# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6661 | 0 | 0.9975 | Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antimicrobial resistance (AMR) is one of the most complex global health challenges today: decades of overuse and misuse in human medicine, animal health, agriculture, and dispersion into the environment have produced the dire consequence of infections to become progressively untreatable. Infection control and prevention (IPC) procedures, the reduction of overuse, and the misuse of antimicrobials in human and veterinary medicine are the cornerstones required to prevent the spreading of resistant bacteria. Purified drinking water and strongly improved sanitation even in remote areas would prevent the pollution from inadequate treatment of industrial, residential, and farm waste, as all these situations are expanding the resistome in the environment. The One Health concept addresses the interconnected relationships between human, animal, and environmental health as a whole: several countries and international agencies have now included a One Health Approach within their action plans to address AMR. Improved antimicrobial usage, coupled with regulation and policy, as well as integrated surveillance, infection control and prevention, along with antimicrobial stewardship, sanitation, and animal husbandry should all be integrated parts of any new action plan targeted to tackle AMR on the Earth. Since AMR is found in bacteria from humans, animals, and in the environment, we briefly summarize herein the current concepts of One Health as a global challenge to enable the continued use of antibiotics. | 2020 | 32752276 |
| 6651 | 1 | 0.9974 | A complex cyclical One Health pathway drives the emergence and dissemination of antimicrobial resistance. Since their commercialization, scientists have known that antimicrobial use kills or inhibits susceptible bacteria while allowing resistant bacteria to survive and expand. Today there is widespread antimicrobial resistance (AMR), even to antimicrobials of last resort such as the carbapenems, which are reserved for use in life-threatening infections. It is often convenient to assign responsibility for this global health crisis to the users and prescribers of antimicrobials. However, we know that animals never treated with antimicrobials carry clinically relevant AMR bacteria and genes. The causal pathway from bacterial susceptibility to resistance is not simple, and dissemination is cyclical rather than linear. Amplification of AMR occurs in healthcare environments and on farms where frequent exposure to antimicrobials selects for resistant bacterial populations. The recipients of antimicrobial therapy release antimicrobial residues, resistant bacteria, and resistance genes in waste products. These are reduced but not removed during wastewater and manure treatment and enter surface waters, soils, recreational parks, wildlife, and fields where animals graze and crops are grown for human and animal consumption. The cycle is complete when a patient carrying AMR bacteria is treated with antimicrobials that amplify the resistant bacterial populations. Reducing the development and spread of AMR requires a One Health approach with the combined commitment of governments, medical and veterinary professionals, agricultural industries, food and feed processors, and environmental scientists. In this review and in the companion Currents in One Health by Ballash et al, JAVMA, April 2024, we highlight just a few of the steps of the complex cyclical causal pathway that leads to the amplification, dissemination, and maintenance of AMR. | 2024 | 38467112 |
| 6654 | 2 | 0.9974 | Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Antimicrobial resistance (AMR) is widely recognised as a considerable threat to human health, wellbeing and prosperity. Many clinically important antibiotic resistance genes are understood to have originated in the natural environment. However, the complex interactions between humans, animals and the environment makes the health implications of environmental AMR difficult to quantify. This narrative review focuses on the current state of knowledge regarding antibiotic resistant bacteria (ARB) in natural bathing waters and implications for human health. It considers the latest research focusing on the transmission of ARB from bathing waters to humans. The limitations of existing evidence are discussed, as well as research priorities. The authors are of the opinion that future studies should include faecally contaminated bathing waters and people exposed to these environments to accurately parameterise environment-to-human transmission. | 2022 | 34739925 |
| 6671 | 3 | 0.9973 | Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Antibiotic resistance is a problem for human health, and consequently, its study had been traditionally focused toward its impact for the success of treating human infections in individual patients (individual health). Nevertheless, antibiotic-resistant bacteria and antibiotic resistance genes are not confined only to the infected patients. It is now generally accepted that the problem goes beyond humans, hospitals, or long-term facility settings and that it should be considered simultaneously in human-connected animals, farms, food, water, and natural ecosystems. In this regard, the health of humans, animals, and local antibiotic-resistance-polluted environments should influence the health of the whole interconnected local ecosystem (One Health). In addition, antibiotic resistance is also a global problem; any resistant microorganism (and its antibiotic resistance genes) could be distributed worldwide. Consequently, antibiotic resistance is a pandemic that requires Global Health solutions. Social norms, imposing individual and group behavior that favor global human health and in accordance with the increasingly collective awareness of the lack of human alienation from nature, will positively influence these solutions. In this regard, the problem of antibiotic resistance should be understood within the framework of socioeconomic and ecological efforts to ensure the sustainability of human development and the associated human-natural ecosystem interactions. | 2020 | 32983000 |
| 6508 | 4 | 0.9973 | Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies. | 2024 | 39611949 |
| 6683 | 5 | 0.9972 | Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance. Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR. | 2022 | 36671228 |
| 6720 | 6 | 0.9972 | Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. Antibiotic resistance (ABR) is recognized as a One Health challenge because of the rapid emergence and dissemination of resistant bacteria and genes among humans, animals and the environment on a global scale. However, there is a paucity of research assessing ABR contemporaneously in humans, animals and the environment in low-resource settings. This critical review seeks to identify the extent of One Health research on ABR in low- and middle-income countries (LMICs). Existing research has highlighted hotspots for environmental contamination; food-animal production systems that are likely to harbour reservoirs or promote transmission of ABR as well as high and increasing human rates of colonization with ABR commensal bacteria such as Escherichia coli However, very few studies have integrated all three components of the One Health spectrum to understand the dynamics of transmission and the prevalence of community-acquired resistance in humans and animals. Microbiological, epidemiological and social science research is needed at community and population levels across the One Health spectrum in order to fill the large gaps in knowledge of ABR in low-resource settings. | 2018 | 29643217 |
| 6649 | 7 | 0.9972 | The development of antibiotics has provided much success against infectious diseases in animals and humans. But the intensive and extensive use of antibiotics over the years has resulted in the emergence of drug-resistant bacterial pathogens. The existence of a reservoir(s) of antibiotic resistant bacteria and antibiotic resistance genes in an interactive environment of animals, plants, and humans provides the opportunity for further transfer and dissemination of antibiotic resistance. The emergence of antibiotic resistant bacteria has created growing concern about its impact on animal and human health. To specifically address the impact of antibiotic resistance resulting from the use of antibiotics in agriculture, the American Academy of Microbiology convened a colloquium, “Antibiotic Resistance and the Role of Antimicrobials in Agriculture: A Critical Scientific Assessment,” in Santa Fe, New Mexico, November 2–4, 2001. Colloquium participants included academic, industrial, and government researchers with a wide range of expertise, including veterinary medicine, microbiology, food science, pharmacology, and ecology. These scientists were asked to provide their expert opinions on the current status of antibiotic usage and antibiotic resistance, current research information, and provide recommendations for future research needs. The research areas to be addressed were roughly categorized under the following areas: ▪ Origins and reservoirs of resistance; ▪ Transfer of resistance; ▪ Overcoming/modulating resistance by altering usage; and ▪ Interrupting transfer of resistance. The consensus of colloquium participants was that the evaluation of antibiotic usage and its impact were complex and subject to much speculation and polarization. Part of the complexity stems from the diverse array of animals and production practices for food animal production. The overwhelming consensus was that any use of antibiotics creates the possibility for the development of antibiotic resistance, and that there already exist pools of antibiotic resistance genes and antibiotic resistant bacteria. Much discussion revolved around the measurement of antibiotic usage, the measurement of antibiotic resistance, and the ability to evaluate the impact of various types of usage (animal, human) on overall antibiotic resistance. Additionally, many participants identified commensal bacteria as having a possible role in the continuance of antibiotic resistance as reservoirs. Participants agreed that many of the research questions could not be answered completely because of their complexity and the need for better technologies. The concept of the “smoking gun” to indicate that a specific animal source was important in the emergence of certain antibiotic resistant pathogens was discussed, and it was agreed that ascribing ultimate responsibility is likely to be impossible. There was agreement that expanded and more improved surveillance would add to current knowledge. Science-based risk assessments would provide better direction in the future. As far as preventive or intervention activities, colloquium participants reiterated the need for judicious/prudent use guidelines. Yet they also emphasized the need for better dissemination and incorporation by end-users. It is essential that there are studies to measure the impact of educational efforts on antibiotic usage. Other recommendations included alternatives to antibiotics, such as commonly mentioned vaccines and probiotics. There also was an emphasis on management or production practices that might decrease the need for antibiotics. Participants also stressed the need to train new researchers and to interest students in postdoctoral work, through training grants, periodic workshops, and comprehensive conferences. This would provide the expertise needed to address these difficult issues in the future. Finally, the participants noted that scientific societies and professional organizations should play a pivotal role in providing technical advice, distilling and disseminating information to scientists, media, and consumers, and in increasing the visibility and funding for these important issues. The overall conclusion is that antibiotic resistance remains a complex issue with no simple answers. This reinforces the messages from other meetings. The recommendations from this colloquium provide some insightful directions for future research and action. | 2002 | 32687288 |
| 6668 | 8 | 0.9972 | Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Antimicrobial resistance (AMR) is a significant threat to both human and animal health. The spread of AMR bacteria and genes across systems can occur through a myriad of pathways, both related and unrelated to agriculture, including via wastewater, soils, manure applications, direct exchange between humans and animals, and food exposure. Tracing origins and drivers of AMR bacteria and genes is challenging due to the array of contexts and the complexity of interactions overlapping health practice, microbiology, genetics, applied science and engineering, as well as social and human factors. Critically assessing the diverse and sometimes contradictory AMR literature is a valuable step in identifying tractable mitigation options to stem AMR spread. In this article we review research on the nonfoodborne spread of AMR, with a focus on domesticated animals and the environment and possible exposures to humans. Attention is especially placed on delineating possible sources and causes of AMR bacterial phenotypes, including underpinning the genetics important to human and animal health. | 2019 | 30924539 |
| 6650 | 9 | 0.9972 | Antibiotic resistance is never going to go away. No matter how many drugs we throw at it, no matter how much money and resources are sacrificed to wage a war on resistance, it will always prevail. Humans are forced to coexist with the fact of antibiotic resistance. Public health officials, clinicians, and scientists must find effective ways to cope with antibiotic resistant bacteria harmful to humans and animals and to control the development of new types of resistance. The American Academy of Microbiology convened a colloquium October 12–14, 2008, to discuss antibiotic resistance and the factors that influence the development and spread of resistance. Participants, whose areas of expertise included medicine, microbiology, and public health, made specific recommendations for needed research, policy development, a surveillance network, and treatment guidelines. Antibiotic resistance issues specific to the developing world were discussed and recommendations for improvements were made. Each antibiotic is injurious only to a certain segment of the microbial world, so for a given antibacterial there are some species of bacteria that are susceptible and others not. Bacterial species insusceptible to a particular drug are “naturally resistant.” Species that were once sensitive but eventually became resistant to it are said to have “acquired resistance.” It is important to note that “acquired resistance” affects a subset of strains in the entire species; that is why the prevalence of “acquired resistance” in a species is different according to location. Antibiotic resistance, the acquired ability of a pathogen to withstand an antibiotic that kills off its sensitive counterparts, originally arises from random mutations in existing genes or from intact genes that already serve a similar purpose. Exposure to antibiotics and other antimicrobial products, whether in the human body, in animals, or the environment, applies selective pressure that encourages resistance to emerge favoring both “naturally resistant” strains and strains which have “acquired resistance.” Horizontal gene transfer, in which genetic information is passed between microbes, allows resistance determinants to spread within harmless environmental or commensal microorganisms and pathogens, thus creating a reservoir of resistance. Resistance is also spread by the replication of microbes that carry resistance genes, a process that produces genetically identical (or clonal) progeny. Rapid diagnostic methods and surveillance are some of the most valuable tools in preventing the spread of resistance. Access to more rapid diagnostic tests that could determine the causative agent and antibiotic susceptibility of infections would inform better decision making with respect to antibiotic use, help slow the selection of resistant strains in clinical settings, and enable better disease surveillance. A rigorous surveillance network to track the evolution and spread of resistance is also needed and would probably result in significant savings in healthcare. Developing countries face unique challenges when it comes to antibiotic resistance; chief among them may be the wide availability of antibiotics without a prescription and also counterfeit products of dubious quality. Lack of adequate hygiene, poor water quality, and failure to manage human waste also top the list. Recommendations for addressing the problems of widespread resistance in the developing world include: proposals for training and infrastructure capacity building; surveillance programs; greater access to susceptibility testing; government controls on import, manufacture and use; development and use of vaccines; and incentives for pharmaceutical companies to supply drugs to these countries. Controlling antibiotic resistant bacteria and subsequent infections more efficiently necessitates the prudent and responsible use of antibiotics. It is mandatory to prevent the needless use of antibiotics (e.g., viral infections; unnecessary prolonged treatment) and to improve the rapid prescription of appropriate antibiotics to a patient. Delayed or inadequate prescriptions reduce the efficacy of treatment and favor the spread of the infection. Prudent use also applies to veterinary medicine. For example, antibiotics used as “growth promoters” have been banned in Europe and are subject to review in some other countries. There are proven techniques for limiting the spread of resistance, including hand hygiene, but more rapid screening techniques are needed in order to effectively track and prevent spread in clinical settings. The spread of antibiotic resistance on farms and in veterinary hospitals may also be significant and should not be neglected. Research is needed to pursue alternative approaches, including vaccines, antisense therapy, public health initiatives, and others. The important messages about antibiotic resistance are not getting across from scientists and infectious diseases specialists to prescribers, stakeholders, including the public, healthcare providers, and public officials. Innovative and effective communication initiatives are needed, as are carefully tailored messages for each of the stakeholder groups. | 2009 | 32644325 |
| 6667 | 10 | 0.9972 | Antimicrobial resistance gene distribution: a socioeconomic and sociocultural perspective. The appearance of resistance to many first-line antimicrobial agents presents a critical challenge to the successful treatment of bacterial infections. Antimicrobial resistant bacteria and resistance genes are globally distributed, but significant variations in prevalence have been observed in different geographical regions. This article discusses possible relationships between socioeconomic and sociocultural factors and regional differences in the prevalence of antibiotic-resistant bacteria and their associated resistance genes. Findings indicate that the few studies that have been conducted to understand relationships between socioeconomic and sociocultural factors and antimicrobial resistance have focused on patterns of phenotypic antibiotic resistance. Yet, a critical need exists for molecular studies of human influences on bacterial resistance and adaptation. We propose that the results of these studies, coupled with well-coordinated culturally appropriate interventions that address specific socioeconomic and sociocultural needs may be necessary to reduce the scourge of antimicrobial resistance in both developing and developed countries. | 2008 | 20204098 |
| 6660 | 11 | 0.9972 | Antimicrobial Resistance and Its Drivers-A Review. Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment. | 2022 | 36290020 |
| 4186 | 12 | 0.9972 | Antimicrobial use and antimicrobial resistance in food animals. Antimicrobials have been widely used in food animals for growth promotion since the 1950s. Antimicrobial resistance emerges in animal production settings and frequently spreads to humans through the food chain and direct contact. There have been international efforts to restrict or ban antimicrobials used for both humans and animals. Denmark has taken positive strides in the development of a comprehensive database DANMAP to track antimicrobial usage and resistance. Although food animals are sources of antimicrobial resistance, there is little evidence that antimicrobial resistance originates from food animals. This review comprehensively introduces the history and trends of antimicrobial use, the emergence and spread of antimicrobial resistance in food animals provides suggestions to tackle the problems of the spread of antimicrobial resistance. | 2018 | 29802609 |
| 4200 | 13 | 0.9972 | Antibiotic resistance: are we all doomed? Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally. | 2015 | 26563691 |
| 6669 | 14 | 0.9971 | ANTIBIOTIC RESISTANT BACTERIA IN WILDLIFE: PERSPECTIVES ON TRENDS, ACQUISITION AND DISSEMINATION, DATA GAPS, AND FUTURE DIRECTIONS. The proliferation of antibiotic-resistant bacteria in the environment has potential negative economic and health consequences. Thus, previous investigations have targeted wild animals to understand the occurrence of antibiotic resistance in diverse environmental sources. In this critical review and synthesis, we summarized important concepts learned through the sampling of wildlife for antibiotic-resistant indicator bacteria. These concepts are helpful for understanding dissemination of resistance through environmental pathways and helping to guide future research efforts. Our review begins by briefly introducing antibiotic resistance as it pertains to bacteria harbored in environmental sources such as wild animals. Next, we differentiate wildlife from other animals in the context of how diverse taxa provide different information on antibiotic resistance in the environment. In the third section of our review, we identify representative research and seminal works that illustrate important associations between the occurrence of antibiotic-resistant bacteria in wildlife and anthropogenic inputs into the environment. For example, we highlight numerous investigations that support the premise that anthropogenic inputs into the environment drive the occurrence of antibiotic resistance in bacteria harbored by free-ranging wildlife. Additionally, we summarize previous research demonstrating foraging as a mechanism by which wildlife may be exposed to anthropogenic antibiotic resistance contamination in the environment. In the fourth section of our review, we summarize molecular evidence for the acquisition and dissemination of resistance among bacteria harbored by wildlife. In the fifth section, we identify what we believe to be important data gaps and potential future directions that other researchers may find useful toward the development of efficient, informative, and impactful investigations of antibiotic-resistant bacteria in wildlife. Finally, we conclude our review by highlighting the need to move from surveys that simply identify antibiotic-resistant bacteria in wildlife toward hypothesis-driven investigations that: 1) identify point sources of antibiotic resistance; 2) provide information on risk to human and animal health; 3) identify interventions that may interrupt environmentally mediated pathways of antibiotic resistance acquisition and transmission; and 4) evaluate whether management practices are leading to desirable outcomes. | 2020 | 31567035 |
| 6653 | 15 | 0.9971 | Making waves: How does the emergence of antimicrobial resistance affect policymaking? This article considers current trends in antimicrobial resistance (AMR) research and knowledge gaps relevant to policymaking in the water sector. Specifically, biological indicators of AMR (antibiotic-resistant bacteria and their resistance genes) and detection methods that have been used so far are identified and discussed, as well as the problems with and solutions to the collection of AMR data, sewage surveillance lessons from the COVID-19 pandemic, and the financial burden caused by AMR, which could be synergically used to improve advocacy on AMR issues in the water sector. Finally, this article proposes solutions to overcoming existing hurdles and shortening the time it will take to have an impact on policymaking and regulation in the sector. | 2021 | 34688095 |
| 6711 | 16 | 0.9971 | Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets. | 2022 | 36726644 |
| 6670 | 17 | 0.9971 | Ecology of antimicrobial resistance: humans, animals, food and environment. Antimicrobial resistance is a major health problem. After decades of research, numerous difficulties in tackling resistance have emerged, from the paucity of new antimicrobials to the inefficient contingency plans to reduce the use of antimicrobials; consequently, resistance to these drugs is out of control. Today we know that bacteria from the environment are often at the very origin of the acquired resistance determinants found in hospitals worldwide. Here we define the genetic components that flow from the environment to pathogenic bacteria and thereby confer a quantum increase in resistance levels, as resistance units (RU). Environmental bacteria as well as microbiomes from humans, animals, and food represent an infinite reservoir of RU, which are based on genes that have had, or not, a resistance function in their original bacterial hosts. This brief review presents our current knowledge of antimicrobial resistance and its consequences, with special focus on the importance of an ecologic perspective of antimicrobial resistance. This discipline encompasses the study of the relationships of entities and events in the framework of curing and preventing disease, a definition that takes into account both microbial ecology and antimicrobial resistance. Understanding the flux of RU throughout the diverse ecosystems is crucial to assess, prevent and eventually predict emerging scaffolds before they colonize health institutions. Collaborative horizontal research scenarios should be envisaged and involve all actors working with humans, animals, food and the environment. | 2012 | 23847814 |
| 6689 | 18 | 0.9971 | Wastewater-Based Epidemiology as a Complementary Tool for Antimicrobial Resistance Surveillance: Overcoming Barriers to Integration. This commentary highlights the potential of wastewater-based epidemiology (WBE) as a complementary tool for antimicrobial resistance (AMR) surveillance. WBE can support the early detection of resistance trends at the population level, including in underserved communities. However, several challenges remain, including technical variability, complexities in data interpretation, and regulatory gaps. An additional limitation is the uncertainty surrounding the origin of resistant bacteria and their genes in wastewater, which may derive not only from human sources but also from industrial, agricultural, or infrastructural contributors. Therefore, effective integration of WBE into public health systems will require standardized methods, sustained investment, and cross-sector collaboration. This could be achieved through joint monitoring initiatives that combine hospital wastewater data with agricultural and municipal surveillance to inform antibiotic stewardship policies. Overcoming these barriers could position WBE as an innovative tool for AMR monitoring, enhancing early warning systems and supporting more responsive, equitable, and preventive public health strategies. | 2025 | 40522150 |
| 6646 | 19 | 0.9971 | Food animals and antimicrobials: impacts on human health. Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes. | 2011 | 21976606 |