AEGRIFACIENS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
513500.9012Arsenotrophic Achromobacter aegrifaciens strains isolated from arsenic contaminated tubewell water and soil sources shared similar genomic potentials. BACKGROUND: Arsenic (As), found in diverse ecosystems, poses major public health risks in various parts of the world. Arsenotrophic bacteria in contaminated environments help reduce toxicity by converting arsenite (AsIII) to less harmful arsenate (AsV). We assumed that Achromobacter aegrifaciens strains from As-contaminated tubewell water and soil would share similar genomic characteristics associated with arsenic detoxification and bioremediation. To investigate this, we employed both culture-dependent and culture-independent viz. whole genome sequencing (WGS) methods to thoroughly elucidate the phenotypic and genotypic features of two A. aegrifaciens strains isolated from As-contaminated tubewell water (BAW48) and soil (BAS32) samples collected in the Bogura district of Bangladesh. RESULTS: Both BAW48 and BAS32 isolates demonstrated As(III) oxidation in the KMNO4 test, which was corroborated by molecular analysis confirming the presence of aioA and arsB genes in both strains. These strains were found to be phylogenetically related to many strains of Achromobacter spp., isolated from biological inorganic reactors, environmental soils, sediments and human clinical samples across diverse geographical regions. Moreover, both strains possessed distinct heavy metal resistance genes conferring resistance to Co, Zn, Cu, Cd, Hg, As, and Cr. Three As gene clusters such as As(III) oxidizing aioBA, As(III) reducing arsRCDAB and the MMA(III) oxidizing ars resistance gene (arsHCsO) cluster were predicted in both genomes of A. aegrifaciens. Further genomic analyses revealed similar profiles in both strains, with mobile genetic elements, antimicrobials and heavy metal resistance genes, virulence genes, and metabolic features. Pangenome and synteny analysis showed that the two genomes are evolutionary distinct from other strains, but closely related to one another. CONCLUSION: The genomic data confirmed that A. aegrifaciens strains can oxidize As(III) and detoxify heavy metals like As, suggesting their potential for As detoxification and bioremediation. These findings align with our assumption and provide a basis for developing sustainable solutions for bioremediation efforts in As-contaminated environments.202439627700
843910.8952Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BACKGROUND: Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens. RESULTS: Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species. CONCLUSIONS: The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans.202235761183
523620.8933Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). INTRODUCTION: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. METHODS: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. RESULTS: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). CONCLUSION: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.202439104589
516730.8930Decreased Antimicrobial Resistance Gene Richness Following Fecal Microbiota, Live-jslm (REBYOTA®) Administration: Post Hoc Analysis of PUNCH CD3. BACKGROUND: The human gastrointestinal microbiome helps maintain vital functions related to overall health, including resistance to pathogen colonization. Disruption of the microbiome, leading to loss of colonization resistance, can be caused by multiple factors, including antimicrobial use. The loss of colonization resistance may lead to establishment or proliferation of opportunistic bacteria that carry genes associated with antimicrobial resistance, potentially increasing the risk of infection by such antimicrobial-resistant bacteria. A potential approach to mitigating this risk involves restoration of healthier microbiota and pathogen colonization resistance. METHODS: A metagenomic sequencing method was used to conduct a post hoc analysis of antibiotic resistance gene richness among fecal samples from participants administered fecal microbiota, live-jslm (REBYOTA; abbreviated as RBL) or placebo in the PUNCH CD3 study (NCT03244644) for the prevention of recurrent Clostridioides difficile infection. RESULTS: At baseline, participants had higher antibiotic resistance gene richness than a representative healthy cohort. Over time, RBL responders had lower antibiotic resistance gene richness at the class, group, and mechanism levels as compared with placebo responders. These differences were evident as early as 1 week after administration and sustained for at least 6 months. RBL responders also had decreased richness of antibiotic resistance genes deemed high risk based on designated bacterial public health threats. CONCLUSIONS: These data support a model in which microbiota-based products, including RBL, may reduce antibiotic resistance gene richness, thereby possibly reducing the risk of antimicrobial-resistant organism infection. TRIAL REGISTRATION: NCT03244644 (https://clinicaltrials.gov/study/NCT03244644; 9 August 2017).202540672762
518540.8922Genomic characterisation of nasal isolates of coagulase-negative Staphylococci from healthy medical students reveals novel Staphylococcal cassette chromosome mec elements. Coagulase-negative staphylococci (CoNS) are a diverse group of Gram-positive bacteria that are part of the normal human microbiota. Once thought to be non-pathogenic, CoNS has emerged in recent years as opportunistic pathogens of concern particularly in healthcare settings. In this study, the genomes of four methicillin-resistant CoNS isolates obtained from the nasal swabs of healthy university medical students in Malaysia were sequenced using the Illumina short-read platform. Genome sequencing enabled the identification of the four isolates as Staphylococcus warneri UTAR-CoNS1, Staphylococcus cohnii subsp. cohnii UTAR-CoNS6, Staphylococcus capitis subsp. urealyticus UTAR-CoNS20, and Staphylococcus haemolyticus UTAR-CoNS26. The genome of S. cohnnii UTAR-CoNS6 harboured the mecA methicillin-resistance gene on a Staphylococcal cassette chromosome mec (SCCmec) element similar to SCCmec type XIV (5 A) but the SCCmec cassettes identified in the other three CoNS genomes were novel and untypeable. Some of these SCCmec elements also encoded heavy metal resistance genes while the SCCmec type XIV (5 A) variant in S. cohnii UTAR-CoNS6 harboured the complete ica operon, a known virulence factor that functions in biofilm formation. In S. cohnii UTAR-CoNS6, the macrolide resistance genes msrA and mphC along with copper and cadmium resistance genes were located on a 26,630 bp plasmid, pUCNS6. This study showcased the diversity of CoNS in the nasal microbiota of medical students but the discovery of novel SCCmec elements, various antimicrobial and heavy metal resistance along with virulence genes in these isolates is of concern and warrants vigilance due to the likelihood of spread, especially to hospitalised patients.202540595841
664850.8917Multi-Drug Resistant Coliform: Water Sanitary Standards and Health Hazards. Water constitutes and sustains life; however, its pollution afflicts its necessity, further worsening its scarcity. Coliform is one of the largest groups of bacteria evident in fecally polluted water, a major public health concern. Coliform thrive as commensals in the gut of warm-blooded animals, and are indefinitely passed through their feces into the environment. They are also called as model organisms as their presence is indicative of the prevalence of other potential pathogens, thus coliform are and unanimously employed as adept indicators of fecal pollution. As only a limited accessible source of fresh water is available on the planet, its contamination severely affects its usability. Coliform densities vary geographically and seasonally which leads to the lack of universally uniform regulatory guidelines regarding water potability often leads to ineffective detection of these model organisms and the misinterpretation of water quality status. Remedial measures such as disinfection, reducing the nutrient concentration or re-population doesn't hold context in huge lotic ecosystems such as freshwater rivers. There is also an escalating concern regarding the prevalence of multi-drug resistance in coliforms which renders antibiotic therapy incompetent. Antimicrobials are increasingly used in household, clinical, veterinary, animal husbandry and agricultural settings. Sub-optimal concentrations of these antimicrobials are unintentionally but regularly dispensed into the environment through seepages, sewages or runoffs from clinical or agricultural settings substantially adding to the ever-increasing pool of antibiotic resistance genes. When present below their minimum inhibitory concentration (MIC), these antimicrobials trigger the transfer of antibiotic-resistant genes that the coliform readily assimilate and further propagate to pathogens, the severity of which is evidenced by the high Multiple Antibiotic Resistance (MAR) index shown by the bacterial isolates procured from the environmental. This review attempts to assiduously anthologize the use of coliforms as water quality standards, their existent methods of detection and the issue of arising multi-drug resistance in them.201829946253
638660.8915Distribution of antibiotic and metal resistance genes in two glaciers of North Sikkim, India. Glacier studies as of late have ruffled many eyeballs, exploring this frigid ecology to understand the impact of climate change. Mapquesting the glaciers led to the discovery of concealed world of "psychrophiles" harboring in it. In the present study, the antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) were evaluated through both the culture-dependent and culture-independent methods. Samples were collected from two different glaciers, i.e., debris-covered glacier (Changme Khangpu) and debris-free glacier (Changme Khang). Functional metagenomics of both the glacier samples, provided evidence of presence of resistant genes against various antibiotic groups. Bacitracin resistant gene (bacA) was the predominant ARG in both the glaciers. MRGs in both the glacier samples were diversified as the genes detected were resistant against various heavy metals such as arsenic, tungsten, mercury, zinc, chromium, copper, cobalt, and iron. Unique MRGs identified from Changme Khangpu glacier were resistant to copper (cutA, cutE, cutC, cutF, cueR, copC, and copB) and chromium (yelf, ruvB, nfsA, chrR, and chrA) whereas, from Changme Khang glacier they showed resistance against cobalt (mgtA, dmef, corD, corC, corB, and cnrA), and iron (yefD, yefC, yefB, and yefA) heavy metals. ARGs aligned maximum identity with Gram-negative psychrotolerant bacteria. The cultured bacterial isolates showed tolerance to high concentrations of tested heavy metal solutions. Interestingly, some of the antibiotic resistant bacterial isolates also showed tolerance towards the higher concentrations of heavy metals. Thus, an introspection of the hypothesis of co-occurrence and/co-selection of ARGs and MRGs in such environments has been highlighted here.202032888596
679470.8915Beyond cyanotoxins: increased Legionella, antibiotic resistance genes in western Lake Erie water and disinfection-byproducts in their finished water. BACKGROUND: Western Lake Erie is suffering from harmful cyanobacterial blooms, primarily toxic Microcystis spp., affecting the ecosystem, water safety, and the regional economy. Continued bloom occurrence has raised concerns about public health implications. However, there has been no investigation regarding the potential increase of Legionella and antibiotic resistance genes in source water, and disinfection byproducts in municipal treated drinking water caused by these bloom events. METHODS: Over 2 years, source water (total n = 118) and finished water (total n = 118) samples were collected from drinking water plants situated in western Lake Erie (bloom site) and central Lake Erie (control site). Bloom-related parameters were determined, such as microcystin (MC), toxic Microcystis, total organic carbon, N, and P. Disinfection byproducts (DBPs) [total trihalomethanes (THMs) and haloacetic acids (HAAs)] were assessed in finished water. Genetic markers for Legionella, antibiotic resistance genes, and mobile genetic elements were quantified in source and finished waters. RESULTS: Significantly higher levels of MC-producing Microcystis were observed in the western Lake Erie site compared to the control site. Analysis of DBPs revealed significantly elevated THMs concentrations at the bloom site, while HAAs concentrations remained similar between the two sites. Legionella spp. levels were significantly higher in the bloom site, showing a significant relationship with total cyanobacteria. Abundance of ARGs (tetQ and sul1) and mobile genetic elements (MGEs) were also significantly higher at the bloom site. DISCUSSION: Although overall abundance decreased in finished water, relative abundance of ARGs and MGE among total bacteria increased after treatment, particularly at the bloom site. The findings underscore the need for ongoing efforts to mitigate bloom frequency and intensity in the lake. Moreover, optimizing water treatment processes during bloom episodes is crucial to maintain water quality. The associations observed between bloom conditions, ARGs, and Legionella, necessitate future investigations into the potential enhancement of antibiotic-resistant bacteria and Legionella spp. due to blooms, both in lake environments and drinking water distribution systems.202337700867
511780.8914Metagenomic sequencing of mpox virus clade Ib lesions identifies possible bacterial and viral co-infections in hospitalized patients in eastern DRC. Mpox is an emerging zoonotic disease that caused two public health emergencies of international concern within two years. Less is known about the interplay of microbial organisms in mpox lesions which could result in superinfections that exacerbate outcomes or delay recovery. We utilized a unified metagenomic sequencing approach involving slow-speed centrifugation and differential lysis on 19 mpox lesion swabs of hospitalized patients in South Kivu province (eastern DRC) to characterize bacteria, antimicrobial resistance genes, mpox virus (MPXV), and viral co-infections. High-quality MPXV whole-genome sequences were obtained until a Ct value of 27. Furthermore, co-infections with other clinically relevant viruses, such as varicella zoster virus and herpes simplex virus-2, were detected and confirmed by real-time PCR. In addition, metagenomic sequence analysis of the bacterial content showed the presence of bacteria associated with skin and soft tissue infection in 10 of the 19 samples analyzed. These bacteria had a high abundance of resistance genes, with possible implications for antimicrobial treatment based on the predicted antimicrobial resistance. In conclusion, we report the presence of bacterial and viral pathogens in mpox lesions and detection of widespread resistance genes to the standard antibiotic treatment. The possibility of a co-infection, including antimicrobial resistance, should be considered when discussing treatment options, along with the determination of the case-fatality ratio.IMPORTANCEThe mpox virus clade Ib lineage emerged in the eastern Democratic Republic of the Congo owing to continuous human-to-human transmission in a vulnerable patient population. A major challenge of this ongoing outbreak is its occurrence in regions with severely limited healthcare infrastructure. As a result, less is known about co-infections in affected patients. Identifying and characterizing pathogens, including their antimicrobial resistance, is crucial for reducing infection-related complications and improving antimicrobial stewardship. In this study, we applied a unified metagenomics approach to detect and characterize bacterial and viral co-infections in mpox lesions of hospitalized mpox patients in the eastern DRC.202540445195
766190.8913Heavy Metal Pollution Impacts Soil Bacterial Community Structure and Antimicrobial Resistance at the Birmingham 35th Avenue Superfund Site. Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ. Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.202336951567
9068100.8913TnCentral: a Prokaryotic Transposable Element Database and Web Portal for Transposon Analysis. We describe here the structure and organization of TnCentral (https://tncentral.proteininformationresource.org/ [or the mirror link at https://tncentral.ncc.unesp.br/]), a web resource for prokaryotic transposable elements (TE). TnCentral currently contains ∼400 carefully annotated TE, including transposons from the Tn3, Tn7, Tn402, and Tn554 families; compound transposons; integrons; and associated insertion sequences (IS). These TE carry passenger genes, including genes conferring resistance to over 25 classes of antibiotics and nine types of heavy metal, as well as genes responsible for pathogenesis in plants, toxin/antitoxin gene pairs, transcription factors, and genes involved in metabolism. Each TE has its own entry page, providing details about its transposition genes, passenger genes, and other sequence features required for transposition, as well as a graphical map of all features. TnCentral content can be browsed and queried through text- and sequence-based searches with a graphic output. We describe three use cases, which illustrate how the search interface, results tables, and entry pages can be used to explore and compare TE. TnCentral also includes downloadable software to facilitate user-driven identification, with manual annotation, of certain types of TE in genomic sequences. Through the TnCentral homepage, users can also access TnPedia, which provides comprehensive reviews of the major TE families, including an extensive general section and specialized sections with descriptions of insertion sequence and transposon families. TnCentral and TnPedia are intuitive resources that can be used by clinicians and scientists to assess TE diversity in clinical, veterinary, and environmental samples. IMPORTANCE The ability of bacteria to undergo rapid evolution and adapt to changing environmental circumstances drives the public health crisis of multiple antibiotic resistance, as well as outbreaks of disease in economically important agricultural crops and animal husbandry. Prokaryotic transposable elements (TE) play a critical role in this. Many carry "passenger genes" (not required for the transposition process) conferring resistance to antibiotics or heavy metals or causing disease in plants and animals. Passenger genes are spread by normal TE transposition activities and by insertion into plasmids, which then spread via conjugation within and across bacterial populations. Thus, an understanding of TE composition and transposition mechanisms is key to developing strategies to combat bacterial pathogenesis. Toward this end, we have developed TnCentral, a bioinformatics resource dedicated to describing and exploring the structural and functional features of prokaryotic TE whose use is intuitive and accessible to users with or without bioinformatics expertise.202134517763
9082110.8911GeneMates: an R package for detecting horizontal gene co-transfer between bacteria using gene-gene associations controlled for population structure. BACKGROUND: Horizontal gene transfer contributes to bacterial evolution through mobilising genes across various taxonomical boundaries. It is frequently mediated by mobile genetic elements (MGEs), which may capture, maintain, and rearrange mobile genes and co-mobilise them between bacteria, causing horizontal gene co-transfer (HGcoT). This physical linkage between mobile genes poses a great threat to public health as it facilitates dissemination and co-selection of clinically important genes amongst bacteria. Although rapid accumulation of bacterial whole-genome sequencing data since the 2000s enables study of HGcoT at the population level, results based on genetic co-occurrence counts and simple association tests are usually confounded by bacterial population structure when sampled bacteria belong to the same species, leading to spurious conclusions. RESULTS: We have developed a network approach to explore WGS data for evidence of intraspecies HGcoT and have implemented it in R package GeneMates ( github.com/wanyuac/GeneMates ). The package takes as input an allelic presence-absence matrix of interested genes and a matrix of core-genome single-nucleotide polymorphisms, performs association tests with linear mixed models controlled for population structure, produces a network of significantly associated alleles, and identifies clusters within the network as plausible co-transferred alleles. GeneMates users may choose to score consistency of allelic physical distances measured in genome assemblies using a novel approach we have developed and overlay scores to the network for further evidence of HGcoT. Validation studies of GeneMates on known acquired antimicrobial resistance genes in Escherichia coli and Salmonella Typhimurium show advantages of our network approach over simple association analysis: (1) distinguishing between allelic co-occurrence driven by HGcoT and that driven by clonal reproduction, (2) evaluating effects of population structure on allelic co-occurrence, and (3) direct links between allele clusters in the network and MGEs when physical distances are incorporated. CONCLUSION: GeneMates offers an effective approach to detection of intraspecies HGcoT using WGS data.202032972363
8670120.8906Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes.202337374983
5121130.8905Rapid Nanopore Whole-Genome Sequencing for Anthrax Emergency Preparedness. Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response.202031961318
6391140.8904Monitoring antibiotic resistomes and bacterial microbiomes in the aerosols from fine, hazy, and dusty weather in Tianjin, China using a developed high-volume tandem liquid impinging sampler. Accurate quantification of the airborne antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is critically important to assess their health risks. However, the currently widely used high-volume filter sampler (HVFS) often causes the desiccation of the sample, interfering with subsequent bacterial culture. To overcome this limitation, a high-volume tandem liquid impinging sampler (HVTLIS) was developed and optimized to investigate the airborne bacterial microbiomes and antibiotic resistomes under different weathers in Tianjin, China. Results revealed that HVTLIS can capture significantly more diverse culturable bacteria, ARB, and ARGs than HVFS. Compared with fine and hazy weathers, dusty weather had significantly more diverse and abundant airborne bacteria, ARGs, and human opportunistic pathogens with the resistance to last-resort antibiotics of carbapenems and polymyxin B, implicating a potential human health threat of dusty bioaerosols. Intriguingly, we represented the first report of Saccharibacteria predominance in the bioaerosol, demonstrating that the potential advantage of HVTLIS in collecting airborne microbes.202032438084
8416150.8904Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. BACKGROUND: Vultures have adapted the remarkable ability to feed on carcasses that may contain microorganisms that would be pathogenic to most other animals. The holobiont concept suggests that the genetic basis of such adaptation may not only lie within their genomes, but additionally in their associated microbes. To explore this, we generated shotgun DNA sequencing datasets of the facial skin and large intestine microbiomes of the black vulture (Coragyps atratus) and the turkey vulture (Cathartes aura). We characterized the functional potential and taxonomic diversity of their microbiomes, the potential pathogenic challenges confronted by vultures, and the microbial taxa and genes that could play a protective role on the facial skin and in the gut. RESULTS: We found microbial taxa and genes involved in diseases, such as dermatitis and pneumonia (more abundant on the facial skin), and gas gangrene and food poisoning (more abundant in the gut). Interestingly, we found taxa and functions with potential for playing beneficial roles, such as antilisterial bacteria in the gut, and genes for the production of antiparasitics and insecticides on the facial skin. Based on the identified phages, we suggest that phages aid in the control and possibly elimination, as in phage therapy, of microbes reported as pathogenic to a variety of species. Interestingly, we identified Adineta vaga in the gut, an invertebrate that feeds on dead bacteria and protozoans, suggesting a defensive predatory mechanism. Finally, we suggest a colonization resistance role through biofilm formation played by Fusobacteria and Clostridia in the gut. CONCLUSIONS: Our results highlight the importance of complementing genomic analyses with metagenomics in order to obtain a clearer understanding of the host-microbial alliance and show the importance of microbiome-mediated health protection for adaptation to extreme diets, such as scavenging.201830309375
8462160.8903Comparative Genomics of Lactiplantibacillus plantarum: Insights Into Probiotic Markers in Strains Isolated From the Human Gastrointestinal Tract and Fermented Foods. Lactiplantibacillus (Lpb.) plantarum is a versatile species commonly found in a wide variety of ecological niches including dairy products and vegetables, while it may also occur as a natural inhabitant of the human gastrointestinal tract. Although Lpb. plantarum strains have been suggested to exert beneficial properties on their host, the precise mechanisms underlying these microbe-host interactions are still obscure. In this context, the genome-scale in silico analysis of putative probiotic bacteria represents a bottom-up approach to identify probiotic biomarkers, predict desirable functional properties, and identify potentially detrimental antibiotic resistance genes. In this study, we characterized the bacterial genomes of three Lpb. plantarum strains isolated from three distinct environments [strain IMC513 (from the human GIT), C904 (from table olives), and LT52 (from raw-milk cheese)]. A whole-genome sequencing was performed combining Illumina short reads with Oxford Nanopore long reads. The phylogenomic analyses suggested the highest relatedness between IMC513 and C904 strains which were both clade 4 strains, with LT52 positioned within clade 5 within the Lpb. plantarum species. The comparative genome analysis performed across several Lpb. plantarum representatives highlighted the genes involved in the key metabolic pathways as well as those encoding potential probiotic features in these new isolates. In particular, our strains varied significantly in genes encoding exopolysaccharide biosynthesis and in contrast to strains IMC513 and C904, the LT52 strain does not encode a Mannose-binding adhesion protein. The LT52 strain is also deficient in genes encoding complete pentose phosphate and the Embden-Meyerhof pathways. Finally, analyses using the CARD and ResFinder databases revealed that none of the strains encode known antibiotic resistance loci. Ultimately, the results provide better insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.202235663852
6577170.8901Evaluating Microbial and Chemical Hazards in Commercial Struvite Recovered from Wastewater. Controlled struvite (NH(4)MgPO(4)·6H(2)O) precipitation has become a well-known process for nutrient recovery from wastewater treatment systems to alleviate the pressures of diminishing, finite rock phosphate reservoirs. Nonetheless, coprecipitation of potential microbial and chemical hazards is poorly understood. On the other hand, antimicrobial resistance (AMR) is a major global public health concern and wastewater is thought to disseminate resistance genes within bacteria. Fecal indicator bacteria (FIB) are typically used as measures of treatment quality, and with multiresistant E. coli and Enterococcus spp. rising in concern, the quantification of FIB can be used as a preliminary method to assess the risk of AMR. Focusing on struvite produced from full-scale operations, culture and qPCR methods were utilized to identify FIB, antibiotic resistance genes, and human enteric viruses in the final product. Detection of these hazards occurred in both wet and dry struvite samples indicating that there is a potential risk that needs further consideration. Chemical and biological analyses support the idea that the presence of other wastewater components can impact struvite formation through ion and microbial interference. While heavy metal concentrations met current fertilizer standards, the presence of K, Na, Ca, and Fe ions can impact struvite purity yet provide benefit for agricultural uses. Additionally, the quantified hazards detected varied among struvite samples produced from different methods and sources, thus indicating that production methods could be a large factor in the risk associated with wastewater-recovered struvite. In all, coprecipitation of metals, fecal indicator bacteria, antimicrobial resistance genes, and human enteric viruses with struvite was shown to be likely, and future engineered wastewater systems producing struvite may require additional step(s) to manage these newly identified public health risks.201930964655
2603180.8901Characterization of antimicrobial resistance genes in Enterobacteriaceae carried by suburban mesocarnivores and locally owned and stray dogs. The role of wildlife in the dissemination of antimicrobial-resistant bacteria and antimicrobial resistance genes (ARGs) in the environment is of increasing concern. We investigated the occurrence, richness and transmissibility potential of ARGs detected in the faeces of three mesocarnivore species: the coyote (Canis latrans), raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana), and of stray and owned dogs in suburban Chicago, IL, USA. Rectal swabs were collected from live-captured coyotes (n = 32), raccoons (n = 31) and Virginia opossums (n = 22). Fresh faecal samples were collected from locally owned (n = 13) and stray dogs (n = 18) and from the live-captured mesocarnivores, when available. Faecal samples and rectal swabs were enriched to select for Enterobacteriaceae and pooled by mesocarnivore species and dog type (owned or stray). Pooled enriched samples were then analysed for the presence of ARGs using shotgun sequencing. The three mesocarnivore and stray dog samples had twice as many unique ARGs compared to the owned dog sample, which was partly driven by a greater richness of beta-lactamase genes (genes conferring resistance to penicillins and cephalosporins). Raccoon and stray dog samples had the most ARGs in common, suggesting possible exposure to similar environmental sources of ARGs. In addition to identifying clinically relevant ARGs (e.g. bla(CMY) and qnrB), some ARGs were linked to the class 1 integrase gene, intI1, which may indicate anthropogenic origin. Findings from this pilot investigation suggest that the microbial communities of suburban mesocarnivores and stray dogs can host ARGs that can confer resistance to several antimicrobials used in human and veterinary medicine.202032034890
5188190.8900Zoonotic bacterial and parasitic intestinal pathogens in foxes, raccoons and other predators from eastern Germany. In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context.202438747071