# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3647 | 0 | 0.8822 | Biofilm Forming Antibiotic Resistant Gram-Positive Pathogens Isolated From Surfaces on the International Space Station. The International Space Station (ISS) is a closed habitat in a uniquely extreme and hostile environment. Due to these special conditions, the human microflora can undergo unusual changes and may represent health risks for the crew. To address this problem, we investigated the antimicrobial activity of AGXX®, a novel surface coating consisting of micro-galvanic elements of silver and ruthenium along with examining the activity of a conventional silver coating. The antimicrobial materials were exposed on the ISS for 6, 12, and 19 months each at a place frequently visited by the crew. Bacteria that survived on the antimicrobial coatings [AGXX® and silver (Ag)] or the uncoated stainless steel carrier (V2A, control material) were recovered, phylogenetically affiliated and characterized in terms of antibiotic resistance (phenotype and genotype), plasmid content, biofilm formation capacity and antibiotic resistance transferability. On all three materials, surviving bacteria were dominated by Gram-positive bacteria and among those by Staphylococcus, Bacillus and Enterococcus spp. The novel antimicrobial surface coating proved to be highly effective. The conventional Ag coating showed only little antimicrobial activity. Microbial diversity increased with increasing exposure time on all three materials. The number of recovered bacteria decreased significantly from V2A to V2A-Ag to AGXX®. After 6 months exposure on the ISS no bacteria were recovered from AGXX®, after 12 months nine and after 19 months three isolates were obtained. Most Gram-positive pathogenic isolates were multidrug resistant (resistant to more than three antibiotics). Sulfamethoxazole, erythromycin and ampicillin resistance were most prevalent. An Enterococcus faecalis strain recovered from V2A steel after 12 months exposure exhibited the highest number of resistances (n = 9). The most prevalent resistance genes were ermC (erythromycin resistance) and tetK (tetracycline resistance). Average transfer frequency of erythromycin, tetracycline and gentamicin resistance from selected ISS isolates was 10(-5) transconjugants/recipient. Most importantly, no serious human pathogens such as methicillin resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococci (VRE) were found on any surface. Thus, the infection risk for the crew is low, especially when antimicrobial surfaces such as AGXX® are applied to surfaces prone to microbial contamination. | 2019 | 30941112 |
| 5234 | 1 | 0.8775 | A Multidrug-Resistant Escherichia coli Caused the Death of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). The rapid increase in drug resistance in recent years has become a significant global public health concern. Escherichia coli are ubiquitous bacteria, widely distributed in various environments. This study isolated a bacterial strain (HD-593) from diseased Chinese soft-shelled turtles (Pelodiscus sinensis). The bacterium was identified based on morphology, biochemical tests, and 16S rRNA sequencing, confirming it as E. coli. Drug susceptibility tests revealed that the HD-593 strain was highly resistant to ceftriaxone, enrofloxacin, doxycycline, sulfadiazine, gentamicin, neomycin, florfenicol, carbenicillin, cefradine, erythromycin, penicillin, ampicillin, midecamycin, and streptomycin. Resistance gene analysis confirmed the presence of quinolone resistance genes (oqxA and oqxB), aminoglycoside resistance genes (aac(3)-II and aphA1), a β-lactam resistance gene (blaTEM), and an acylaminol resistance gene (floR) in HD-593. The median lethal dose (LD50) of HD-593 for P. sinensis was 6.53 × 10(5) CFU/g. Biochemical analysis of serum revealed that HD-593 infection caused a significant reduction in total protein, albumin, and globulin levels, while markedly increasing the levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Histopathological analysis revealed severe intestinal damage characterized by villi detachment and muscle cell necrosis. Additionally, extensive splenocyte necrosis with nuclear marginalization, glomerular swelling, and pronounced hepatic steatosis accompanied by distended sinusoids were observed. This study identified a multidrug-resistant E. coli strain from deceased P. sinensis, suggesting that drug resistance genes may circulate in aquaculture ecosystems, posing potential risks to aquaculture. | 2025 | 40431566 |
| 6046 | 2 | 0.8743 | Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Over the past decade, a variety of lactic acid bacteria have been commercially available to and steadily used by consumers. However, recent studies have shown that some lactic acid bacteria produce toxic substances and display properties of virulence. To establish safety guidelines for lactic acid bacteria, the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) has suggested that lactic acid bacteria be characterized and proven safe for consumers’ health via multiple experiments (e.g., antibiotic resistance, metabolic activity, toxin production, hemolytic activity, infectivity in immune-compromised animal species, human side effects, and adverse-outcome analyses). Among the lactic acid bacteria, Bifidobacterium and Lactobacillus species are probiotic strains that are most commonly commercially produced and actively studied. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI have been used in global functional food markets (e.g., China, Germany, Jordan, Korea, Lithuania, New Zealand, Poland, Singapore, Thailand, Turkey, and Vietnam) as nutraceutical ingredients for decades, without any adverse events. However, given that the safety of some newly screened probiotic species has recently been debated, it is crucial that the consumer safety of each commercially utilized strain be confirmed. Accordingly, this paper details a safety assessment of B. bifidum BGN4 and B. longum BORI via the assessment of ammonia production, hemolysis of blood cells, biogenic amine production, antimicrobial susceptibility pattern, antibiotic resistance gene transferability, PCR data on antibiotic resistance genes, mucin degradation, genome stability, and possession of virulence factors. These probiotic strains showed neither hemolytic activity nor mucin degradation activity, and they did not produce ammonia or biogenic amines (i.e., cadaverine, histamine or tyramine). B. bifidum BGN4 and B. longum BORI produced a small amount of putrescine, commonly found in living cells, at levels similar to or lower than that found in other foods (e.g., spinach, ketchup, green pea, sauerkraut, and sausage). B. bifidum BGN4 showed higher resistance to gentamicin than the European Food Safety Authority (EFSA) cut-off. However, this paper shows the gentamicin resistance of B. bifidum BGN4 was not transferred via conjugation with L. acidophilus ATCC 4356, the latter of which is highly susceptible to gentamicin. The entire genomic sequence of B. bifidum BGN4 has been published in GenBank (accession no.: CP001361.1), documenting the lack of retention of plasmids capable of transferring an antibiotic-resistant gene. Moreover, there was little genetic mutation between the first and 25th generations of B. bifidum BGN4. Tetracycline-resistant genes are prevalent among B. longum strains; B. longum BORI has a tet(W) gene on its chromosome DNA and has also shown resistance to tetracycline. However, this research shows that its tetracycline resistance was not transferred via conjugation with L. fermentum AGBG1, the latter of which is highly sensitive to tetracycline. These findings support the continuous use of B. bifidum BGN4 and B. longum BORI as probiotics, both of which have been reported as safe by several clinical studies, and have been used in food supplements for many years. | 2018 | 29747442 |
| 3735 | 3 | 0.8740 | Effects of Menthol Supplementation in Feedlot Cattle Diets on the Fecal Prevalence of Antimicrobial-Resistant Escherichia coli. The pool of antimicrobial resistance determinants in the environment and in the gut flora of cattle is a serious public health concern. In addition to being a source of human exposure, these bacteria can transfer antibiotic resistance determinants to pathogenic bacteria and endanger the future of antimicrobial therapy. The occurrence of antimicrobial resistance genes on mobile genetic elements, such as plasmids, facilitates spread of resistance. Recent work has shown in vitro anti-plasmid activity of menthol, a plant-based compound with the potential to be used as a feed additive to beneficially alter ruminal fermentation. The present study aimed to determine if menthol supplementation in diets of feedlot cattle decreases the prevalence of multidrug-resistant bacteria in feces. Menthol was included in diets of steers at 0.3% of diet dry matter. Fecal samples were collected weekly for 4 weeks and analyzed for total coliforms counts, antimicrobial susceptibilities, and the prevalence of tet genes in E. coli isolates. Results revealed no effect of menthol supplementation on total coliforms counts or prevalence of E. coli resistant to amoxicillin, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, and sulfamethoxazole; however, 30 days of menthol addition to steer diets increased the prevalence of tetracycline-resistant E. coli (P < 0.02). Although the mechanism by which menthol exerts its effects remains unclear, results of our study suggest that menthol may have an impact on antimicrobial resistance in gut bacteria. | 2016 | 28030622 |
| 6075 | 4 | 0.8738 | Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Despite of the beneficial relevance of several lactic acid bacteria (LAB) in the food industry, micro-organisms belonging to this group can determine spoilage in food products and carry a number of virulence and antibiotic resistance-related genes. This study aimed on the characterization of beneficial and safety aspects of five bacteriocinogenic LAB strains (Lactobacillus curvatus 12-named L. curvatus UFV-NPAC1), L. curvatus 36, Weissela viridescens 23, W. viridescens 31 and Lactococcus garvieae 36) isolated from an artisanal Brazilian calabresa, a traditional meat sausage. Regarding their beneficial aspects, all tested isolates were positive for mub, while EF226-cbp, EF1249-fbp and EF2380-maz were detected in at least one tested strain; none of the isolates presented map, EFTu or prgB. However, evaluated strains presented a variable pattern of virulence-related genes, but none of the strains presented gelE, cylA, efsA, cpd, int-Tn or sprE. Moreover, other virulence-related genes evaluated in this study were detected at different frequencies. L. curvatus 12 was generated positive results for ace, ccf, int, ermC, tetL, aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, bcrB, vanB and vanC2; L. curvatus 36: hyl, asa1, esp, int, ermC, tetK, aph(3')-IIIa, aph(2'')-Ic and vanC2; L. garvieae 32: asa1, ant(4')-Ia, aph(2'')-Ib, catA, vanA and vanC1; W. viridescens 23: esp, cob, ermB, aph(3')-IIIa, aph(2'')-Ic, vanA, vanB and vanC2; W. viridescens 31: hyl, esp, ermC, aph(3')-IIIa, aph(2'')-Ib, aph(2'')-Ic, catA, vanA and vanB. Despite presenting some beneficial aspects, the presence of virulence and antibiotic resistance genes jeopardize their utilization as starter or biopreservatives cultures in food products. Considering the inhibitory potential of these strains, an alternative would be the use of their bacteriocins as semi-purified or pure technological preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: The food industry has a particular interest in using bacteriocinogenic lactic acid bacteria (LAB) as starter, probiotics and/or biopreservatives in different food products. Characterization of additional beneficial features is important to identify new, multifunctional potential probiotic strains. However, these strains can only be applied in food products only after being properly characterized according their potential negative aspects, such as virulence and antibiotic resistance genes. A wide characterization of beneficial and safety aspects of bacteriocinogenic LAB is determinant to guide the proper utilization of these strains, or their purified bacteriocins, by the food industry. | 2019 | 31250457 |
| 7061 | 5 | 0.8738 | Dissemination of antibiotic resistance genes through soil-plant-earthworm continuum in the food production environment. Treated municipal wastewater (TMW) can provide a reliable source of irrigation water for crops, which is especially important in arid areas where water resources are limited or prone to drought. Nonetheless, TMW may contain residual antibiotics, potentially exposing the crops to these substances. The goal of this study was to investigate the dissemination of antibiotics resistance genes (ARGs) in the soil-plant-earthworm continuum after irrigation of spinach and radish plants with TMW containing trimethoprim, sulfamethoxazole, and sulfapyridine in a greenhouse experiment, followed by feeding of earthworms with harvested plant materials. Our results showed that antibiotic resistance genes (ARGs) were enriched in the soil-plant-earthworm microbiomes irrigated with TMW and TMW spiked with higher concentrations of antibiotics. The number of ARGs and antibiotic-resistant bacteria (ARB) enrichment varied with plant type, with spinach harboring a significantly higher amount of ARGs and ARB compared to radish. Our data showed that bulk and rhizosphere soils of spinach and radish plants irrigated with MilliQ water, TMW, TMW10, or TMW100 had significant differences in bacterial community (p < 0.001), ARG (p < 0.001), and virulence factor gene (VFG) (p < 0.001) diversities. The abundance of ARGs significantly decreased from bulk soil to rhizosphere to phyllosphere and endosphere. Using metagenome assembled genomes (MAGs), we recovered many bacterial MAGs and a near complete genome (>90 %) of bacterial MAG of genus Leclercia adecarboxylata B from the fecal microbiome of earthworm that was fed harvested radish tubers and spinach leaves grown on TMW10 irrigated waters, and this bacterium has been shown to be an emerging pathogen causing infection in immunocompromised patients that may lead to health complications and death. Therefore, crops irrigated with TMW containing residual antibiotics and ARGs may lead to increased incidences of enrichment of ARB in the soil-plant-earthworm continuum. | 2024 | 38101104 |
| 5244 | 6 | 0.8737 | Potentially pathogenic bacteria and antimicrobial resistance in bioaerosols from cage-housed and floor-housed poultry operations. BACKGROUND: Antibiotics are used in animal confinement buildings, such as cage-housed (CH) and floor-housed (FH) poultry operations, to lower the likeliness of disease transmission. In FH facilities, antibiotics may also be used at sub-therapeutic levels for growth promotion. Low levels of antibiotic create a selective pressure toward antimicrobial resistance (AMR) in chicken fecal bacteria. OBJECTIVE: The objective of this study was to compare bacteria and AMR genes in bioaerosols from CH and FH poultry facilities. METHODS: Bioaerosols were collected from 15 CH and 15 FH poultry operations, using stationary area samplers as well as personal sampling devices. Bacteria concentrations were determined by genus- or species-specific quantitative polymerase chain reaction (PCR) and AMR genes were detected using endpoint PCR. RESULTS: Enterococcus spp., Escherichia coli, and Staphylococcus spp. were significantly higher in bioaerosols of FH poultry operations than CH bioaerosols (P < 0.001) while Clostridium perfringens was significantly higher in area bioaerosols of CH operations than FH area bioaerosols (P < 0.05). Campylobacter spp. were detected only in bioaerosols of FH facilities. Zinc bacitracin resistance gene, bcrR, erythromycin resistance gene, ermA, and tetracycline resistance gene, tetA/C, were more prevalent in bioaerosols of FH facilities than CH bioaerosols (P < 0.01, P < 0.01, and P < 0.05, respectively). CONCLUSIONS: Most bacteria are more concentrated and most AMR genes are more prevalent in bioaerosols of FH poultry operations, where growth-promoting antibiotics may be used. | 2012 | 22156572 |
| 5237 | 7 | 0.8736 | Phenotypic and genomic analysis of Enterococcus avium MC09 pathogenicity isolated from Scylla spp. (mud crab) in a Thai market. Enterococcus avium is a Gram-positive pathogenic bacterium classified under the Enterococcaceae family. E. avium has been isolated from diverse environmental sources, raising concerns about its potential role in the spread of antibiotic resistance. E. avium MC09, isolated from a mud crab in a Thai market, was analyzed for its antibiotic resistance and pathogenic potential in this study. The isolation of E. avium from mud crab is significant as it highlights the potential role of seafood as a reservoir for antibiotic-resistant bacteria, which may pose risks to public health throughout the food chain. Antibiotic susceptibility testing using the Kirby-Bauer disk diffusion method revealed that E. avium MC09 is resistant to clindamycin, erythromycin, streptomycin, and tetracycline, and exhibits alpha hemolysis on blood agar, indicating its potential virulence. Genomic DNA was extracted and sequenced using the Oxford Nanopore Technologies (ONT) platform, revealing the presence of resistance genes for macrolides (ermB) and tetracyclines (tetL and tetM). Furthermore, several virulence-associated genes were detected, such as srtC, ecbA, efaA, dltA, cpsA/uppS, cpsB/cdsA, cylR2, icps4I, cpsY, epsE, vctC, mgtB, ndk, lisR, and lgt suggesting a pathogenic potential. Additionally, the study identified several insertion sequences (ISs), including (IS1216, IS1216E, IS1216V, IS6770, ISEfa7, ISEfa8, and ISS1W which are commonly found in pathogenic Enterococcus strains. The presence of these IS elements further emphasizes the strain's potential for virulence and genetic adaptability. This study provides comprehensive insights into both the phenotypic and genotypic characteristics of E. avium MC09, highlighting its antimicrobial resistance and pathogenic mechanisms, and underlines the importance of monitoring antibiotic resistance in seafood-associated bacteria. | 2025 | 40015576 |
| 1347 | 8 | 0.8734 | Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana. Consumer perception of poor hygiene of fresh milk products is a major barrier to promotion of milk consumption as an intervention to alleviate the burden of malnutrition in Ghana. Fresh milk is retailed raw, boiled, or processed into unfermented cheese and spontaneously fermented products in unlicensed outlets. In this study, we have determined microbiological quality of informally retailed fresh milk products and characterized the genomic diversity and antimicrobial resistance (AMR) patterns of non-typhoidal Salmonella (NTS) in implicated products. A total of 159 common dairy products were purchased from five traditional milk markets in Accra. Samples were analysed for concentrations of aerobic bacteria, total and fecal coliforms, Escherichia coli, staphylococci, lactic acid bacteria and yeast and moulds. The presence of Salmonella, E. coli O157:H7, Listeria monocytogenes and Staphylococcus aureus were determined. AMR of Salmonella against 18 antibiotics was experimentally determined. Genome sequencing of 19 Salmonella isolates allowed determination of serovars, antigenic profiles, prediction of AMR genes in silico and inference of phylogenetic relatedness between strains. Raw and heat-treated milk did not differ significantly in overall bacterial quality (P = 0.851). E. coli O157:H7 and Staphylococcus aureus were present in 34.3% and 12.9% of dairy products respectively. Multidrug resistant (MDR) Salmonella enterica serovars Muenster and Legon were identified in 11.8% and 5.9% of unfermented cheese samples respectively. Pan genome analysis revealed a total of 3712 core genes. All Salmonella strains were resistant to Trimethoprim/Sulfamethoxazole, Cefoxitin, Cefuroxime Axetil and Cefuroxime. Resistance to Chloramphenicol (18%) and Ciprofloxacin (100%), which are first line antibiotics used in treatment of NTS bacteremia in Ghana, was evident. AMR was attributed to presence and/or mutations in the following genes: golS, sdiA for cephalosporins, aac(6')-Iy, ant(9) for aminoglycosides, mdtK, gyrA, gyrB, parC, parE for quinolones and cat1, cat4 for phenicols. Phylogenetic analysis based on accessory genes clustered S. Legon strains separately from the S. Muenster strains. These strains were from different markets suggesting local circulation of related strains. Our study justifies consumer resistance to consumption of unripened soft cheese without further lethal heat treatment, and provides evidence that supports the Ghana Health Service recommendation for use of 3rd generation cephalosporins for the treatment of MDR NTS infections. | 2018 | 29680695 |
| 5245 | 9 | 0.8732 | Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production. | 2021 | 33302298 |
| 3526 | 10 | 0.8732 | The impact of antibiotic residues on resistance patterns in leek at harvest. When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 μg/kg manure), sulfadiazine (1000 μg/kg manure), or lincomycin (1000 μg/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin. | 2023 | 37215782 |
| 2404 | 11 | 0.8730 | Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative-Staphylococcus in Chicken Meat Retailed to Consumers. The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mecA and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS) and methicillin-susceptible coagulase-negative staphylococci (MSCNS) isolated from the retail trade of ready-to-eat raw chicken meat samples collected during 1 year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim, and vancomycin) and their endorsement of the quinolone resistance determining region, mecA and cfr genes. The isolation results revealed 50 isolates, CPS (14) and CNS (36), representing ten species (S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius, and S. lentus). Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mecA gene. The ARG that bestows resistance to quinolones, β-lactams, macrolides, lincosamides, and streptogramin B [MLS((B))] in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance-determining-regions, the identification of MRSA and MR-CNS from retail chicken meat in Egypt. In addition, these isolates might indicate the promulgation of methicillin, oxacillin and vancomycin resistance in the community and imply food safety hazards. | 2016 | 27920760 |
| 5385 | 12 | 0.8730 | Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements. Different samples of three products including Bikalga and Soumbala from Burkina Faso (West Africa) and Ntoba Mbodi from Congo-Brazzaville (Central Africa) were evaluated. The bacteria (400) were phenotyped and genotypically characterized by Rep-PCR, PFGE, 16S rRNA and rpoB gene sequencing and spa typing. Their PFGE profiles were compared with those of 12,000 isolates in the Center for Disease Control (CDC, USA) database. They were screened for the production of enterotoxins, susceptibility to 19 antimicrobials, presence of 12 staphylococcal toxin and 38 AMR genes and the ability to transfer erythromycin and tetracycline resistance genes to Enterococcus faecalis JH2-2. Fifteen coagulase negative (CoNS) and positive (CoPS) species characterized by 25 Rep-PCR/PFGE clusters were identified: Staphylococcus arlettae, S. aureus, S. cohnii, S. epidermidis, S. gallinarum, S. haemolyticus, S. hominis, S. pasteuri, S. condimenti, S. piscifermentans, S. saprophyticus, S. sciuri, S. simulans, S. warneri and Macrococcus caseolyticus. Five species were specific to Soumbala, four to Bikalga and four to Ntoba Mbodi. Two clusters of S. gallinarum and three of S. sciuri were particular to Burkina Faso. The S. aureus isolates exhibited a spa type t355 and their PFGE profiles did not match any in the CDC database. Bacteria from the same cluster displayed similar AMR and toxin phenotypes and genotypes, whereas clusters peculiar to a product or a location generated distinct profiles. The toxin genes screened were not detected and the bacteria did not produce the staphylococcal enterotoxins A, B, C and D. AMR genes including blazA, cat501, dfr(A), dfr(G), mecA, mecA1, msr(A) and tet(K) were identified in CoNS and CoPS. Conjugation experiments produced JH2-2 isolates that acquired resistance to erythromycin and tetracycline, but no gene transfer was revealed by PCR. The investigation of the heterogeneity of Staphylococcus species from alkaline fermented foods, their relationship with clinical and environmental isolates and their safety in relation to antimicrobial resistance (AMR) and toxin production is anticipated to contribute to determining the importance of staphylococci in alkaline fermented foods, especially in relation to the safety of the consumers. | 2019 | 31670141 |
| 1338 | 13 | 0.8730 | Molecular characterization of Aeromonas hydrophila detected in Channa marulius and Sperata sarwari sampled from rivers of Punjab in Pakistan. Aeromonas hydrophila is one of the major pathogenic bacteria responsible for causing severe outbreaks at fish farms and is also a major global public health concern. This bacterium harbors many virulence genes. The current study was designed to evaluate the antidrug and virulence potential of A. hydrophila by amplifying its antimicrobial resistance and virulence genes using PCR and examining their effects on fish tissues and organs. A total of 960 fish samples of Channa marulius and Sperata sarwari were collected from four sites of the rivers of the Punjab, Pakistan. A. hydrophila isolates were subjected to biochemical identification and detection of virulence and antimicrobial resistance (AMR) genes by PCR. We retrieved 181 (6.46%) A. hydrophila isolates from C. marulius and 177 (6.25%) isolates from S. sarwari. Amplification through PCR revealed the incidence of virulence genes in 95.7% of isolates in C. marulius and 94.4% in S. sarwari. Similarly, amplification through PCR also revealed occurrence of AMR genes in 87.1% of isolates in C. marulius and 83.9% in S. sarwari. Histopathological examination revealed congestion (5.2%) and hepatocyte necrosis (4.6%) in liver, lamellar fusion (3.3%) and the presence of bacterial colonies (3.7%) in gills, fin erosion (6%), and the presence of biofilms (3.5%) in tail fins of infected fish. Phylogenetic tree analysis of 16S rRNA and gyrB gene of A. hydrophila revealed 100% and 97% similarity, respectively, with 16S rRNA gene and gyrB of A. hydrophila isolated in previous studies. The results of antimicrobial susceptibility testing showed that all isolates demonstrated resistance to sulfamethoxazole, ampicillin, neomycin, and norfloxacin, while susceptibility to gentamicin, chloramphenicol, and tetracycline, and intermediate resistance was observed against cefotaxime. The results concluded that examined fish samples were markedly contaminated with virulent and multidrug strains of A. hydrophila which may be of a potential health risk. The study emphasizes the responsible antimicrobial use in aquaculture and the urgent need for effective strategies to control the spread of virulence and antimicrobial resistance genes in A. hydrophila. | 2024 | 38551906 |
| 8431 | 14 | 0.8729 | A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (10(8)-10(9) CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density. | 2023 | 37619725 |
| 7132 | 15 | 0.8727 | Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Little is known about how introducing recycled water intended for direct potable reuse (DPR) into distribution systems and premise plumbing will affect water quality at the point of use, particularly with respect to effects on microbial communities and regrowth. The examination of potential growth of opportunistic pathogens (OPs) and spread of antibiotic resistance genes (ARGs), each representing serious and growing public health concerns, by introducing DPR water has not previously been evaluated. In this study, the impact of blending purified DPR water with traditional drinking water sources was investigated with respect to treatment techniques, blending location, and blending ratio. Water from four U.S. utility partners was treated in bench- and pilot-scale treatment trains to simulate DPR with blending. Water was incubated in simulated premise plumbing rigs made of PVC pipe containing brass coupons to measure regrowth of total bacteria (16S rRNA genes, heterotrophic plate count), OPs (Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa), ARGs (qnrA, vanA), and an indicator of horizontal gene transfer and multi-drug resistance (intI1). The microbial community composition was profiled and the resistome (i.e., all ARGs present) was characterized in select samples using next generation sequencing. While regrowth of total bacteria (16S rRNA genes) from the start of the incubation through week eight consistently occurred across tested scenarios (Wilcoxon, p ≤ 0.0001), total bacteria were not more abundant in the water or biofilm of any DPR scenario than in the corresponding conventional potable condition (p ≥ 0.0748). Regrowth of OP marker genes, qnrA, vanA, and intI1 were not significantly greater in water or biofilm for any DPR blends treated with advanced oxidation compared to corresponding potable water (p ≥ 0.1047). This study of initial bacteria colonizing pipes after introduction of blended DPR water revealed little evidence (i.e., one target in one water type) of exacerbated regrowth of total bacteria, OPs, or ARGs in premise plumbing. | 2019 | 30594092 |
| 5247 | 16 | 0.8726 | Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) S. enterica, 3GC(r) S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TET(r) Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TET(r) E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log(2)-fold change, P = 0.04) and tet(B) (5.6-log(2)-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef. | 2018 | 30476443 |
| 3627 | 17 | 0.8723 | Effect of in-feed paromomycin supplementation on antimicrobial resistance of enteric bacteria in turkeys. Histomoniasis in turkeys can be prevented by administering paromomycin sulfate, an aminoglycoside antimicrobial agent, in feed. The aim of this study was to evaluate the impact of in-feed paromomycin sulfate supplementation on the antimicrobial resistance of intestinal bacteria in turkeys. Twelve flocks of breeder turkeys were administered 100 ppm paromomycin sulfate from hatching to day 120; 12 flocks not supplemented with paromomycin were used as controls. Faecal samples were collected monthly from days 0 to 180. The resistance of Escherichia coli, Enterococcus faecium and Staphylococcus aureus to paramomycin and other antimicrobial agents was compared in paromomycin supplemented (PS) and unsupplemented (PNS) flocks. E. coli from PS birds had a significantly higher frequency of resistance to paromomycin, neomycin and kanamycin until 1 month after the end of supplementation compared to PNS birds. Resistance to amoxicillin or trimethoprim-sulfamethoxazole was also more frequent in PS turkeys. Resistance was mainly due to the presence of aph genes, which could be transmitted by conjugation, sometimes with streptomycin, tetracycline, amoxicillin, trimethoprim or sulfonamide resistance genes. Resistance to kanamycin and streptomycin in E. faecium was significantly different in PS and PNS breeders on days 60 and 90. Significantly higher frequencies of resistance to paromomycin, kanamycin, neomycin and tobramycin were observed in S. aureus isolates from PS birds. Paromomycin supplementation resulted in resistance to aminoglycosides in bacteria of PS turkeys. Co-selection for resistance to other antimicrobial agents was observed in E. coli isolates. | 2013 | 23800604 |
| 5436 | 18 | 0.8723 | Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by β-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne β-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of β-lactams as a main therapeutic application against staphylococcal infections. | 2018 | 29350135 |
| 6944 | 19 | 0.8722 | Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora. Antibiotic resistance genes (ARGs) in animal manure are an environmental concern due to naturally occurring bacteria being exposed to these wastes and developing multidrug resistance. The bioconversion of manure with fly larvae is a promising alternative for recycling these wastes while attenuating ARGs. We investigated the impact of black soldier fly (BSF, Hermetia illucens) larval bioconversion of chicken manure on the persistence of associated ARGs. Compared with traditional composting or sterile larval treatments (by 48.4% or 88.7%), non-sterile BSF larval treatments effectively reduced ARGs and integrin genes by 95.0% during 12 days, due to rapid decreases in concentrations of the genes and associated bacteria as they passed through the larval gut and were affected by intestinal microbes. After larval treatments, bacterial community composition differed significantly, with the percentage of Firmicutes possibly carrying ARGs reduced by 65.5% or more. On average, human pathogenic bacteria populations declined by 70.7%-92.9%, effectively mitigating risks of these bacteria carrying ARGs. Environmental pH, nitrogen content and antibiotic concentrations were closely related to both bacterial community composition and targeted gene attenuation in larval systems. Selective pressures of larval gut environments with intestinal microbes, larval bacteriostasis and reformulation of manure due to larval digestion contributed to ARG attenuation. | 2018 | 30318817 |