# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6794 | 0 | 0.9917 | Beyond cyanotoxins: increased Legionella, antibiotic resistance genes in western Lake Erie water and disinfection-byproducts in their finished water. BACKGROUND: Western Lake Erie is suffering from harmful cyanobacterial blooms, primarily toxic Microcystis spp., affecting the ecosystem, water safety, and the regional economy. Continued bloom occurrence has raised concerns about public health implications. However, there has been no investigation regarding the potential increase of Legionella and antibiotic resistance genes in source water, and disinfection byproducts in municipal treated drinking water caused by these bloom events. METHODS: Over 2 years, source water (total n = 118) and finished water (total n = 118) samples were collected from drinking water plants situated in western Lake Erie (bloom site) and central Lake Erie (control site). Bloom-related parameters were determined, such as microcystin (MC), toxic Microcystis, total organic carbon, N, and P. Disinfection byproducts (DBPs) [total trihalomethanes (THMs) and haloacetic acids (HAAs)] were assessed in finished water. Genetic markers for Legionella, antibiotic resistance genes, and mobile genetic elements were quantified in source and finished waters. RESULTS: Significantly higher levels of MC-producing Microcystis were observed in the western Lake Erie site compared to the control site. Analysis of DBPs revealed significantly elevated THMs concentrations at the bloom site, while HAAs concentrations remained similar between the two sites. Legionella spp. levels were significantly higher in the bloom site, showing a significant relationship with total cyanobacteria. Abundance of ARGs (tetQ and sul1) and mobile genetic elements (MGEs) were also significantly higher at the bloom site. DISCUSSION: Although overall abundance decreased in finished water, relative abundance of ARGs and MGE among total bacteria increased after treatment, particularly at the bloom site. The findings underscore the need for ongoing efforts to mitigate bloom frequency and intensity in the lake. Moreover, optimizing water treatment processes during bloom episodes is crucial to maintain water quality. The associations observed between bloom conditions, ARGs, and Legionella, necessitate future investigations into the potential enhancement of antibiotic-resistant bacteria and Legionella spp. due to blooms, both in lake environments and drinking water distribution systems. | 2023 | 37700867 |
| 7061 | 1 | 0.9915 | Dissemination of antibiotic resistance genes through soil-plant-earthworm continuum in the food production environment. Treated municipal wastewater (TMW) can provide a reliable source of irrigation water for crops, which is especially important in arid areas where water resources are limited or prone to drought. Nonetheless, TMW may contain residual antibiotics, potentially exposing the crops to these substances. The goal of this study was to investigate the dissemination of antibiotics resistance genes (ARGs) in the soil-plant-earthworm continuum after irrigation of spinach and radish plants with TMW containing trimethoprim, sulfamethoxazole, and sulfapyridine in a greenhouse experiment, followed by feeding of earthworms with harvested plant materials. Our results showed that antibiotic resistance genes (ARGs) were enriched in the soil-plant-earthworm microbiomes irrigated with TMW and TMW spiked with higher concentrations of antibiotics. The number of ARGs and antibiotic-resistant bacteria (ARB) enrichment varied with plant type, with spinach harboring a significantly higher amount of ARGs and ARB compared to radish. Our data showed that bulk and rhizosphere soils of spinach and radish plants irrigated with MilliQ water, TMW, TMW10, or TMW100 had significant differences in bacterial community (p < 0.001), ARG (p < 0.001), and virulence factor gene (VFG) (p < 0.001) diversities. The abundance of ARGs significantly decreased from bulk soil to rhizosphere to phyllosphere and endosphere. Using metagenome assembled genomes (MAGs), we recovered many bacterial MAGs and a near complete genome (>90 %) of bacterial MAG of genus Leclercia adecarboxylata B from the fecal microbiome of earthworm that was fed harvested radish tubers and spinach leaves grown on TMW10 irrigated waters, and this bacterium has been shown to be an emerging pathogen causing infection in immunocompromised patients that may lead to health complications and death. Therefore, crops irrigated with TMW containing residual antibiotics and ARGs may lead to increased incidences of enrichment of ARB in the soil-plant-earthworm continuum. | 2024 | 38101104 |
| 7131 | 2 | 0.9914 | Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. BACKGROUND: Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS: In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS: Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS: Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract. | 2023 | 36850017 |
| 8132 | 3 | 0.9914 | Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments. The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge. | 2016 | 26517996 |
| 7080 | 4 | 0.9913 | Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. BACKGROUND: Emergence and spread of antibiotic resistance has become a global health threat and is often linked with overuse and misuse of clinical and veterinary chemotherapeutic agents. Modern industrial-scale animal feeding operations rely extensively on veterinary pharmaceuticals, including antibiotics, to augment animal growth. Following excretion, antibiotics are transported through the environment via runoff, leaching, and land application of manure; however, airborne transport from feed yards has not been characterized. OBJECTIVES: The goal of this study was to determine the extent to which antibiotics, antibiotic resistance genes (ARG), and ruminant-associated microbes are aerially dispersed via particulate matter (PM) derived from large-scale beef cattle feed yards. METHODS: PM was collected downwind and upwind of 10 beef cattle feed yards. After extraction from PM, five veterinary antibiotics were quantified via high-performance liquid chromatography with tandem mass spectrometry, ARG were quantified via targeted quantitative polymerase chain reaction, and microbial community diversity was analyzed via 16S rRNA amplification and sequencing. RESULTS: Airborne PM derived from feed yards facilitated dispersal of several veterinary antibiotics, as well as microbial communities containing ARG. Concentrations of several antibiotics in airborne PM immediately downwind of feed yards ranged from 0.5 to 4.6 μg/g of PM. Microbial communities of PM collected downwind of feed yards were enriched with ruminant-associated taxa and were distinct when compared to upwind PM assemblages. Furthermore, genes encoding resistance to tetracycline antibiotics were significantly more abundant in PM collected downwind of feed yards as compared to upwind. CONCLUSIONS: Wind-dispersed PM from feed yards harbors antibiotics, bacteria, and ARGs. | 2015 | 25633846 |
| 8558 | 5 | 0.9913 | Mitigating the vertical migration and leaching risks of antibiotic resistance genes through insect fertilizer application. The leaching and vertical migration risks of antibiotic resistance genes (ARGs) from fertilized soil to groundwater poses a significant threat to ecological and public safety. Insect fertilizer, particularly black soldier fly organic fertilizer (BOF), renowned for its minimal antibiotic resistance, emerge as a promising alternative for sustainable agricultural fertilization. This study employs soil-column leaching experiments to evaluate the impact of BOF on the leaching behavior of ARGs. Our results reveal that BOF significantly reduces the leaching risks of ARGs by 22.1 %-49.3 % compared to control organic fertilizer (COF). Moreover, BOF promotes the leaching of beneficial Bacillus and, according to random forest analysis, is the most important factor in predicting ARG profiles (3.02 % increase in the MSE). Further network analysis and mantel tests suggest that enhanced nitrogen metabolism in BOF leachates could foster Bacillus biofilm formation, thereby countering antibiotic-resistant bacteria (ARB) and mitigating antibiotic resistance. In addition, linear regression analysis revealed that Bacillus biofilm-associated genes pgaD (biofilm PGA synthesis protein), slrR (biofilm formation regulator), and kpsC (capsular polysaccharide export protein) were identified as pivotal in the elimination of ARGs, which can serve as effective indicators for assessing antibiotic resistance in groundwater. Collectively, this study demonstrates that BOF as an environmentally friendly fertilizer could markedly reduce the vertical migration risks of ARGs and proposes Bacillus biofilm formation related genes as reliable indicators for monitoring antibiotic resistance in groundwater. | 2025 | 40086570 |
| 7132 | 6 | 0.9911 | Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Little is known about how introducing recycled water intended for direct potable reuse (DPR) into distribution systems and premise plumbing will affect water quality at the point of use, particularly with respect to effects on microbial communities and regrowth. The examination of potential growth of opportunistic pathogens (OPs) and spread of antibiotic resistance genes (ARGs), each representing serious and growing public health concerns, by introducing DPR water has not previously been evaluated. In this study, the impact of blending purified DPR water with traditional drinking water sources was investigated with respect to treatment techniques, blending location, and blending ratio. Water from four U.S. utility partners was treated in bench- and pilot-scale treatment trains to simulate DPR with blending. Water was incubated in simulated premise plumbing rigs made of PVC pipe containing brass coupons to measure regrowth of total bacteria (16S rRNA genes, heterotrophic plate count), OPs (Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa), ARGs (qnrA, vanA), and an indicator of horizontal gene transfer and multi-drug resistance (intI1). The microbial community composition was profiled and the resistome (i.e., all ARGs present) was characterized in select samples using next generation sequencing. While regrowth of total bacteria (16S rRNA genes) from the start of the incubation through week eight consistently occurred across tested scenarios (Wilcoxon, p ≤ 0.0001), total bacteria were not more abundant in the water or biofilm of any DPR scenario than in the corresponding conventional potable condition (p ≥ 0.0748). Regrowth of OP marker genes, qnrA, vanA, and intI1 were not significantly greater in water or biofilm for any DPR blends treated with advanced oxidation compared to corresponding potable water (p ≥ 0.1047). This study of initial bacteria colonizing pipes after introduction of blended DPR water revealed little evidence (i.e., one target in one water type) of exacerbated regrowth of total bacteria, OPs, or ARGs in premise plumbing. | 2019 | 30594092 |
| 8585 | 7 | 0.9911 | Synergistic effect of horizontal transfer of antibiotic resistance genes between bacteria exposed to microplastics and per/polyfluoroalkyl substances: An explanation from theoretical methods. Microplastics (MPs) and per/polyfluoroalkyl substances (PFASs), as emerging pollutants widely present in aquatic environments, pose a significant threat to human health through the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Molecular dynamics simulations and machine learning can accurately capture the complex interactions between molecules. This study utilized them to identify the HGT risk between bacteria under MPs and PFASs stress. This study found that MPs and PFASs significantly increase the HGT risk between bacteria, up to 1.57 and 1.59 times, respectively. Notably, long-chain PFASs and perfluoroalkyl carboxylic acids increased the HGT risk by 1.38 and 1.40 times, respectively. Additionally, MPs primarily increase the HGT risk by enhancing hydrogen bonding interaction between key proteins in the HGT pathway and "active codons". The electronegativity and polarizability of PFASs critically influence the HGT risk, acting inversely and directly proportional, respectively. The HGT risk between bacteria under the combined stress from PP-MPs and PFASs exhibits a significant synergistic effect (synergistic effect value of 27.6), which markedly increases the HGT risk. Further analysis revealed that a smaller minimum distance and sharper RDF curve peaks between key proteins and "active codons" indicate higher HGT risk. This indicates that stronger interactions lead to higher HGT risk. This study identifies the characteristics of HGT risks between bacteria in aquatic environments under the individual and combined stresses from MPs and PFASs at the molecular level. It provides a theoretical basis for mitigating ARG transfer and comprehensively assessing the health risks posed by these emerging pollutants. | 2025 | 40220390 |
| 7988 | 8 | 0.9911 | Electrokinetic treatment at the thermophilic stage achieves more effective control of heavy metal resistance in swine manure composting. Excessive heavy metals (HMs) and metal resistance genes (MRGs) in manure pose significant environmental and human health risks. Our previous work proved enhanced control of antibiotic resistance and quality of swine manure composting with electrokinetic technology (EK). As a continuous study, EK treatments were further employed at typical stages of composting. The humification level increased significantly in EK treatments applied at the thermophilic stage (EK1) and throughout the whole composting period (EK2). The immobilization efficiency of heavy metals increased by 3.02 %-20.90 % for EK1, and 3.86 %-20.56 % for EK2, compared with the EK treatment applied at maturity stage (EK3). EK1 showed the highest ability to remove MRGs (29.38 %-87.13 %), while the abundance of potential host bacteria increased in EK2, raising potential transmission risk of MRGs. Furthermore, there was an elevated presence of bacteria associated with membrane transport as a response mechanism to HMs stress in EK1. Considering economic factors and environmental effects, EK treatment during the thermophilic stage was more effective in compost maturation, HMs passivation, as well as control of HMs resistance. This study provides an effective method to address HMs-related contamination with highly efficient maturation in swine manure composting. | 2025 | 40543370 |
| 6960 | 9 | 0.9910 | Effortless rule: Effects of oversized microplastic management on lettuce growth and the dynamics of antibiotic resistance genes from fertilization to harvest. The complexity of soil microplastic pollution has driven deeper exploration of waste management strategies to evaluate environmental impact. This study introduced oversized microplastics (OMPs, 1-5 mm) during membrane composting to produce organic fertilizers, and conducted a 2 × 2 pot experiment: exogenous OMPs were added when normal fertilizer (no OMPs intervention) was applied, while artificial removal of OMPs was implemented when contaminated fertilizer (with OMPs) was used. The study assessed the effects of these management strategies on lettuce growth, soil environments, and potential biological safety risks related to the spread and expression of high-risk antibiotic resistance genes (ARGs) in humans. Results showed that both exogenous OMPs addition and removal negatively affected plant height and harvest index, with shifts in the rhizosphere microbial community identified as a key factor rather than soil nutrients. Exogenous OMPs altered rhizosphere and endophytic microbial communities, and plant growth-promoting bacteria were transferred to the surface of OMPs from rhizosphere soil. In contrast, bacteria such as Truepera, Pseudomonas, and Streptomyces in compost-derived OMPs supported lettuce growth, and their removal negated these effects. Some endophytic bacteria may promote growth but pose public health risks when transmitted through the food chain. OMPs in composting or planting significantly enhanced the expression of target ARGs in lettuce, particularly bla(TEM). However, simulated digestion results indicated that OMPs reduced the expression of six key ARGs, including bla(TEM), among the ten critical target ARGs identified in this context. Notably, the removal management strategies raised five of them posing potential risks from lettuce consumption. This study highlights that both introducing and removing OMPs may pose ecological and food safety risks, emphasizing the need for optimized organic waste management strategies to mitigate potential health hazards. | 2025 | 40157188 |
| 6911 | 10 | 0.9910 | Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG. | 2024 | 38643583 |
| 6944 | 11 | 0.9910 | Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora. Antibiotic resistance genes (ARGs) in animal manure are an environmental concern due to naturally occurring bacteria being exposed to these wastes and developing multidrug resistance. The bioconversion of manure with fly larvae is a promising alternative for recycling these wastes while attenuating ARGs. We investigated the impact of black soldier fly (BSF, Hermetia illucens) larval bioconversion of chicken manure on the persistence of associated ARGs. Compared with traditional composting or sterile larval treatments (by 48.4% or 88.7%), non-sterile BSF larval treatments effectively reduced ARGs and integrin genes by 95.0% during 12 days, due to rapid decreases in concentrations of the genes and associated bacteria as they passed through the larval gut and were affected by intestinal microbes. After larval treatments, bacterial community composition differed significantly, with the percentage of Firmicutes possibly carrying ARGs reduced by 65.5% or more. On average, human pathogenic bacteria populations declined by 70.7%-92.9%, effectively mitigating risks of these bacteria carrying ARGs. Environmental pH, nitrogen content and antibiotic concentrations were closely related to both bacterial community composition and targeted gene attenuation in larval systems. Selective pressures of larval gut environments with intestinal microbes, larval bacteriostasis and reformulation of manure due to larval digestion contributed to ARG attenuation. | 2018 | 30318817 |
| 6577 | 12 | 0.9910 | Evaluating Microbial and Chemical Hazards in Commercial Struvite Recovered from Wastewater. Controlled struvite (NH(4)MgPO(4)·6H(2)O) precipitation has become a well-known process for nutrient recovery from wastewater treatment systems to alleviate the pressures of diminishing, finite rock phosphate reservoirs. Nonetheless, coprecipitation of potential microbial and chemical hazards is poorly understood. On the other hand, antimicrobial resistance (AMR) is a major global public health concern and wastewater is thought to disseminate resistance genes within bacteria. Fecal indicator bacteria (FIB) are typically used as measures of treatment quality, and with multiresistant E. coli and Enterococcus spp. rising in concern, the quantification of FIB can be used as a preliminary method to assess the risk of AMR. Focusing on struvite produced from full-scale operations, culture and qPCR methods were utilized to identify FIB, antibiotic resistance genes, and human enteric viruses in the final product. Detection of these hazards occurred in both wet and dry struvite samples indicating that there is a potential risk that needs further consideration. Chemical and biological analyses support the idea that the presence of other wastewater components can impact struvite formation through ion and microbial interference. While heavy metal concentrations met current fertilizer standards, the presence of K, Na, Ca, and Fe ions can impact struvite purity yet provide benefit for agricultural uses. Additionally, the quantified hazards detected varied among struvite samples produced from different methods and sources, thus indicating that production methods could be a large factor in the risk associated with wastewater-recovered struvite. In all, coprecipitation of metals, fecal indicator bacteria, antimicrobial resistance genes, and human enteric viruses with struvite was shown to be likely, and future engineered wastewater systems producing struvite may require additional step(s) to manage these newly identified public health risks. | 2019 | 30964655 |
| 7987 | 13 | 0.9910 | Assessing the effect of composted cyclosporin A fermentation residue as organic fertilizer: Focus on soil fertility and antibiotic resistance. Cyclosporin A fermentation residue (CFR) is a type of organic waste generated during the production of cyclosporin A, which are abundant in nutrients including organic matter, phosphorus, nitrogen and potassium. Inappropriate handling of CFR not only waste valuable bioresources, but may also lead to the cyclosporin A and associated resistance genes into the natural environment, posing a significant threat to ecological system and human health. Land application was an effective way to resource recovery of CFR after aerobic composting (CAC). This study investigated the impact of CAC on soil fertility and environmental safety. The results indicated that CAC could improve soil nutrient contents and enhance enzyme activities. CAC altered the diversity and community composition of soil bacteria, resulting in an increase in the abundance of relevant bacteria beneficial for organic matter decomposition and cyclosporin A degradation. The introduced cyclosporin A (71.69 µg/kg) completely degraded within 20 days due to soil biodegradation. The significantly increased abundance of intIl, mdr3, pgp, TSR and pmra in the soil cultivation early stage were restored to the soil background level within 90 days, indicating a reduced risk of antimicrobial resistance. The results demonstrated that reasonable land application of CAC could improve soil fertility without antimicrobial resistance risk, which is helpful for evaluating the resource utilization value and environmental risks of antibiotic fermentation residue after aerobic composting. | 2025 | 40602925 |
| 7891 | 14 | 0.9910 | Co-selective effect of dissolved organic matter and chlorine on the bacterial community and their antibiotic resistance in biofilm of drinking water distribution pipes. The proliferation of pathogenic bacteria and antibiotic resistance genes (ARGs) in the biofilm of drinking water distribution pipes poses a serious threat to human health. This work adopted 15 polyethylene (PE) pipes to study the co-selective effect of dissolved organic matter (DOM) and chlorine on the bacterial community and their antibiotic resistance in biofilm. The results indicated that ozone and granular activated carbon (O(3)-GAC) filtration effectively removed lignins and proteins from DOM, and chlorine disinfection eliminated carbohydrate and unsaturated hydrocarbons, which both contributed to the inhibition of bacterial growth and biofilm formation. After O(3)-GAC and disinfection treatment, Porphyrobacter, unclassified_d_bacteria, and Sphingopyxis dominated in the biofilm bacterial community. Correspondingly, the bacterial metabolism pathways, including the phosphotransferase system, phenylalanine, tyrosine and tryptophan biosynthesis, ABC transporters, and starch and sucrose metabolism, were downregulated significantly (p < 0.05), compared to the sand filtration treatment. Under such a situation, extracellular polymeric substances (EPS) secretion was inhibited in biofilm after O(3)-GAC and disinfection treatment, postponing the interaction between EPS protein and pipe surface, preventing bacteria, especially pathogens, from adhering to the pipe surface to form biofilm, and restraining the spread of ARGs. This study revealed the effects of various water filtration and disinfection processes on bacterial growth, metabolism, and biofilm formation on a molecular level, and validated that the O(3)-GAC filtration followed by chlorine disinfection is an effective and promising pathway to control the microbial risk of drinking water. | 2025 | 39490093 |
| 7455 | 15 | 0.9909 | Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes. Increased demand for animal protein is met by increased food animal production resulting in large quantities of manure. Animal producers, therefore, need sustainable agricultural practices to protect environmental health. Large quantities of antimicrobials are used in commercial food animal production. Consequently, antimicrobial-resistant bacteria and the resistance genes emerge and are excreted through feces. Manure management is essential for the safe disposal of animal waste. Lagoons, with or without covers, and anaerobic digesters, with the primary purpose of methane production, and composting, with the primary purpose of producing organic fertilizer, are widely used methods of manure treatment. We reviewed manure management practices and their impact on tetracycline resistance genes. Lagoons are maintained at ambient temperatures; especially uncovered lagoons are the least effective in removing tetracycline resistance genes. However, some modifications can improve the performance of lagoons: sequential use of uncovered lagoons and the use of covered lagoons resulted in a one-log reduction, while post-treatments such as biofiltration following covered lagoon treatment resulted in 3.4 log reduction. Mesophilic digestion of animal manure did not have any significant effect; only a 0.7 log reduction in tet(A) was observed in one study. While thermophilic anaerobic digesters are effective, if properly operated, they are expensive for animal producers. Aerobic thermophilic composting is a promising technology if optimized with its economic benefits. Composting of raw animal manure can result in up to a 2.5 log reduction, and postdigestion composting can reduce tetracycline resistance gene concentration by >80%. In general, manure management was not designed to mitigate antimicrobial resistance; future research is needed to optimize the economic benefits of biogas or organic fertilizer on the one hand and for the mitigation of foodborne pathogens and antimicrobial resistance on the other. | 2022 | 35326854 |
| 7454 | 16 | 0.9909 | Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. United States dairy operations use antibiotics (primarily β-lactams and tetracyclines) to manage bacterial diseases in dairy cattle. Antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARG) can be found in dairy manure and may contribute to the spread of antibiotic resistance (AR). Although β-lactam residues are rarely detected in dairy manure, tetracycline residues are common and perhaps persistent. Generally, <15% of bacterial pathogen dairy manure isolates are ARB, although resistance to some antibiotics (e.g., tetracycline) can be higher. Based on available data, the prevalence of medically important ARB on dairy operations is generally static or may be declining for antibiotic-resistant Staphylococcus spp. Over 60 ARG can be found in dairy manure (including β-lactam and tetracycline resistance genes), although correlations with antibiotic usage, residues, and ARB have been inconsistent, possibly because of sampling and analytical limitations. Manure treatment systems have not been specifically designed to mitigate AR, though certain treatments have some capacity to do so. Generally, well-managed aerobic compost treatments reaching higher peak temperatures (>60°C) are more effective at mitigating antibiotic residues than static stockpiles, although this depends on the antibiotic residue and their interactions. Similarly, thermophilic anaerobic digesters operating under steady-state conditions may be more effective at mitigating antibiotic residues than mesophilic or irregularly operated digesters or anaerobic lagoons. The number of ARB may decline during composting and digestion or be enriched as the bacterial communities in these systems shift, affecting relative ARG abundance or acquire ARG during treatment. Antibiotic resistance genes often persist through these systems, although optimal management and higher operating temperature may facilitate their mitigation. Less is known about other manure treatments, although separation technologies may be unique in their ability to partition antibiotic residues based on sorption and solubility properties. Needed areas of study include determining natural levels of AR in dairy systems, standardizing and optimizing analytical techniques, and more studies of operating on-farm systems, so that treatment system performance and actual human health risks associated with levels of antibiotic residues, ARB, and ARG found in dairy manure can be accurately assessed. | 2020 | 31837779 |
| 7955 | 17 | 0.9908 | Fluoroquinolone antibiotics disturb the defense system, gut microbiome, and antibiotic resistance genes of Enchytraeus crypticus. Antibiotic residues from animal manure cause soil pollution and can pose a threat to soil animals. In this study, the toxicological effects of fluoroquinolone antibiotics on Enchytraeus crypticus, including defence response, gut microbiome, and antibiotic resistance genes (ARGs), were studied. The cytochrome P450 enzyme activity and reactive oxygen species levels increased, activating the defense response. The superoxide dismutase and glutathione S-transferase activity, and the expression of immune defense molecules such as coelomic cytolytic factor, lysozyme, bactericidal protein fetidins and lysenin changed. Furthermore, the diversity of the gut microbiome decreased, and the relative abundance of Bacteroidetes decreased significantly at the phylum level but increased in pathogenic and antibiotic-secreting bacteria (Rhodococcus and Streptomyces) at the genus level. However, the soil microbiome was not significantly different from that of the control group. The relative abundance of ARGs in the gut and soil microbiome significantly increased with enrofloxacin concentration, and the fluoroquinolone ARGs were significantly increased in both the soil (20.85-fold, p < 0.001) and gut (11.72-fold, p < 0.001) microbiomes. Subtypes of ARGs showed a positive correlation with Rhodococcus, which might increase the risk of disease transmission and the probability of drug-resistant pathogens. Furthermore, mobile genetic elements significantly promote the spread of ARGs. | 2022 | 34736185 |
| 8579 | 18 | 0.9908 | Microplastics and chemical leachates from plastic pipes are associated with increased virulence and antimicrobial resistance potential of drinking water microbial communities. There is increasing recognition of the potential impacts of microplastics (MPs) on human health. As drinking water is the most direct route of human exposure to MPs, there is an urgent need to elucidate MPs source and fate in drinking water distribution system (DWDS). Here, we showed polypropylene random plastic pipes exposed to different water quality (chlorination and heating) and environmental (freeze-thaw) conditions accelerated MPs generation and chemical leaching. MPs showed various morphology and aggregation states, and chemical leaches exhibited distinct profiles due to different physicochemical treatments. Based on the physiological toxicity of leachates, oxidative stress level was negatively correlated with disinfection by-products in the leachates. Microbial network analysis demonstrated exposure to leachates (under three treatments) undermined microbial community stability and increased the relative abundance and dominance of pathogenic bacteria. Leachate physical and chemical properties (i.e., MPs abundance, hydrodynamic diameter, zeta potential, total organic carbon, dissolved ECs) exerted significant (p < 0.05) effects on the functional genes related to virulence, antibiotic resistance and metabolic pathways. Notably, chlorination significantly increased correlations among pathogenic bacteria, virulence genes, and antibiotic resistance genes. Overall, this study advances the understanding of direct and indirect risks of these MPs released from plastic pipes in the DWDS. | 2024 | 37935064 |
| 7623 | 19 | 0.9908 | Biochar combined with polyvalent phage therapy to mitigate antibiotic resistance pathogenic bacteria vertical transfer risk in an undisturbed soil column system. The vertical migration of antibiotic resistance pathogenic bacteria (ARPB) and antibiotic resistance genes (ARGs) in the surface soil-vadose soil system has become a new threat to ecological safety and public health; there is an imperative need to develop an efficient technique for targeted control and inactivation of ARPB in these systems. In this work, undisturbed soil columns (0 ∼ -5 m) were constructed to investigate the impact of biochar amendment or/and polyvalent bacteriophage (ΦYSZ-KK) therapy on the vertical control and inactivation of tetracycline-resistant Escherichia coli K-12 and chloramphenicol-resistant Klebsiella pneumonia K-6. The simultaneous application of polyvalent phage and biochar impeded the vertical migration of ARPB from the top soil to lower soil layers and stimulated the ARPB dissipation in the soil column. After 60-day incubation, levels of ARPB and ARGs decreased significantly in the soil column by magnitudes of 2-6. Additionally, high throughput sequencing indicated that the simultaneous application of biochar and phage clearly maintained the structure and diversity of the soil microbial communities (p < 0.05). This work therefore demonstrates that the application of a biochar/phage combination is an environmentally friendly, efficacious measure for the control and inactivation of ARPB/ARGs in vertical soil column systems. | 2019 | 30399485 |