ADHERENCE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
523900.9937The mobile gene cassette carrying tetracycline resistance genes in Aeromonas veronii strain Ah5S-24 isolated from catfish pond sediments shows similarity with a cassette found in other environmental and foodborne bacteria. Aeromonas veronii is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen that causes diarrhea in humans and hemorrhagic septicemia in fish. In the present study, we used whole-genome sequencing (WGS) to evaluate the presence of antimicrobial resistance (AMR) and virulence genes found in A. veronii Ah5S-24 isolated from catfish pond sediments in South-East, United States. We found cphA4, dfrA3, mcr-7.1, valF, bla (FOX-7), and bla (OXA-12) resistance genes encoded in the chromosome of A. veronii Ah5S-24. We also found the tetracycline tet(E) and tetR genes placed next to the IS5/IS1182 transposase, integrase, and hypothetical proteins that formed as a genetic structure or transposon designated as IS5/IS1182/hp/tet(E)/tetR/hp. BLAST analysis showed that a similar mobile gene cassette (MGC) existed in chromosomes of other bacteria species such as Vibrio parahaemolyticus isolated from retail fish at markets, Aeromonas caviae from human stool and Aeromonas media from a sewage bioreactor. In addition, the IS5/IS1182/hp/tet(E)/tetR/hp cassette was also found in the plasmid of Vibrio alginolyticus isolated from shrimp. As for virulence genes, we found the tap type IV pili (tapA and tapY), polar flagellae (flgA and flgN), lateral flagellae (ifgA and IfgL), and fimbriae (pefC and pefD) genes responsible for motility and adherence. We also found the hemolysin genes (hylII, hylA, and TSH), aerA toxin, biofilm formation, and quorum sensing (LuxS, mshA, and mshQ) genes. However, there were no MGCs encoding virulence genes found in A. veronii AhS5-24. Thus, our findings show that MGCs could play a vital role in the spread of AMR genes between chromosomes and plasmids among bacteria in aquatic environments. Overall, our findings are suggesting that MGCs encoding AMR genes could play a vital role in the spread of resistance acquired from high usage of antimicrobials in aquaculture to animals and humans.202337007502
843910.9935Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BACKGROUND: Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens. RESULTS: Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species. CONCLUSIONS: The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans.202235761183
523720.9935Phenotypic and genomic analysis of Enterococcus avium MC09 pathogenicity isolated from Scylla spp. (mud crab) in a Thai market. Enterococcus avium is a Gram-positive pathogenic bacterium classified under the Enterococcaceae family. E. avium has been isolated from diverse environmental sources, raising concerns about its potential role in the spread of antibiotic resistance. E. avium MC09, isolated from a mud crab in a Thai market, was analyzed for its antibiotic resistance and pathogenic potential in this study. The isolation of E. avium from mud crab is significant as it highlights the potential role of seafood as a reservoir for antibiotic-resistant bacteria, which may pose risks to public health throughout the food chain. Antibiotic susceptibility testing using the Kirby-Bauer disk diffusion method revealed that E. avium MC09 is resistant to clindamycin, erythromycin, streptomycin, and tetracycline, and exhibits alpha hemolysis on blood agar, indicating its potential virulence. Genomic DNA was extracted and sequenced using the Oxford Nanopore Technologies (ONT) platform, revealing the presence of resistance genes for macrolides (ermB) and tetracyclines (tetL and tetM). Furthermore, several virulence-associated genes were detected, such as srtC, ecbA, efaA, dltA, cpsA/uppS, cpsB/cdsA, cylR2, icps4I, cpsY, epsE, vctC, mgtB, ndk, lisR, and lgt suggesting a pathogenic potential. Additionally, the study identified several insertion sequences (ISs), including (IS1216, IS1216E, IS1216V, IS6770, ISEfa7, ISEfa8, and ISS1W which are commonly found in pathogenic Enterococcus strains. The presence of these IS elements further emphasizes the strain's potential for virulence and genetic adaptability. This study provides comprehensive insights into both the phenotypic and genotypic characteristics of E. avium MC09, highlighting its antimicrobial resistance and pathogenic mechanisms, and underlines the importance of monitoring antibiotic resistance in seafood-associated bacteria.202540015576
523530.9932Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance.202336948496
514340.9932Genomic Insights Into the Pathogenicity of a Novel Biofilm-Forming Enterococcus sp. Bacteria (Enterococcus lacertideformus) Identified in Reptiles. Whole genome analysis of a novel species of enterococci, Enterococcus lacertideformus, causing multi-systemic and invariably fatal disease in critically endangered Christmas Island reptiles was undertaken to determine the genetic elements and potential mechanisms conferring its pathogenic nature, biofilm-forming capabilities, immune recognition avoidance, and inability to grow in vitro. Comparative genomic analyses with related and clinically significant enterococci were further undertaken to infer the evolutionary history of the bacterium and identify genes both novel and absent. The genome had a G + C content of 35.1%, consisted of a circular chromosome, no plasmids, and was 2,419,934 bp in length (2,321 genes, 47 tRNAs, and 13 rRNAs). Multi-locus sequence typing (MLST), and single nucleotide polymorphism (SNP) analysis of multiple E. lacertideformus samples revealed they were effectively indistinguishable from one another and highly clonal. E. lacertideformus was found to be located within the Enterococcus faecium species clade and was closely related to Enterococcus villorum F1129D based on 16S rDNA and MLST house-keeping gene analysis. Antimicrobial resistance (DfreE, EfrB, tetM, bcrRABD, and sat4) and virulence genes (Fss3 and ClpP), and genes conferring tolerance to metals and biocides (n = 9) were identified. The detection of relatively few genes encoding antimicrobial resistance and virulence indicates that this bacterium may have had no exposure to recently developed and clinically significant antibiotics. Genes potentially imparting beneficial functional properties were identified, including prophages, insertion elements, integrative conjugative elements, and genomic islands. Functional CRISPR-Cas arrays, and a defective prophage region were identified in the genome. The study also revealed many genomic loci unique to E. lacertideformus which contained genes enriched in cell wall/membrane/envelop biogenesis, and carbohydrate metabolism and transport functionality. This finding and the detection of putative enterococcal biofilm determinants (EfaAfs, srtC, and scm) may underpin the novel biofilm phenotype observed for this bacterium. Comparative analysis of E. lacertideformus with phylogenetically related and clinically significant enterococci (E. villorum F1129D, Enterococcus hirae R17, E. faecium AUS0085, and Enterococcus faecalis OG1RF) revealed an absence of genes (n = 54) in E. lacertideformus, that encode metabolic functionality, which potentially hinders nutrient acquisition and/or utilization by the bacterium and precludes growth in vitro. These data provide genetic insights into the previously determined phenotype and pathogenic nature of the bacterium.202133737921
121150.9932Molecular characterization of multidrug-resistant Escherichia coli of the phylogroups A and C in dairy calves with meningitis and septicemia. Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::bla(CTX-M-2)) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.202234982979
560760.9931Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of Salmonella enterica serotypes isolated from necropsied horses in Kentucky. Salmonella is a foodborne pathogen that poses a significant threat to global public health. It affects several animal species, including horses. Salmonella infections in horses can be either asymptomatic or cause severe clinical illness. Infections caused by Salmonella are presently controlled with antibiotics. Due to the formation of biofilms and the emergence of antimicrobial resistance, the treatment has become more complicated. Our study focused on investigating the prevalence of Salmonella enterica in necropsied horses, assessing the capability for biofilm formation, and motility, determining the phenotypic and genotypic profiles of antibiotic resistance, and detecting virulence genes. A total of 2,182 necropsied horses were tested for the presence of Salmonella. Intestinal samples were enriched in selenite broth and cultured on hektoen and eosin methylene blue agar plates, whereas other samples were directly cultured on aforementioned plates. Confirmation of the serotypes was performed according to the Kauffmann-White-Le Minor Scheme followed by biofilm formation screening using crystal violet assay. The resistance profile of the isolates was determined by broth microdilution assay using the Sensititre️ Vet (Equine EQUIN2F). The genotypic antimicrobial resistance (AMR) and virulence profiles were detected using polymerase chain reaction (PCR). The overall prevalence of Salmonella was 1.19% (26/2182), with 11 different serotypes identified. Salmonella Typhimurium was the most prevalent serotype with 19.2% prevalence. All of the isolates were identified as biofilm producers and motile. Virulence genes related to invasion (invA, hilA, mgtC, and spiA), biofilm formation (csgA and csgB), and motility (filA, motA, flgG, figG, flgH, fimC, fimD, and fimH) of Salmonella were detected among 100% of the isolates. An overall 11.4% of the isolates were identified as multidrug-resistant (MDR), with resistance to gentamicin, amikacin, ampicillin, ceftazidime, ceftiofur, chloramphenicol, and trimethoprim/sulfamethoxazole. We found that beta-lactamase-producing genes bla(TEM), bla(CTXM), and bla(SHV2) were identified in 11.5% of the isolates, while only 3.8% carried the bla(OXA-9) gene. The presence of MDR pathogenic Salmonella in horses is alarming for human and animal health, especially when they have a high affinity for forming biofilm. Our study found horses as potential sources of pathogenic Salmonella transmission to humans. Thus, it is important to perform continuous monitoring and surveillance studies to track the source of infection and develop preventive measures. IMPORTANCE: This study focuses on understanding how Salmonella, specifically isolated from horses, can resist antibiotics and cause disease. Salmonella is a well-known foodborne pathogen that can pose risks not only to animals but also to humans. By studying the bacteria from necropsied horses, the research aims to uncover how certain Salmonella strains develop resistance to antibiotics and which genetic factors make them more dangerous. In addition to antibiotic resistance, the research explores the biofilm-forming ability of these strains, which enhances their survival in harsh environments. The study also investigates their motility, a factor that contributes to the spread of infection. The findings can improve treatment strategies for horses and help prevent the transmission of resistant bacteria to other animals as well as humans. Ultimately, the research could contribute to better management of antibiotic resistance in both veterinary and public health contexts, helping to safeguard animal welfare and public health.202539846771
546870.9931Whole-genome sequence of a putative pathogenic Bacillus sp. strain SD-4 isolated from cattle feed. OBJECTIVES: The present study describes the draft genome sequence of a novel Bacillus sp. strain SD-4 isolated from animal feed. The study aims to get a deeper insight into antimicrobial resistance and secondary metabolite biosynthetic gene clusters (BGCs) and the association between them. METHODS: The strain SD-4 was preliminarily evaluated for antibacterial activities, motility, biofilm formation, and enterotoxin production using in vitro assays. The genome of strain SD-4 was sequenced using the Illumina HiSeq 2500 platform with paired-end reads. The reads were assembled and annotated using SPAdes and PGAP, respectively. The genome was further analysed using several bioinformatics tools, including TYGS, AntiSMASH, RAST, PlasmidFinder, VFDB, VirulenceFinder, CARD, PathogenFinder, MobileElement finder, IslandViewer, and CRISPRFinder. RESULTS: In vitro assays showed that the strain is motile, synthesises biofilm, and produces an enterotoxin and antibacterial metabolites. The genome analysis revealed that the strain SD-4 carries antimicrobial resistance genes (ARGs), virulence factors, and beneficial secondary metabolite BGCs. Further genome analysis showed interesting genome architectures containing several mobile genetic elements, including two plasmid replicons (repUS22 and rep20), five prophages, and at least four genomic islands (GIs), including one Listeria pathogenicity island LIPI-1. Moreover, the strain SD-4 is identified as a putative human pathogen. CONCLUSION: The genome of strain SD-4 harbours several BGCs coding for biologically active metabolites. It also contains antimicrobial resistance genes and is identified as a potential human pathogen. These results can be used to better comprehend antibiotic resistance in environmental bacteria that are not influenced by human intervention.202235413450
246580.9930Antimicrobial Resistance Surveillance of Tigecycline-Resistant Strains Isolated from Herbivores in Northwest China. There is no doubt that antimicrobial resistance (AMR) is a global threat to public health and safety, regardless of whether it’s caused by people or natural transmission. This study aimed to investigate the genetic characteristics and variations of tigecycline-resistant Gram-negative isolates from herbivores in northwest China. In this study, a total of 300 samples were collected from various provinces in northwest China, and 11 strains (3.67%) of tigecycline-resistant bacteria were obtained. In addition, bacterial identification and antibiotic susceptibility testing against 14 antibiotics were performed. All isolates were multiple drug-resistant (MDR) and resistant to more than three kinds of antibiotics. Using an Illumina MiSeq platform, 11 tigecycline-resistant isolates were sequenced using whole genome sequencing (WGS). The assembled draft genomes were annotated, and then sequences were blasted against the AMR gene database and virulence factor database. Several resistance genes mediating drug resistance were detected by WGS, including fluoroquinolone resistance genes (gyrA_S83L, gyrA_D87N, S83L, parC_S80I, and gyrB_S463A), fosfomycin resistance genes (GlpT_E448K and UhpT_E350Q), beta-lactam resistance genes (FtsI_D350N and S357N), and the tigecycline resistance gene (tetR N/A). Furthermore, there were five kinds of chromosomally encoded genetic systems that confer MDR (MarR_Y137H, G103S, MarR_N/A, SoxR_N/A, SoxS_N/A, AcrR N/A, and MexZ_K127E). A comprehensive analysis of MDR strains derived from WGS was used to detect variable antimicrobial resistance genes and their precise mechanisms of resistance. In addition, we found a novel ST type of Escherichia coli (ST13667) and a newly discovered point mutation (K127E) in the MexZ gene of Pseudomonas aeruginosa. WGS plays a crucial role in AMR control, prevention strategies, as well as multifaceted intervention strategies.202236557685
523690.9930Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). INTRODUCTION: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. METHODS: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. RESULTS: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). CONCLUSION: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.202439104589
2468100.9930Characterization of Pseudomonas kurunegalensis by Whole-Genome Sequencing from a Clinical Sample: New Challenges in Identification. Backgoround: The genus Pseudomonas encompasses metabolically versatile bacteria widely distributed in diverse environments, including clinical settings. Among these, Pseudomonas kurunegalensis is a recently described environmental species with limited clinical characterization. Objective and Methods: In this study, we report the genomic and phenotypic characterization of a P. kurunegalensis isolate, Pam1317368, recovered from a catheterized urine sample of a post-renal transplant patient without symptoms of urinary tract infection. Initial identification by MALDI-TOF MS misclassified the isolate as Pseudomonas monteilii. Whole-genome sequencing and average nucleotide identity (ANI) analysis (≥95%) confirmed its identity as P. kurunegalensis. The methodology included genomic DNA extraction, Illumina sequencing, genome assembly, ANI calculation, antimicrobial susceptibility testing, resistance gene identification and phylogenetic analysis. Results: Antimicrobial susceptibility testing revealed multidrug resistance, including carbapenem resistance mediated by the metallo-β-lactamase gene VIM-2. Additional resistance determinants included genes conferring resistance to fluoroquinolones and aminoglycosides. Phylogenetic analysis placed the isolate within the P. kurunegalensis clade, closely related to environmental strains. Conclusions: Although the clinical significance of this finding remains unclear, the presence of clinically relevant resistance genes in an environmental Pseudomonas species isolated from a human sample highlights the value of genomic surveillance and accurate species-level identification in clinical microbiology.202540700237
5130110.9929Genomic mining of Vibrio parahaemolyticus highlights prevalence of antimicrobial resistance genes and new genetic markers associated with AHPND and tdh + /trh + genotypes. BACKGROUND: Acute Hepatopancreatic Necrosis Disease (AHPND) causes significant mortality in shrimp aquaculture. The infection is primarily instigated by Vibrio parahaemolyticus (Vp) strains carrying a plasmid encoding the binary toxin PirAB. Yet, comprehension of supplementary virulence factors associated with this relatively recent disease remains limited. Furthermore, the same holds for gastroenteritis in humans caused by other Vp genotypes. Additionally, given the prevalent use of antibiotics to combat bacterial infections, it becomes imperative to illuminate the presence of antimicrobial resistance genes within these bacteria. RESULTS: A subsampled number of 1,036 Vp genomes was screened for the presence of antimicrobial resistance genes, revealing an average prevalence of 5 ± 2 (SD) genes. Additional phenotypic antimicrobial susceptibility testing of three Vp strains (M0904, TW01, and PV1) sequenced in this study demonstrated resistance to ampicillin by all tested strains. Additionally, Vp M0904 showed multidrug resistance (against ampicillin, tetracycline, and trimethoprim-sulfamethoxazole). With a focus on AHPND, a screening of all Vibrio spp. for the presence of pirA and/or pirB indicates an estimated prevalence of 0.6%, including four V. campbellii, four V. owensii, and a Vibrio sp. next to Vp. Their pirAB-encoding plasmids exhibited a highly conserved backbone, with variations primarily in the region of the Tn3 family transposase. Furthermore, an assessment of the subsampled Vp genomes for the presence of known virulence factors showed a correlation between the presence of the Type 3 Secretion System 2 and tdh, while the presence of the Type 6 Secretion System 1 was clade dependent. Furthermore, a genome-wide association study (GWAS) unveiled (new) genes associated with pirA, pirB, tdh, and trh genotypes. Notable associations with the pirAB genotype included outer membrane proteins, immunoglobulin-like domain containing proteins, and toxin-antitoxin systems. For the tdh + /trh + genotypes (containing tdh, trh, or both genes), associations were found with T3SS2 genes, urease-related genes and nickel-transport system genes, and genes involved in a 'minimal' type I-F CRISPR mechanism. CONCLUSIONS: This study highlights the prevalence of antimicrobial resistance and virulence genes in Vp, identifying novel genetic markers associated with AHPND and tdh + /trh + genotypes. These findings contribute valuable insights into the genomic basis of these genotypes, with implications for shrimp aquaculture and food safety.202438355437
5625120.9929Genetic characterization and comparative genomics of a multi drug resistant (MDR) Escherichia coli SCM-21 isolated from a subclinical case of bovine mastitis. Escherichia coli is one of the major pathogens causing mastitis that adversely affects the dairy industry worldwide. This study employed whole genome sequence (WGS) approach to characterize the repertoire of antibiotic resistance genes (resistome), virulence genes (virulome), phylogenetic relationship and genome wide comparison of a multi drug resistant (MDR) E. coli(SCM-21) isolated from a case of subclinical bovine mastitis in Bangalore, India. The genome of E. coli SCM- 21 was found to be of 4.29 Mb size with 50.6% GC content, comprising a resistome of 22 genes encoding beta-lactamases (bla(TEM,)bla(AmpC)), polymyxin resistance (arnA) and various efflux pumps (acr, ade, emr,rob, mac, mar, rob), attributing to the bacteria's overall antibiotic resistance genetic profile. The virulome of E. coli SCM-21 consisted of genes encoding different traits [adhesion (ecp, fim, fde), biofilm formation (csg) and toxin production (ent, esp, fep, gsp)], necessary for manifestation of the infection. Phylogenetic relationship of E. coli SCM- 21 with other global E. coli strains (n = 4867) revealed its close genetic relatedness with E. coli strains originating from different hosts of varied geographical regions [human (Germany) bos taurus (USA, Belgium and Scotland) and chicken (China)]. Further, genome wide comparative analysis with E. coli (n = 6) from human and other animal origins showed synteny across the genomes. Overall findings of this study provided a comprehensive insight of the hidden genetic determinants/power of E. coli SCM-21 that might be responsible for manifestation of mastitis and failure of antibiotic treatment. Aforesaid strain forms a reservoir of antibiotic resistance genes (ARGs) and can integrate to one health micro biosphere.202235397469
5200130.9929Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (bla (IND-13), bla (CIA-3), bla (TEM-116), bla (OXA-209), bla (VEB-15)), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.202235966843
847140.9928Genome-based characterization of Escherichia coli causing bloodstream infection through next-generation sequencing. Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms.202033362261
1212150.9928Virulence Factors and Antimicrobial Resistance of Uropathogenic Escherichia coli EQ101 UPEC Isolated from UTI Patient in Quetta, Balochistan, Pakistan. Infectious diseases have been tremendously increasing as the organisms of even normal flora become opportunistic and cause an infection, and Escherichia coli (E. coli EQ101) is one of them. Urinary tract infections are caused by various microorganisms, but Escherichia coli is the primary cause of almost 70%-90% of all UTIs. It has multiple strains, possessing diverse virulence factors, contributing to its pathogenicity. Furthermore, these virulent strains also can cause overlapping pathogenesis by sharing resistance and virulence factors among each other. The current study is aimed at analyzing the genetic variants associated with multi-drug-resistant (MDR) E. coli using the whole genome sequencing platform. The study includes 100 uropathogenic Escherichia coli (UPEC) microorganisms obtained from urine samples out of which 44% were multi-drug-resistant (MDR) E. coli. Bacteria have been isolated and antimicrobial susceptibility test (AST) was determined by disk diffusion method on the Mueller-Hinton agar plate as recommended by the Clinical and Laboratory Standards Institute (CLSI) 2020, and one isolate has been selected which shows resistance to most of the antibiotics, and that isolate has been analyzed by whole genome sequencing (WGS), accompanied by data and phylogenetic analysis, respectively. Organisms were showing resistance against ampicillin (10 μg), cefixime (5 μg), ceftriaxone (30 μg), nalidixic acid (30 μg), ciprofloxacin (5 μg), and ofloxacin (5 μg) on antimicrobial susceptibility test. WGS were done on selected isolate which identified 25 virulence genes (air, astA, chuA, fyuA, gad, hra, iha, irp2, iss, iucC, iutA, kpsE, kpsMII_K1, lpfA, mchF, ompT, papA_F43, sat, senB, sitA, terC, traT, usp, vat, and yfcV) and seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Among resistance genes, seven genes (TolC, emrR, evgA, qacEdelta1, H-NS, cpxA, and mdtM) were identified to be involved in antibiotic efflux, three AMR genes (aadA5, mphA, and CTX-M-15) were involved in antibiotic inactivation, and two genes (sul1 and dfrA14) were found to be involved in antibiotic drug replacement. Our data identified antibiotic resistance and virulence genes of the isolate. We suggest further research work to establish region-based resistance profile in comparison with the global resistance pattern.202337727279
5238160.9928Snapshot of resistome, virulome and mobilome in aquaculture. Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including bla(TEM-1B), bla(FOX-18), aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.202337604365
5620170.9928Genomic analysis of multidrug-resistant Escherichia coli isolated from dairy cows in Shihezi city, Xinjiang, China. INTRODUCTION: Dairy farming plays a vital role in agriculture and nutrition; however, the emergence of antimicrobial resistance (AMR) among bacterial pathogens poses significant risks to public health and animal welfare. Multidrug-resistant (MDR) Escherichia coli strains are of particular concern due to their potential for zoonotic transmission and resistance to multiple antibiotics. In this study, we investigated the prevalence of AMR and analyzed the genomes of two MDR E. coli isolated from dairy cows in Shihezi City. METHODS: Fecal samples were collected from dairy cows, and E. coli strains were isolated. Antibiotic susceptibility testing was conducted using the Kirby-Bauer disk diffusion method against 14 antibiotics. Two MDR isolates (E.coli_30 and E.coli_45) were selected for whole-genome sequencing and comparative genomic analysis. The Comprehensive Antibiotic Resistance Database (CARD) was used to identify AMR genes, and virulence factors were analyzed. Phylogenetic analysis was performed to determine the evolutionary relationships of the isolates, and a pangenome analysis of 50 E. coli strains was conducted to assess genetic diversity. The presence of mobile genetic elements (MGEs), including insertion sequences (IS) and transposons, was also examined. RESULTS: Among the E. coli isolates, 22.9% exhibited MDR, with high resistance to imipenem and ciprofloxacin, while gentamicin and tetracycline remained the most effective antibiotics. Genomic analysis revealed key AMR genes, including mphA, qnrS1, and bla (CTX-M-55) (the latter found only in E.coli_45), conferring resistance to macrolides, quinolones, and beta-lactams, respectively. Virulence genes encoding type III secretion systems (TTSS) and adhesion factors were identified, indicating pathogenic potential. Phylogenetic analysis showed that E.coli_30 and E.coli_45 originated from distinct ancestral lineages. The presence of two extended-spectrum β-lactamase (ESBL) genes in E.coli_45 was noticeable, so we studied their global and national distribution using evolutionary analysis. We found that they are endemic in E. coli, Salmonella enterica, and Klebsiella pneumoniae. Pangenome analysis revealed significant genetic diversity among E. coli strains, with unique genes related to metabolism and stress response. This indicates the bacteria's adaptation to various environments. MGEs were identified as key contributors to genetic variability and adaptation. DISCUSSION: This study highlights the growing threat of MDR E. coli in dairy farms, emphasizing the critical role of MGEs in the spread of resistance genes. The genetic diversity observed suggests strong adaptive capabilities, justifying the need for continuous AMR surveillance in livestock. Effective monitoring and mitigation strategies are essential to prevent the dissemination of MDR bacteria, thereby protecting both animal and public health.202540135051
5471180.9927Characterization of virulence and antimicrobial resistance genes of Aeromonas media strain SD/21-15 from marine sediments in comparison with other Aeromonas spp. Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla (MOX-9) and bla (OXA-427) β-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.202236532448
5147190.9926Multiscale comparative pathogenomic analysis of Vibrio anguillarum linking serotype diversity, genomic plasticity and pathogenicity. Vibrio anguillarum is a major marine fish pathogen causing high mortality and potential zoonotic risks. Understanding its genomic diversity, virulence factors, and antibiotic resistance is crucial for aquaculture disease management. In this study, a comparative pan-genomic analysis of 16 V. anguillarum strains was conducted to examine core and accessory genome diversity, virulence factors, and antibiotic resistance mechanisms. The phylogenetic analysis was conducted using six core genes and SNPs to evaluate evolutionary relationships and pathogenic traits. The core genome contained 2,038 unique ORFs, while the accessory genome had 5,197 cloud genes, confirming an open pangenome. This study identified 118 pathogenic genomic islands, antibiotic resistance genes (tetracycline, quinolone, and carbapenem), and virulence factors, including type VI secretion system (T6SS) components and RTX toxins (hcp-2, vipB/mglB, rtxC). Core genes such as ftsI uncovered substantial evolutionary divergence among species, identifying more than 150 distinct SNPs. Phylogenetic analysis showed serotype-specific clustering, with O1 strains displaying genetic homogeneity, whereas O2 and O3 exhibited divergence, suggesting distinct evolutionary adaptations influencing pathogenicity and ecological interactions. These findings provide primary insights for developing molecular markers and targeted treatments for aquaculture pathogens.202540854641