ACCURACY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
907600.9914ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/.202133495705
506810.9911Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria.202033086716
974220.9911BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage. A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases.201931173943
506930.9910MC-PRPA-HLFIA Cascade Detection System for Point-of-Care Testing Pan-Drug-Resistant Genes in Urinary Tract Infection Samples. Recently, urinary tract infection (UTI) triggered by bacteria carrying pan-drug-resistant genes, including carbapenem resistance gene bla(NDM) and bla(KPC), colistin resistance gene mcr-1, and tet(X) for tigecycline resistance, have been reported, posing a serious challenge to the treatment of clinical UTI. Therefore, point-of-care (POC) detection of these genes in UTI samples without the need for pre-culturing is urgently needed. Based on PEG 200-enhanced recombinase polymerase amplification (RPA) and a refined Chelex-100 lysis method with HRP-catalyzed lateral flow immunoassay (LFIA), we developed an MCL-PRPA-HLFIA cascade assay system for detecting these genes in UTI samples. The refined Chelex-100 lysis method extracts target DNA from UTI samples in 20 min without high-speed centrifugation or pre-incubation of urine samples. Following optimization, the cascade detection system achieved an LOD of 10(2) CFU/mL with satisfactory specificity and could detect these genes in both simulated and actual UTI samples. It takes less than an hour to complete the process without the use of high-speed centrifuges or other specialized equipment, such as PCR amplifiers. The MCL-PRPA-HLFIA cascade assay system provides new ideas for the construction of rapid detection methods for pan-drug-resistant genes in clinical UTI samples and provides the necessary medication guidance for UTI treatment.202337047757
509740.9909Comparing Graph Sample and Aggregation (SAGE) and Graph Attention Networks in the Prediction of Drug-Gene Associations of Extended-Spectrum Beta-Lactamases in Periodontal Infections and Resistance. INTRODUCTION: Gram-negative bacteria exhibit more antibiotic resistance than gram-positive bacteria due to their cell wall structure and composition differences. Porins, or protein channels in these bacteria, can allow small, hydrophilic antibiotics to diffuse, affecting their susceptibility. Mutations in porin protein genes can also impair antibiotic entry. Predicting drug-gene associations of extended-spectrum beta-lactamases (ESBLs) is crucial as they confer resistance to beta-lactam antibiotics, challenging the treatment of infections. This aids clinicians in selecting suitable treatments, optimizing drug usage, enhancing patient outcomes, and controlling antibiotic resistance in healthcare settings. Graph-based neural networks can predict drug-gene associations in periodontal infections and resistance. The aim of the study was to predict drug-gene associations of ESBLs in periodontal infections and resistance. METHODS: The study focuses on analyzing drug-gene associations using probes and drugs. The data was converted into graph language, assigning nodes and edges for drugs and genes. Graph neural networks (GNNs) and similar algorithms were implemented using Google Colab and Python. Cytoscape and CytoHubba are open-source software platforms used for network analysis and visualization. GNNs were used for tasks like node classification, link prediction, and graph-level prediction. Three graph-based models were used: graph convolutional network (GCN), Graph SAGE, and graph attention network (GAT). Each model was trained for 200 epochs using the Adam optimizer with a learning rate of 0.01 and a weight decay of 5e-4. RESULTS: The drug-gene association network has 57 nodes, 79 edges, and a 2.730 characteristic path length. Its structure, organization, and connectivity are analyzed using the GCN and Graph SAGE, which show high accuracy, precision, recall, and an F1-score of 0.94. GAT's performance metrics are lower, with an accuracy of 0.68, precision of 0.47, recall of 0.68, and F1-score of 0.56, suggesting that it may not be as effective in capturing drug-gene relationships. CONCLUSION: Compared to ESBLs, both GCN and Graph SAGE demonstrate excellent performance with accuracy, precision, recall, and an F1-score of 0.94. These results indicate that GCN and Graph SAGE are highly effective in predicting drug-gene associations related to ESBLs. GCN and Graph SAGE outperform GAT in predicting drug-gene associations for ESBLs. Improvements include data augmentation, regularization, and cross-validation. Ethical considerations, fairness, and open-source implementations are crucial for future research in precision periodontal treatment.202439347119
582650.9908Rapid and accurate sepsis diagnostics via a novel probe-based multiplex real-time PCR system. Sepsis is a critical clinical emergency that requires prompt diagnosis and intervention. Its prevalence has increased due to the aging population and increased antibiotic resistance. Early identification and the use of innovative technologies are crucial for improving patient outcomes. Modern methodologies are needed to minimize the turnaround time for diagnosis and improve outcomes. Rapid diagnostic tests and multiplex PCR are effective but have limitations in identifying a range of pathogens and target genes. Our study evaluated two novel probe-based multiplex real-time PCR systems: the SEPSI ID and SEPSI DR panels. These systems can quickly identify bacterial and fungal pathogens, alongside antibiotic resistance genes. The assays cover 29 microorganisms (gram-negative bacteria, gram-positive bacteria, yeast, and mold species), alongside 23 resistance genes and four virulence factors. A streamlined workflow uses 2 µL of broth from positive blood cultures (BCs) without nucleic acid extraction and provides results in approximately 1 h. We present the results from an evaluation of 228 BCs and 22 isolates previously characterized by whole-genome sequencing. In comparison to the reference methods, the SEPSI ID panel demonstrated a sensitivity of 96.88%, a specificity of 100%, and a PPV of 100%, whereas the SEPSI DR panel showed a sensitivity of 97.8%, a PPV of 89.7%, and a specificity of 96.7%. Both panels also identified additional pathogens and resistance-related targets not detected by conventional methods. This assay shows promise for rapidly and accurately diagnosing sepsis. Future studies should validate its performance in various clinical settings to enhance sepsis management and improve patient outcomes.IMPORTANCEWe present a new diagnostic method that enables the quick and precise identification of pathogens and resistance genes from positive blood cultures, eliminating the need for nucleic acid extraction. This technique can also be used on fresh pathogen cultures. It has the potential to greatly improve treatment protocols, leading to better patient outcomes, more responsible antibiotic use, and more efficient management of healthcare resources.202541025980
974160.9908ARGai 1.0: A GAN augmented in silico approach for identifying resistant genes and strains in E. coli using vision transformer. The emergence of infectious disease and antibiotic resistance in bacteria like Escherichia coli (E. coli) shows the necessity for novel computational techniques for identifying essential genes that contribute to resistance. The task of identifying resistant strains and multi-drug patterns in E. coli is a major challenge with whole genome sequencing (WGS) and next-generation sequencing (NGS) data. To address this issue, we suggest ARGai 1.0 a deep learning architecture enhanced with generative adversarial networks (GANs). We mitigate data scarcity difficulties by augmenting limited experimental datasets with synthetic data generated by GANs. Our in-silico method (augmentation with feature selection) improves the identification of resistance genes in E. coli by using feature extraction techniques to identify valuable features from actual and GAN-generated data. Employing comprehensive validation, we exhibit the effectiveness of our ARGai 1.0 in precisely identifying the informative and resistant genes. In addition, our ARGai 1.0 identifies the resistant strains with a classification accuracy of 98.96 % on Deep Convolutional Generative Adversarial Network (DCGAN) augmented data. Additionally, ARGai 1.0 achieves more than 98 % of sensitivity and specificity. We also benchmark our ARGai 1.0 with several state-of-the-art AI models for resistant strain classification. In the fight against antibiotic resistance, ARGai 1.0 offers a promising avenue for computational genomics. With implications for research and clinical practice, this work shows the potential of deep networks with GAN augmentation as a practical and successful method for gene identification in E. coli.202539813877
908370.9908ARGNet: using deep neural networks for robust identification and classification of antibiotic resistance genes from sequences. BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.202438725076
582880.9907Target-enriched sequencing enables accurate identification of bloodstream infections in whole blood. Bloodstream infections are within the top ten causes of death globally, with a mortality rate of up to 70%. Gold standard blood culture testing is time-consuming, resulting in delayed, but accurate, treatment. Molecular methods, such as RT-qPCR, have limited targets in one run. We present a new Ampliseq detection system (ADS) combining target amplification and next-generation sequencing for accurate identification of bacteria, fungi, and antimicrobial resistance determinants directly from blood samples. In this study, we included removal of human genomic DNA during nucleic acid extraction, optimized the target sequence set and drug resistance genes, performed antimicrobial resistance profiling of clinical isolates, and evaluated mock specimens and clinical samples by ADS. ADS successfully identified pathogens at the species-level in 36 h, from nucleic acid extraction to results. Besides pathogen identification, ADS can also present drug resistance profiles. ADS enabled detection of all bacteria and accurate identification of 47 pathogens. In 20 spiked samples and 8 clinical specimens, ADS detected at least 92.81% of reads mapped to pathogens. ADS also showed consistency with the three culture-negative samples, and correctly identified pathogens in four of five culture-positive clinical blood specimens. This Ampliseq-based technology promises broad coverage and accurate pathogen identification, helping clinicians to accurately diagnose and treat bloodstream infections.202234915067
582790.9905Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach. Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsiscausing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI.202134528911
5125100.9904Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.202438354391
5824110.9902Evaluation of a micro/nanofluidic chip platform for the high-throughput detection of bacteria and their antibiotic resistance genes in post-neurosurgical meningitis. BACKGROUND: Post-neurosurgical meningitis (PNM) is one of the most severe hospital-acquired infections worldwide, and a large number of pathogens, especially those possessing multi-resistance genes, are related to these infections. Existing methods for detecting bacteria and measuring their response to antibiotics lack sensitivity and stability, and laboratory-based detection methods are inconvenient, requiring at least 24h to complete. Rapid identification of bacteria and the determination of their susceptibility to antibiotics are urgently needed, in order to combat the emergence of multi-resistant bacterial strains. METHODS: This study evaluated a novel, fast, and easy-to-use micro/nanofluidic chip platform (MNCP), which overcomes the difficulties of diagnosing bacterial infections in neurosurgery. This platform can identify 10 genus or species targets and 13 genetic resistance determinants within 1h, and it is very simple to operate. A total of 108 bacterium-containing cerebrospinal fluid (CSF) cultures were tested using the MNCP for the identification of bacteria and determinants of genetic resistance. The results were compared to those obtained with conventional identification and antimicrobial susceptibility testing methods. RESULTS: For the 108 CSF cultures, the concordance rate between the MNCP and the conventional identification method was 94.44%; six species attained 100% consistency. For the production of carbapenemase- and extended-spectrum beta-lactamase (ESBL)-related antibiotic resistance genes, both the sensitivity and specificity of the MNCP tests were high (>90.0%) and could fully meet the requirements of clinical diagnosis. CONCLUSIONS: The MNCP is fast, accurate, and easy to use, and has great clinical potential in the treatment of post-neurosurgical meningitis.201829559366
5829120.9901Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.202133970612
9743130.9901Simultaneous Detection of Antibiotic Resistance Genes on Paper-Based Chip Using [Ru(phen)(2)dppz](2+) Turn-on Fluorescence Probe. Antibiotic resistance, the ability of some bacteria to resist antibiotic drugs, has been a major global health burden due to the extensive use of antibiotic agents. Antibiotic resistance is encoded via particular genes; hence the specific detection of these genes is necessary for diagnosis and treatment of antibiotic resistant cases. Conventional methods for monitoring antibiotic resistance genes require the sample to be transported to a central laboratory for tedious and sophisticated tests, which is grueling and time-consuming. We developed a paper-based chip, integrated with loop-mediated isothermal amplification (LAMP) and the "light switch" molecule [Ru(phen)(2)dppz](2+), to conduct turn-on fluorescent detection of antibiotic resistance genes. In this assay, the amplification reagents can be embedded into test spots of the chip in advance, thus simplifying the detection procedure. [Ru(phen)(2)dppz](2+) was applied to intercalate into amplicons for product analysis, enabling this assay to be operated in a wash-free format. The paper-based detection device exhibited a limit of detection (LOD) as few as 100 copies for antibiotic resistance genes. Meanwhile, it could detect antibiotic resistance genes from various bacteria. Noticeably, the approach can be applied to other genes besides antibiotic resistance genes by simply changing the LAMP primers. Therefore, this paper-based chip has the potential for point-of-care (POC) applications to detect various gene samples, especially in resource-limited conditions.201829323478
9075140.9901CamPype: an open-source workflow for automated bacterial whole-genome sequencing analysis focused on Campylobacter. BACKGROUND: The rapid expansion of Whole-Genome Sequencing has revolutionized the fields of clinical and food microbiology. However, its implementation as a routine laboratory technique remains challenging due to the growth of data at a faster rate than can be effectively analyzed and critical gaps in bioinformatics knowledge. RESULTS: To address both issues, CamPype was developed as a new bioinformatics workflow for the genomics analysis of sequencing data of bacteria, especially Campylobacter, which is the main cause of gastroenteritis worldwide making a negative impact on the economy of the public health systems. CamPype allows fully customization of stages to run and tools to use, including read quality control filtering, read contamination, reads extension and assembly, bacterial typing, genome annotation, searching for antibiotic resistance genes, virulence genes and plasmids, pangenome construction and identification of nucleotide variants. All results are processed and resumed in an interactive HTML report for best data visualization and interpretation. CONCLUSIONS: The minimal user intervention of CamPype makes of this workflow an attractive resource for microbiology laboratories with no expertise in bioinformatics as a first line method for bacterial typing and epidemiological analyses, that would help to reduce the costs of disease outbreaks, or for comparative genomic analyses. CamPype is publicly available at https://github.com/JoseBarbero/CamPype .202337474912
5124150.9901Oxford nanopore long-read sequencing enables the generation of complete bacterial and plasmid genomes without short-read sequencing. INTRODUCTION: Genome-based analysis is crucial in monitoring antibiotic-resistant bacteria (ARB)and antibiotic-resistance genes (ARGs). Short-read sequencing is typically used to obtain incomplete draft genomes, while long-read sequencing can obtain genomes of multidrug resistance (MDR) plasmids and track the transmission of plasmid-borne antimicrobial resistance genes in bacteria. However, long-read sequencing suffers from low-accuracy base calling, and short-read sequencing is often required to improve genome accuracy. This increases costs and turnaround time. METHODS: In this study, a novel ONT sequencing method is described, which uses the latest ONT chemistry with improved accuracy to assemble genomes of MDR strains and plasmids from long-read sequencing data only. Three strains of Salmonella carrying MDR plasmids were sequenced using the ONT SQK-LSK114 kit with flow cell R10.4.1, and de novo genome assembly was performed with average read accuracy (Q > 10) of 98.9%. RESULTS AND DISCUSSION: For a 5-Mb-long bacterial genome, finished genome sequences with accuracy of >99.99% could be obtained at 75× sequencing coverage depth using Flye and Medaka software. Thus, this new ONT method greatly improves base-calling accuracy, allowing for the de novo assembly of high-quality finished bacterial or plasmid genomes without the need for short-read sequencing. This saves both money and time and supports the application of ONT data in critical genome-based epidemiological analyses. The novel ONT approach described in this study can take the place of traditional combination genome assembly based on short- and long-read sequencing, enabling pangenomic analyses based on high-quality complete bacterial and plasmid genomes to monitor the spread of antibiotic-resistant bacteria and antibiotic resistance genes.202337256057
2599160.9901Evaluation of whole-genome sequencing protocols for detection of antimicrobial resistance, virulence factors and mobile genetic elements in antimicrobial-resistant bacteria. Introduction. Antimicrobial resistance (AMR) poses a critical threat to global health, underscoring the need for rapid and accurate diagnostic tools. Methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae (ESBL-Kp) are listed among the World Health Organization's priority pathogens.Hypothesis. A rapid nanopore-based protocol can accurately and efficiently detect AMR genes, virulence factors (VFs) and mobile genetic elements (MGEs) in MRSA and ESBL-Kp, offering performance comparable to or superior to traditional sequencing methods.Aim. Evaluate whole-genome sequencing (WGS) protocols for detecting AMR genes, VFs and MGEs in MRSA and ESBL-Kp, to identify the most accurate and efficient tool for pathogen profiling.Methodology. Five distinct WGS protocols, including a rapid nanopore-based protocol (ONT20h) and four slower sequencing methods, were evaluated for their effectiveness in detecting genetic markers. The protocols' performances were compared across AMR genes, VFs and MGEs. Additionally, phenotypic antimicrobial susceptibility testing was performed to assess concordance with the genomic findings.Results. Compared to four slower sequencing protocols, the rapid nanopore-based protocol (ONT20h) demonstrated comparable or superior performance in AMR gene detection and equivalent VF identification. Although MGE detection varied among protocols, ONT20h showed a high level of agreement with phenotypic antimicrobial susceptibility testing.Conclusion. The findings highlight the potential of rapid WGS as a valuable tool for clinical microbiology, enabling timely implementation of infection control measures and informed therapeutic decisions. However, further studies are required to optimize the clinical application of this technology, considering costs, availability of bioinformatics tools and quality of reference databases.202540105741
2497170.9901Rapid Simultaneous Detection of the Clinically Relevant Carbapenemase Resistance Genes blaKPC, blaOXA48, blaVIM and blaNDM with the Newly Developed Ready-to-Use qPCR CarbaScan LyoBead. Antibiotic resistance, in particular the dissemination of carbapenemase-producing organisms, poses a significant threat to global healthcare. This study introduces the qPCR CarbaScan LyoBead assay, a robust, accurate, and efficient tool for detecting key carbapenemase genes, including blaKPC, blaNDM, blaOXA-48, and blaVIM. The assay utilizes lyophilized beads, a technological advancement that enhances stability, simplifies handling, and eliminates the need for refrigeration. This feature renders it particularly well-suited for point-of-care diagnostics and resource-limited settings. The assay's capacity to detect carbapenemase genes directly from bacterial colonies without the need for extensive sample preparation has been demonstrated to streamline workflows and enable rapid diagnostic results. The assay demonstrated 100% specificity and sensitivity across a diverse range of bacterial strains, including multiple allelic variants of target genes, facilitating precise identification of resistance mechanisms. Bacterial strains of the species Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae and Pseudomonas aeruginosa were utilized as reference material for assay development (n = 9) and validation (n = 28). It is notable that the assay's long shelf life and minimal operational complexity further enhance its utility for large-scale implementation in healthcare, food safety, and environmental monitoring. The findings emphasize the necessity of continuous surveillance and the implementation of rapid diagnostic methods for the effective detection of resistance genes. Furthermore, the assay's potential applications in other fields, such as toxin-antitoxin system research and monitoring of resistant bacteria in the community, highlight its versatility. In conclusion, the qPCR CarbaScan LyoBead assay is a valuable tool that can contribute to the urgent need to combat antibiotic resistance and improve global public health outcomes.202539940986
5116180.9901Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. BACKGROUND: Early detection of antimicrobial resistance in pathogens and prescription of more effective antibiotics is a fast-emerging need in clinical practice. High-throughput sequencing technology, such as whole genome sequencing (WGS), may have the capacity to rapidly guide the clinical decision-making process. The prediction of antimicrobial resistance in Gram-negative bacteria, often the cause of serious systemic infections, is more challenging as genotype-to-phenotype (drug resistance) relationship is more complex than for most Gram-positive organisms. METHODS AND FINDINGS: We have used NCBI BioSample database to train and cross-validate eight XGBoost-based machine learning models to predict drug resistance to cefepime, cefotaxime, ceftriaxone, ciprofloxacin, gentamicin, levofloxacin, meropenem, and tobramycin tested in Acinetobacter baumannii, Escherichia coli, Enterobacter cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae. The input is the WGS data in terms of the coverage of known antibiotic resistance genes by shotgun sequencing reads. Models demonstrate high performance and robustness to class imbalanced datasets. CONCLUSION: Whole genome sequencing enables the prediction of antimicrobial resistance in Gram-negative bacteria. We present a tool that provides an in silico antibiogram for eight drugs. Predictions are accompanied with a reliability index that may further facilitate the decision making process. The demo version of the tool with pre-processed samples is available at https://vancampn.shinyapps.io/wgs2amr/. The stand-alone version of the predictor is available at https://github.com/pieterjanvc/wgs2amr/.202032528441
5194190.9900Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development.201930429253