform, enabling unequivocal mcr detection and differentiation even when more than one variant is present. Adoption by clinical and veterinary microbiology laboratories would aid the surveillance of mcr genes amongst Gram-negative bacteria. | 2021 | 33485969 |
| 1583 | 14 | 0.9895 | Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. Mobilized colistin resistance (mcr) genes are plasmid-borne genes that confer resistance to colistin, an antibiotic used to treat severe bacterial infections. To date, eight known mcr homologues have been described (mcr-1 to -8). Here, we describe mcr-9, a novel mcr homologue detected during routine in silico screening of sequenced Salmonella genomes for antimicrobial resistance genes. The amino acid sequence of mcr-9, detected in a multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium (S Typhimurium) strain isolated from a human patient in Washington State in 2010, most closely resembled mcr-3, aligning with 64.5% amino acid identity and 99.5% coverage using Translated Nucleotide BLAST (tblastn). The S. Typhimurium strain was tested for phenotypic resistance to colistin and was found to be sensitive at the 2-mg/liter European Committee on Antimicrobial Susceptibility Testing breakpoint under the tested conditions. mcr-9 was cloned in colistin-susceptible Escherichia coli NEB5α under an IPTG (isopropyl-β-d-thiogalactopyranoside)-induced promoter to determine whether it was capable of conferring resistance to colistin when expressed in a heterologous host. Expression of mcr-9 conferred resistance to colistin in E. coli NEB5α at 1, 2, and 2.5 mg/liter colistin, albeit at a lower level than mcr-3 Pairwise comparisons of the predicted protein structures associated with all nine mcr homologues (Mcr-1 to -9) revealed that Mcr-9, Mcr-3, Mcr-4, and Mcr-7 share a high degree of similarity at the structural level. Our results indicate that mcr-9 is capable of conferring phenotypic resistance to colistin in Enterobacteriaceae and should be immediately considered when monitoring plasmid-mediated colistin resistance.IMPORTANCE Colistin is a last-resort antibiotic that is used to treat severe infections caused by MDR and extensively drug-resistant (XDR) bacteria. The World Health Organization (WHO) has designated colistin as a "highest priority critically important antimicrobial for human medicine" (WHO, Critically Important Antimicrobials for Human Medicine, 5th revision, 2017, https://www.who.int/foodsafety/publications/antimicrobials-fifth/en/), as it is often one of the only therapies available for treating serious bacterial infections in critically ill patients. Plasmid-borne mcr genes that confer resistance to colistin pose a threat to public health at an international scale, as they can be transmitted via horizontal gene transfer and have the potential to spread globally. Therefore, the establishment of a complete reference of mcr genes that can be used to screen for plasmid-mediated colistin resistance is essential for developing effective control strategies. | 2019 | 31064835 |
| 5235 | 15 | 0.9894 | Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance. | 2023 | 36948496 |
| 5824 | 16 | 0.9894 | Evaluation of a micro/nanofluidic chip platform for the high-throughput detection of bacteria and their antibiotic resistance genes in post-neurosurgical meningitis. BACKGROUND: Post-neurosurgical meningitis (PNM) is one of the most severe hospital-acquired infections worldwide, and a large number of pathogens, especially those possessing multi-resistance genes, are related to these infections. Existing methods for detecting bacteria and measuring their response to antibiotics lack sensitivity and stability, and laboratory-based detection methods are inconvenient, requiring at least 24h to complete. Rapid identification of bacteria and the determination of their susceptibility to antibiotics are urgently needed, in order to combat the emergence of multi-resistant bacterial strains. METHODS: This study evaluated a novel, fast, and easy-to-use micro/nanofluidic chip platform (MNCP), which overcomes the difficulties of diagnosing bacterial infections in neurosurgery. This platform can identify 10 genus or species targets and 13 genetic resistance determinants within 1h, and it is very simple to operate. A total of 108 bacterium-containing cerebrospinal fluid (CSF) cultures were tested using the MNCP for the identification of bacteria and determinants of genetic resistance. The results were compared to those obtained with conventional identification and antimicrobial susceptibility testing methods. RESULTS: For the 108 CSF cultures, the concordance rate between the MNCP and the conventional identification method was 94.44%; six species attained 100% consistency. For the production of carbapenemase- and extended-spectrum beta-lactamase (ESBL)-related antibiotic resistance genes, both the sensitivity and specificity of the MNCP tests were high (>90.0%) and could fully meet the requirements of clinical diagnosis. CONCLUSIONS: The MNCP is fast, accurate, and easy to use, and has great clinical potential in the treatment of post-neurosurgical meningitis. | 2018 | 29559366 |
| 4927 | 17 | 0.9894 | Optical DNA Mapping Combined with Cas9-Targeted Resistance Gene Identification for Rapid Tracking of Resistance Plasmids in a Neonatal Intensive Care Unit Outbreak. The global spread of antibiotic resistance among Enterobacteriaceae is largely due to multidrug resistance plasmids that can transfer between different bacterial strains and species. Horizontal gene transfer of resistance plasmids can complicate hospital outbreaks and cause problems in epidemiological tracing, since tracing is usually based on bacterial clonality. We have developed a method, based on optical DNA mapping combined with Cas9-assisted identification of resistance genes, which is used here to characterize plasmids during an extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae outbreak at a Swedish neonatal intensive care unit. The outbreak included 17 neonates initially colonized with ESBL-producing Klebsiella pneumoniae (ESBL-KP), some of which were found to carry additional ESBL-producing Escherichia coli (ESBL-EC) in follow-up samples. We demonstrate that all ESBL-KP isolates contained two plasmids with the bla(CTX-M-15) gene located on the smaller one (~80 kbp). The same ESBL-KP clone was present in follow-up samples for up to 2 years in some patients, and the plasmid carrying the bla(CTX-M-15) gene was stable throughout this time period. However, extensive genetic rearrangements within the second plasmid were observed in the optical DNA maps for several of the ESBL-KP isolates. Optical mapping also demonstrated that even though other bacterial clones and species carrying bla(CTX-M) group 1 genes were found in some neonates, no transfer of resistance plasmids had occurred. The data instead pointed toward unrelated acquisition of ESBL-producing Enterobacteriaceae (EPE). In addition to revealing important information about the specific outbreak, the method presented is a promising tool for surveillance and infection control in clinical settings.IMPORTANCE This study presents how a novel method, based on visualizing single plasmids using sequence-specific fluorescent labeling, could be used to analyze the genetic dynamics of an outbreak of resistant bacteria in a neonatal intensive care unit at a Swedish hospital. Plasmids are a central reason for the rapid global spread of bacterial resistance to antibiotics. In a single experimental procedure, this method replaces many traditional plasmid analysis techniques that together provide limited details and are slow to perform. The method is much faster than long-read whole-genome sequencing and offers direct genetic comparison of patient samples. We could conclude that no transfer of resistance plasmids had occurred between different bacteria during the outbreak and that secondary cases of ESBL-producing Enterobacteriaceae carriage were instead likely due to influx of new strains. We believe that the method offers potential in improving surveillance and infection control of resistant bacteria in hospitals. | 2019 | 31289171 |
| 6615 | 18 | 0.9894 | Is Africa ready for mobile colistin resistance threat? Antimicrobial resistance is a growing public health problem and a threat to effective treatment and prevention of an array of infections caused by bacteria. Africa is already faced with many socio-economic and health crises. Many countries in Africa can seldom boast of a standardized health care facility comparable to those in developed countries. Yet, the non-therapeutic use of COL has been banned in developed countries. However, in Africa, except for South Africa, COL is an over-the-counter (OTC) medication sold and dispensed by non-professionals/without a veterinarian's supervision. The ban of non-therapeutic COL in developed countries has proven to reduce the development of mobile colistin resistance (MCR) in humans and animals. The unregulated use of COL has been proven to select pathogenic and commensal bacteria resistance. A transmissible plasmid-mediated colistin determinant, mobile COL resistance (mcr) gene, which is rapidly transferred/acquired horizontally or laterally intra/inter-species/genera, has been reported. A highly promiscuous mobile genetic element like plasmids containing transposons, insertion sequences, and integrons aid the carriage/rapid transfer and acquisition of these mcr genes. Hence, we highlight the danger posed by escalating colistin (COL) resistance in the continent and the impetus to halt the indiscriminate and non-therapeutic use of COL to protect public health. | 2021 | 34377360 |
| 5460 | 19 | 0.9894 | Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. Linezolid is a last-resort antibiotic for the treatment of severe infections caused by multidrug-resistant Gram-positive organisms; although linezolid resistance remains uncommon, the number of linezolid-resistant enterococci has increased in recent years due to worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. In this study, we investigated the occurrence of linezolid-resistant enterococci in marine samples from two coastal areas in Italy. Isolates grown on florfenicol-supplemented Slanetz-Bartley agar plates were investigated for their carriage of optrA, poxtA, and cfr genes; optrA was found in one Enterococcus faecalis isolate, poxtA was found in three Enterococcus faecium isolates and two Enterococcus hirae isolates, and cfr was not found. Two of the three poxtA-carrying E. faecium isolates and the two E. hirae isolates showed related pulsed-field gel electrophoresis (PFGE) profiles. Two E. faecium isolates belonged to the new sequence type 1710, which clustered in clonal complex 94, encompassing nosocomial strains. S1 PFGE/hybridization assays showed a double (chromosome and plasmid) location of poxtA and a plasmid location of optrA Whole-genome sequencing revealed that poxtA was contained in a Tn6657-like element carried by two plasmids (pEfm-EF3 and pEh-GE2) of similar size, found in different species, and that poxtA was flanked by two copies of IS1216 in both plasmids. In mating experiments, all but one strain (E. faecalis EN3) were able to transfer the poxtA gene to E. faecium 64/3. The occurrence of linezolid resistance genes in enterococci from marine samples is of great concern and highlights the need to improve practices aimed at limiting the transmission of linezolid-resistant strains to humans from environmental reservoirs.IMPORTANCE Linezolid is one of the few antimicrobials available to treat severe infections due to drug-resistant Gram-positive bacteria; therefore, the emergence of linezolid-resistant enterococci carrying transferable resistance determinants is of great concern for public health. Linezolid resistance genes (cfr, optrA, and poxtA), often plasmid located, can be transmitted via horizontal gene transfer and have the potential to spread globally. This study highlights the detection of enterococci carrying linezolid resistance genes from sediment and zooplankton samples from two coastal urban areas in Italy. The presence of clinically relevant resistant bacteria, such as linezolid-resistant enterococci, in marine environments could reflect their spillover from human and/or animal reservoirs and could indicate that coastal seawaters also might represent a source of these resistance genes. | 2021 | 33608287 |