# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6009 | 0 | 0.9472 | Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria. | 2024 | 38683168 |
| 6180 | 1 | 0.9424 | Mab2780c, a TetV-like efflux pump, confers high-level spectinomycin resistance in mycobacterium abscessus. Mycobacterium abscessus is highly resistant to spectinomycin (SPC) thereby making it unavailable for therapeutic use. Sublethal exposure to SPC strongly induces whiB7 and its regulon, and a ΔMab_whiB7 strain is SPC sensitive suggesting that the determinants of SPC resistance are included within its regulon. In the present study we have determined the transcriptomic changes that occur in M. abscessus upon SPC exposure and have evaluated the involvement of 11 genes, that are both strongly SPC induced and whiB7 dependent, in SPC resistance. Of these we show that MAB_2780c can complement SPC sensitivity of ΔMab_whiB7 and that a ΔMab_2780c strain is ∼150 fold more SPC sensitive than wildtype bacteria, but not to tetracycline (TET) or other aminoglycosides. This is in contrast to its homologues, TetV from M. smegmatis and Tap from M. tuberculosis, that confer low-level resistance to TET, SPC and other aminoglycosides. We also show that the addition of the efflux pump inhibitor (EPI), verapamil results in >100-fold decrease in MIC of SPC in bacteria expressing Mab2780c to the levels observed for ΔMab_2780c; moreover a deletion of MAB_2780c results in a decreased efflux of the drug into the cell supernatant. Together our data suggest that Mab2780c is an SPC antiporter. Finally, molecular docking of SPC and TET on models of TetV(Ms) and Mab2780c confirmed our antibacterial susceptibility findings that the Mab2780c pump preferentially effluxes SPC over TET. To our knowledge, this is the first report of an efflux pump that confers high-level drug resistance in M. abscessus. The identification of Mab2780c in SPC resistance opens up prospects for repurposing this relatively well-tolerated antibiotic as a combination therapy with verapamil or its analogs against M. abscessus infections. | 2023 | 36584486 |
| 2338 | 2 | 0.9408 | Characterization of disinfectant susceptibility profiles among clinical isolates of Acinetobacter baumannii in Ardabil, Iran. Antimicrobial disinfectants have been extensively used to control hospital-acquired infections worldwide. Prolonged exposure to bacteria could promote resistance to antimicrobial disinfectants. This study evaluated the antimicrobial activity of four commonly used disinfectants; triclosan, chlorhexidine digluconate, benzalkonium chloride, and formaldehyde against Acinetobacter baumannii clinical isolates. This study also determined the prevalence and association of efflux pumps encoding genes qacE, qacED1, emrA, and aceI with tolerance to disinfectants. A total of 100 A. baumannii isolates were included in the current study. The antimicrobial disinfectants' minimum inhibitory concentration (MIC) was determined using an agar dilution method. Genes involved in resistance to disinfectants were investigated by PCR method. The benzalkonium chloride MICs ranged between 32 and 128 μg mL-1, chlorhexidine digluconate 8-64 μg mL-1, triclosan 1-32 μg mL-1, and formaldehyde 128 μg mL-1. Overall, the highest MIC90 value was identified for formaldehyde (128 μg mL-1), followed by benzalkonium chloride and chlorhexidine digluconate (64 μg mL-1, each one) and triclosan (4 μg mL-1). In the present study, the qacE, qacED1, emrA, and aceI genes were found in 91%, 55%, 100%, and 88% of isolates, respectively. The qacG gene was not identified in our A. baumannii isolates. The qacED1 gene was associated with higher MICs for all disinfectants tested (P < 0.05), while the qacE and aceI genes were associated with higher MICs for benzalkonium chloride and chlorhexidine. This study indicated that triclosan is the most effective disinfectant against A. baumannii isolates. | 2023 | 38063878 |
| 9044 | 3 | 0.9405 | Impairment of novel non-coding small RNA00203 inhibits biofilm formation and reduces biofilm-specific antibiotic resistance in Acinetobacter baumannii. Small RNAs (sRNAs) are post-transcriptional regulators of many biological processes in bacteria, including biofilm formation and antibiotic resistance. The mechanisms by which sRNA regulates the biofilm-specific antibiotic resistance in Acinetobacter baumannii have not been reported to date. This study aimed to investigate the influence of sRNA00203 (53 nucleotides) on biofilm formation, antibiotic susceptibility, and expression of genes associated with biofilm formation and antibiotic resistance. The results showed that deletion of the sRNA00203-encoding gene decreased the biomass of biofilm by 85%. Deletion of the sRNA00203-encoding gene also reduced the minimum biofilm inhibitory concentrations for imipenem and ciprofloxacin 1024- and 128-fold, respectively. Knocking out of sRNA00203 significantly downregulated genes involved in biofilm matrix synthesis (pgaB), efflux pump production (novel00738), lipopolysaccharide biosynthesis (novel00626), preprotein translocase subunit (secA) and the CRP transcriptional regulator. Overall, the suppression of sRNA00203 in an A. baumannii ST1894 strain impaired biofilm formation and sensitized the biofilm cells to imipenem and ciprofloxacin. As sRNA00203 was found to be conserved in A. baumannii, a therapeutic strategy targeting sRNA00203 may be a potential solution for the treatment of biofilm-associated infections caused by A. baumannii. To the best of the authors' knowledge, this is the first study to show the impact of sRNA00203 on biofilm formation and biofilm-specific antibiotic resistance in A. baumannii. | 2023 | 37315907 |
| 799 | 4 | 0.9397 | An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. The era of antibiotics as a cure-all for bacterial infections appears to be coming to an end. The emergence of multidrug resistance in many hospital-associated pathogens has resulted in "superbugs" that are effectively untreatable. Multidrug efflux pumps are well known mediators of bacterial drug resistance. Genome sequencing efforts have highlighted an abundance of putative efflux pump genes in bacteria. However, it is not clear how many of these pumps play a role in antimicrobial resistance. Efflux pump genes that participate in drug resistance can be under tight regulatory control and expressed only in response to substrates. Consequently, changes in gene expression following antimicrobial shock may be used to identify efflux pumps that mediate antimicrobial resistance. Using this approach we have characterized several novel efflux pumps in bacteria. In one example we recently identified the Acinetobacterchlorhexidine efflux protein (AceI) efflux pump in Acinetobacter. AceI is a prototype for a novel family of multidrug efflux pumps conserved in many proteobacterial lineages. The discovery of this family raises the possibility that additional undiscovered intrinsic resistance proteins may be encoded in the core genomes of pathogenic bacteria. | 2015 | 25954261 |
| 6181 | 5 | 0.9396 | Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Chloramphenicol, florfenicol, and thiamphenicol are used as antibacterial drugs in clinical and veterinary medicine. Two efflux pumps of the major facilitator superfamily encoded by the cmlR1 and cmlR2 genes mediate resistance to these antibiotics in Streptomyces coelicolor, a close relative of Mycobacterium tuberculosis. The transcription of both genes was observed by reverse transcription-PCR. Disruption of cmlR1 decreased the chloramphenicol MIC 1.6-fold, while disruption of cmlR2 lowered the MIC 16-fold. The chloramphenicol MIC of wild-type S. coelicolor decreased fourfold and eightfold in the presence of reserpine and Phe-Arg-beta-naphthylamide, respectively. These compounds are known to potentiate the activity of some antibacterial drugs via efflux pump inhibition. While reserpine is known to potentiate drug activity against gram-positive bacteria, this is the first time that Phe-Arg-beta-naphthylamide has been shown to potentiate drug activity against a gram-positive bacterium. | 2009 | 19687245 |
| 8832 | 6 | 0.9394 | Pharyngeal Pumping and Tissue-Specific Transgenic P-Glycoprotein Expression Influence Macrocyclic Lactone Susceptibility in Caenorhabditis elegans. Macrocyclic lactones (MLs) are widely used drugs to treat and prevent parasitic nematode infections. In many nematode species including a major pathogen of foals, Parascaris univalens, resistance against MLs is widespread, but the underlying resistance mechanisms and ML penetration routes into nematodes remain unknown. Here, we examined how the P-glycoprotein efflux pumps, candidate genes for ML resistance, can modulate drug susceptibility and investigated the role of active drug ingestion for ML susceptibility in the model nematode Caenorhabditis elegans. Wildtype or transgenic worms, modified to overexpress P. univalens PGP-9 (Pun-PGP-9) at the intestine or epidermis, were incubated with ivermectin or moxidectin in the presence (bacteria or serotonin) or absence (no specific stimulus) of pharyngeal pumping (PP). Active drug ingestion by PP was identified as an important factor for ivermectin susceptibility, while moxidectin susceptibility was only moderately affected. Intestinal Pun-PGP-9 expression elicited a protective effect against ivermectin and moxidectin only in the presence of PP stimulation. Conversely, epidermal Pun-PGP-9 expression protected against moxidectin regardless of PP and against ivermectin only in the absence of active drug ingestion. Our results demonstrate the role of active drug ingestion by nematodes for susceptibility and provide functional evidence for the contribution of P-glycoproteins to ML resistance in a tissue-specific manner. | 2021 | 33668460 |
| 6253 | 7 | 0.9393 | The Contribution of Efflux Pumps in Mycobacterium abscessus Complex Resistance to Clarithromycin. The basis of drug resistance in Mycobacterium abscessus is still poorly understood. Nevertheless, as seen in other microorganisms, the efflux of antimicrobials may also play a role in M. abscessus drug resistance. Here, we investigated the role of efflux pumps in clarithromycin resistance using nine clinical isolates of M. abscessus complex belonging to the T28 erm(41) sequevar responsible for the inducible resistance to clarithromycin. The strains were characterized by drug susceptibility testing in the presence/absence of the efflux inhibitor verapamil and by genetic analysis of drug-resistance-associated genes. Efflux activity was quantified by real-time fluorometry. Efflux pump gene expression was studied by RT-qPCR upon exposure to clarithromycin. Verapamil increased the susceptibility to clarithromycin from 4- to ≥64-fold. The efflux pump genes MAB_3142 and MAB_1409 were found consistently overexpressed. The results obtained demonstrate that the T28 erm(41) polymorphism is not the sole cause of the inducible clarithromycin resistance in M. abscessus subsp. abscessus or bolletii with efflux activity providing a strong contribution to clarithromycin resistance. These data highlight the need for further studies on M. abscessus efflux response to antimicrobial stress in order to implement more effective therapeutic regimens and guidance in the development of new drugs against these bacteria. | 2019 | 31540480 |
| 6371 | 8 | 0.9393 | Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Cleistochlamys kirkii (Benth) Oliv. (Annonaceae) is a medicinal plant traditionally used in Mozambique to treat infectious diseases. The aim of this study was to find resistance modifiers in C. kirkii for Gram-positive and Gram-negative model bacterial strains. One of the most important resistance mechanisms in bacteria is the efflux pump-related multidrug resistance. Therefore, polycarpol (1), three C-benzylated flavanones (2-4), and acetylmelodorinol (5) were evaluated for their multidrug resistance-reverting activity on methicillin-susceptible and methicillin-resistant Staphylococcus aureus and Escherichia coli AG100 and AG100 A strains overexpressing and lacking the AcrAB-TolC efflux pump system. The combined effects of antibiotics and compounds (2 and 4) were also assessed by using the checkerboard microdilution method in both S. aureus strains. The relative gene expression of the efflux pump genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. The inhibition of quorum sensing was also investigated. The combined effect of the antibiotics and compound 2 or 4 on the methicillin-sensitive S. aureus resulted in synergism. The most active compounds 2 and 4 increased the expression of the efflux pump genes. These results suggested that C. kirkii constituents could be effective adjuvants in the antibiotic treatment of infections. | 2018 | 29464798 |
| 6190 | 9 | 0.9392 | Identifying Escherichia coli genes involved in intrinsic multidrug resistance. Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively. | 2008 | 18807027 |
| 9036 | 10 | 0.9392 | Resistance-nodulation-division efflux pump acrAB is modulated by florfenicol and contributes to drug resistance in the fish pathogen Piscirickettsia salmonis. Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains. | 2016 | 27190287 |
| 6174 | 11 | 0.9391 | Genetic Variability of the AcrAB-TolC Multidrug Efflux Pump Underlies SkQ1 Resistance in Gram-Negative Bacteria. SkQ1, a novel antibiotic targeting bacterial bioenergetics, is highly effective against both gram-positive and gram-negative bacteria. However, some gram-negative bacteria, such as Escherichia coli and Klebsiella pneumoniae, are highly resistant to it. In different gram-negative bacteria, this resistance is associated with the identity of their AcrB transporter protein sequence with the sequence of the AcrB protein from E. coli. SkQ1 is expelled from E. coli cells by the AcrAB-TolC multidrug efflux pump. In this study, we demonstrate that SkQ1 resistance in E. coli, in contrast to chloramphenicol resistance, does not depend on the presence of the multidrug efflux pump accessory protein AcrZ. | 2019 | 31993240 |
| 3738 | 12 | 0.9390 | In Silico Prediction of Antibiotic Resistance in Mycobacterium ulcerans Agy99 through Whole Genome Sequence Analysis. Buruli ulcer is an emerging infectious disease caused by Mycobacterium ulcerans that has been reported from 33 countries. Antimicrobial agents either alone or in combination with surgery have been proved to be clinically relevant and therapeutic strategies have been deduced mainly from the empirical experience. The genome sequences of M. ulcerans strain AGY99, M. ulcerans ecovar liflandii, and three Mycobacterium marinum strains were analyzed to predict resistance in these bacteria. Fourteen putative antibiotic resistance genes from different antibiotics classes were predicted in M. ulcerans and mutation in katG (R431G) and pncA (T47A, V125I) genes were detected, that confer resistance to isoniazid and pyrazinamide, respectively. No mutations were detected in rpoB, gyrA, gyrB, rpsL, rrs, emb, ethA, 23S ribosomal RNA genes and promoter region of inhA and ahpC genes associated with resistance. Our results reemphasize the usefulness of in silico analysis for the prediction of antibiotic resistance in fastidious bacteria. | 2017 | 28749770 |
| 6006 | 13 | 0.9390 | Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502. | 2023 | 33685902 |
| 1400 | 14 | 0.9390 | Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. The carbapenem-resistant Escherichia coli has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the nonsynonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had the minimum inhibitory concentrations of IMP of 8 and 64 µg ml-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. A total of 19 nsSNPs were observed both in Sx181-32 and Sx181-256, distributed in rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC, and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism of IMP resistance in E. coli. | 2022 | 35147175 |
| 742 | 15 | 0.9389 | Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents. The Salmonella typhimurium genome contains two pathogenicity islands (SPI) with genes encoding type III secretion systems for virulence proteins. SPI1 is required for the penetration of the epithelial layer of the intestine. SPI2 is important for the subsequent proliferation of bacteria in the spleens of infected hosts. Although most mutations in SPI2 lead to a strong reduction of virulence, they have different effects in vitro, with some mutants having significantly increased sensitivity to gentamicin and the antibacterial peptide polymyxin B. Previously we showed that certain mutations in SPI2 affect the ability of S. typhimurium to secrete SPI1 effector proteins and to invade cultured eukaryotic cells. In this study, we show that these SPI2 mutations affect the expression of the SPI1 invasion genes. Analysis of reporter fusions to various SPI1 genes reveals highly reduced expression of sipC, prgK, and hilA, the transcriptional activator of SPI1 genes. These observations indicate that the expression of one type III secretion system can be influenced dramatically by mutations in genes encoding a second type III secretion system in the same cell. | 1998 | 9733677 |
| 5753 | 16 | 0.9389 | Sensitization of Gram-Negative Bacteria to Aminoglycosides with 2-Aminoimidazole Adjuvants. In 2019, five million deaths associated with antimicrobial resistance were reported by The Centers for Disease Control and Prevention (CDC). Acinetobacter baumannii, a Gram-negative bacterial pathogen, is among the list of urgent threats. Previously, we reported 2-aminoimidazole (2-AI) adjuvants that potentiate macrolide activity against A. baumannii. In this study, we identify several of these adjuvants that sensitize A. baumannii to aminoglycoside antibiotics. Lead compounds 1 and 7 lower the tobramycin (TOB) minimum inhibitory concentration (MIC) against the TOB-resistant strain AB5075 from 128 μg/mL to 2 μg/mL at 30 μM. In addition, the lead compounds lower the TOB MIC against the TOB-susceptible strain AB19606 from 4 μg/mL to 1 μg/mL and 0.5 μg/mL, respectively, at 30 μM and 15 μM. The evolution of resistance to TOB and 1 in AB5075 revealed mutations in genes related to protein synthesis, the survival of bacteria under environmental stressors, bacteriophages, and proteins containing Ig-like domains. | 2023 | 37998765 |
| 6372 | 17 | 0.9386 | Sensitizing multi drug resistant Staphylococcus aureus isolated from surgical site infections to antimicrobials by efflux pump inhibitors. BACKGROUND: Staphylococcus aureus is a common hospital acquired infections pathogen. Multidrug-resistant Methicillin-resistant Staphylococcus aureus represents a major problem in Egyptian hospitals. The over-expression of efflux pumps is a main cause of multidrug resistance. The discovery of efflux pump inhibitors may help fight multidrug resistance by sensitizing bacteria to antibiotics. This study aimed to investigate the role of efflux pumps in multidrug resistance. METHODS: Twenty multidrug resistant S. aureus isolates were selected. Efflux pumps were screened by ethidium bromide agar cartwheel method and polymerase chain reaction. The efflux pump inhibition by seven agents was tested by ethidium bromide agar cartwheel method and the effect on sensitivity to selected antimicrobials was investigated by broth microdilution method. RESULTS: Seventy percent of isolates showed strong efflux activity, while 30% showed intermediate activity. The efflux genes mdeA, norB, norC, norA and sepA were found to play the major role in efflux, while genes mepA, smr and qacA/B had a minor role. Verapamil and metformin showed significant efflux inhibition and increased the sensitivity to tested antimicrobials, while vildagliptin, atorvastatin, domperidone, mebeverine and nifuroxazide showed no effect. CONCLUSION: Efflux pumps are involved in multidrug resistance in Staphylococcus aureus. Efflux pump inhibitors could increase the sensitivity to antimicrobials. | 2020 | 34394224 |
| 6374 | 18 | 0.9386 | Determining the effect of a new truncated CecropinA-Magenin2 (CE-MA) hybrid peptide on the expression of multidrug-resistant (MDR) Mycobacterium tuberculosis efflux genes. A significant issue in treating bacterial infections is multidrug resistance (MDR) microbes. Drug efflux pumps that reduce cellular drug accumulation are frequently linked to drug resistance. In this study, we set out to determine the effects of CE-MA truncated peptide derivatives against MDR Mycobacterium tuberculosis. Following the assessment of the minimum inhibitory concentrations (MICs) of these peptides against MDR Mycobacterium tuberculosis, a Real-Time PCR was used to examine the expression of six drug efflux pump genes. Next, an MTT assay was performed to test the cytotoxicity of peptides against the A549 cell line. The outcomes demonstrated that CE-MA significantly upregulated gene expression of mmr, and Rv0876c (⩾ 4-fold) than untreated bacteria. Also, under CMt2 stress, significant overexpression of Rv0876c and drrA was seen. However, the results show that upregulation in CMt2-treated bacteria in comparison CE-MA treated bacteria is significantly less for genes tap (P < 0.05), mmr (P < 0.0001), and Rv0876c (P < 0.001). Meanwhile, CMt1 only upregulated the Rv0876c gene and downregulated gene expression of tap, drrA, and mmr. It was also found that all three peptides have no significant effect (P > 0.05) on changing the expression of genes drrC and pstB. Less than 10% of the A549 cell line was susceptible to the toxicity of CMt1 and CMt2 at their MICs range. Our results emphasize the significance of investigating novel peptide-based approaches to combat MDR Mycobacterium tuberculosis and point to these peptides as prospective candidates for additional research. | 2025 | 40178610 |
| 329 | 19 | 0.9386 | Effect of NlpE overproduction on multidrug resistance in Escherichia coli. NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In this study, we report that overproduction of NlpE increases multidrug and copper resistance through activation of the genes encoding the AcrD and MdtABC multidrug efflux pumps in Escherichia coli. | 2010 | 20211889 |