# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2495 | 0 | 0.9813 | Transmission of Mobile Colistin Resistance (mcr-1) by Duodenoscope. BACKGROUND: Clinicians increasingly utilize polymyxins for treatment of serious infections caused by multidrug-resistant gram-negative bacteria. Emergence of plasmid-mediated, mobile colistin resistance genes creates potential for rapid spread of polymyxin resistance. We investigated the possible transmission of Klebsiella pneumoniae carrying mcr-1 via duodenoscope and report the first documented healthcare transmission of mcr-1-harboring bacteria in the United States. METHODS: A field investigation, including screening targeted high-risk groups, evaluation of the duodenoscope, and genome sequencing of isolated organisms, was conducted. The study site included a tertiary care academic health center in Boston, Massachusetts, and extended to community locations in New England. RESULTS: Two patients had highly related mcr-1-positive K. pneumoniae isolated from clinical cultures; a duodenoscope was the only identified epidemiological link. Screening tests for mcr-1 in 20 healthcare contacts and 2 household contacts were negative. Klebsiella pneumoniae and Escherichia coli were recovered from the duodenoscope; neither carried mcr-1. Evaluation of the duodenoscope identified intrusion of biomaterial under the sealed distal cap; devices were recalled to repair this defect. CONCLUSIONS: We identified transmission of mcr-1 in a United States acute care hospital that likely occurred via duodenoscope despite no identifiable breaches in reprocessing or infection control practices. Duodenoscope design flaws leading to transmission of multidrug-resistant organsisms persist despite recent initiatives to improve device safety. Reliable detection of colistin resistance is currently challenging for clinical laboratories, particularly given the absence of a US Food and Drug Administration-cleared test; improved clinical laboratory capacity for colistin susceptibility testing is needed to prevent the spread of mcr-carrying bacteria in healthcare settings. | 2019 | 30204838 |
| 2196 | 1 | 0.9799 | Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens. | 2025 | 40585877 |
| 1425 | 2 | 0.9798 | Distribution and Antimicrobial Resistance of Complicated Intraabdominal Infection Pathogens in Two Tertiary Hospitals in Egypt. Background: Management of complicated intraabdominal infections (cIAIs) requires containment of the source and appropriate initial antimicrobial therapy. Identifying the local data is important to guide the empirical selection of antimicrobial therapy. In this study, we aimed to describe the pathogen distribution and antimicrobial resistance of cIAI. Methods: In two major tertiary care hospitals in Egypt, we enrolled patients who met the case definition of cIAI from October 2022 to September 2023. Blood cultures were performed using the BACTAlert system (BioMerieux, Marcy l'Etoile, France). A culture of aspirated fluid, resected material, or debridement of the infection site was performed. Identification of pathogens and antimicrobial susceptibility testing were conducted by the VITEK-2 system (BioMerieux, Marcy l'Etoile, France). Gram-negative resistance genes were identified by PCR and confirmed by whole bacterial genome sequencing using the Nextera XT DNA Library Preparation Kit and sequencing with the MiSeq Reagent Kit 600 v3 (Illumina, USA) on the Illumina MiSeq. Results: We enrolled 423 patients, 275 (65.01%) males. The median age was 61.35 (range 25-72 years). We studied 452 recovered bacterial isolates. Gram-negative bacteria were the vast majority, dominated by E. coli, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Proteus mirabilis (33.6%, 30.5%, 13.7%, 13%, and 5.4%, respectively). High rates of resistance were detected to third- and fourth-generation cephalosporins and fluoroquinolones. No resistance was detected to colistin. Resistance to amikacin and tigecycline was low among all isolates. Resistance to meropenem and ceftazidime/avibactam was moderate. ESBL genes were common in E. coli and K. pneumoniae. CTX-M15 gene was the most frequent. Among Enterobacterales, bla(OXA-48) and bla(NDM) were the most prevalent carbapenemase genes. Pseudomonas aeruginosa isolates harbored a wide variety of carbapenemase genes (OXA, NDM, VIM, SIM, GIM, SPM, IMP, AIM), dominated by metallo-beta-lactamases. In 20.6% of isolates, we identified two or more resistance genes. Conclusion: High resistance rates were detected to third- and fourth-generation cephalosporins and fluoroquinolones. Amikacin and tigecyclines were the most active antimicrobials. Our data call for urgent implementation of antimicrobial stewardship programs and reinforcement of infection control. | 2024 | 39172656 |
| 1405 | 3 | 0.9796 | The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC). | 2022 | 35732546 |
| 2109 | 4 | 0.9795 | Screening of nursing home residents for colonization with carbapenem-resistant Enterobacteriaceae admitted to acute care hospitals: Incidence and risk factors. BACKGROUND: There are increasing reports of multidrug-resistant gram-negative bacilli in nursing homes and acute care hospitals. METHODS: We performed a point prevalence survey to detect fecal carriage of gram-negative bacteria carrying carbapenem resistance genes or which were otherwise resistant to carbapenem antibiotics among 500 consecutive admissions from local nursing homes to 2 hospitals in Providence, Rhode Island. We performed a case-control study to identify risk factors associated with carriage of carbapenem-resistant Enterobacteriaceae (CRE). RESULTS: There were 404 patients with 500 hospital admissions during which they had rectal swab samples cultured. Fecal carriage of any carbapenem-resistant or carbapenemase- producing gram-negative bacteria was found in 23 (4.6%) of the 500 hospital admissions, including 7 CRE (1.4%), 2 (0.4%) of which were Klebsiella pneumoniae carbapenemase (ie, blaKPC) producing (CPE) Citrobacter freundii, 1 of which was carbapenem susceptible by standard testing methods. Use of a gastrostomy tube was associated with CRE carriage (P = .04). We demonstrated fecal carriage of carbapenem-resistant or carbapenemase-producing gram-negative bacteria in 4.6% of nursing home patients admitted to 2 acute care hospitals, but only 0.4% of such admissions were patients with fecal carriage of CPE. Use of gastrostomy tubes was associated with fecal carriage of gram-negative bacteria with detectable carbapenem resistance. CONCLUSION: CRE fecal carriage is uncommon in our hospital admissions from nursing homes. | 2016 | 26631643 |
| 2115 | 5 | 0.9795 | Assessment of carbapenemase genes and antibiotic resistance profiles in ceftazidime-avibactam resistant Klebsiella pneumoniae isolates: A single-center cross-sectional study. BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKp) is an urgent global health threat due to its rapid spread and limited treatment options. Ceftazidime-avibactam exhibits broad efficacy against gram-negative bacteria, including CRKp; however, emerging resistance to this agent is increasingly reported. Understanding the prevalence of ceftazidime-avibactam resistance and the underlying carbapenemase genes is critical for optimizing antimicrobial stewardship and guiding clinical management. This study aimed to determine the prevalence of ceftazidime avibactam resistance among CRKp isolates collected from various clinical specimens, and to analyze their associated carbapenemase genes and antibiotic resistance profiles. METHODS: This cross-sectional study analyzed 312 K pneumoniae isolates obtained from various clinical specimens of hospitalized patients at a tertiary care hospital in Turkey. Antibiotic susceptibility testing was performed using the disk diffusion method for ceftazidime-avibactam and broth microdilution for both colistin and ceftazidime-avibactam. Molecular detection of carbapenemase genes was carried out using polymerase chain reaction. RESULTS: Ceftazidime-avibactam resistance was identified in 21.5% (67/312) of CRKp isolates. Among these isolates, 37.3% harbored both OXA-48 and NDM genes, 13.4% carried NDM alone, 10.4% carried OXA-48 alone, and 38.8% lacked these genes. The majority of resistant isolates originated from urine (31.3%), followed by tracheal aspirate (29.9%), and blood (22.4%) specimens. The prevalence of colistin susceptibility among ceftazidime-avibactam-resistant CRKp isolates was 56.7%. CONCLUSIONS: The coexistence of NDM and OXA-48 genes is a major contributor to ceftazidime-avibactam resistance in CRKp isolates, particularly in urinary and respiratory tract infections. These findings underscore the need for ongoing surveillance and tailored antibiotic stewardship programs to control the spread of resistance in hospital settings. | 2025 | 41088587 |
| 840 | 6 | 0.9795 | Outbreak of colistin and carbapenem-resistant Klebsiella pneumoniae ST16 co-producing NDM-1 and OXA-48 isolates in an Iranian hospital. BACKGROUND: Colistin and carbapenem-resistant Klebsiella pneumoniae (Col-CRKP) represent a significant and constantly growing threat to global public health. We report here an outbreak of Col-CRKP infections during the fifth wave of COVID-19 pandemic. METHODS: The outbreak occurred in an intensive care unit with 22 beds at a teaching university hospital, Isfahan, Iran. We collected eight Col-CRKP strains from seven patients and characterized these strains for their antimicrobial susceptibility, determination of hypermucoviscous phenotype, capsular serotyping, molecular detection of virulence and resistance genes. Clonal relatedness of the isolates was performed using MLST. RESULTS: The COVID-19 patients were aged 24-75 years with at least 50% pulmonary involvement and were admitted to the intensive care unit. They all had superinfection caused by Col-CRKP, and poor responses to antibiotic treatment and died. With the exception of one isolate that belonged to the ST11, all seven representative Col-CRKP strains belonged to the ST16. Of these eight isolates, one ST16 isolate carried the iucA and ybtS genes was identified as serotype K20 hypervirulent Col-CRKP. The bla(SHV) and bla(NDM-1) genes were the most prevalent resistance genes, followed by bla(OXA-48) and bla(CTX-M-15) and bla(TEM) genes. Mobilized colistin-resistance genes were not detected in the isolates. CONCLUSIONS: The continual emergence of ST16 Col-CRKP strains is a major threat to public health worldwide due to multidrug-resistant and highly transmissible characteristics. It seems that the potential dissemination of these clones highlights the importance of appropriate monitoring and strict infection control measures to prevent the spread of resistant bacteria in hospitals. | 2024 | 38368365 |
| 1821 | 7 | 0.9794 | Emergence and dissemination of bla(KPC-31) and bla(PAC-2) among different species of Enterobacterales in Colombia: a new challenge for the microbiological laboratories. Ceftazidime/avibactam (CZA) is a promising treatment option for infections caused by carbapenem-resistant Enterobacterales (CRE). However, CZA resistance is increasingly reported worldwide, largely due to the emergence of KPC variants and increase of metallo-β-lactamases (MBL). This study describes the mechanisms associated with CZA resistance in circulating Enterobacterales isolates from Colombia, highlighting the challenge this represents for microbiological identification. Between 2021 and 2024, 68 CZA-resistant Enterobacterales isolates were identified by automated methods in seven Colombian cities. Resistance to CZA was subsequently confirmed by broth microdilution and E-test. Carbapenemase production was evaluated using phenotypic tests, such as the mCIM test, Carba NP, lateral flow assay, and qPCR (bla(KPC), bla(NDM), bla(VIM), bla(IMP), and bla(OXA-48)). Whole-genome sequencing was performed on 15 isolates that tested negative for MBL genes. Whole-genome sequencing of these 15 isolates revealed a variety of resistance determinants: six isolates harbored bla(KPC-31), one bla(KPC-33), one bla(KPC-8), five harbored bla(PAC-2), and two co-harbored bla(PAC-2) and bla(KPC-2). Notably, bla(PAC-2) was located on an IncQ plasmid. However, some of these variants were not detected by phenotypic assays, likely due to their low or undetectable carbapenemase activity. CZA resistance in non-MBL producing Enterobacterales in Colombia is primarily mediated by the presence of bla(KPC-31) and emergence of bla(PAC-2). These resistance mechanisms pose significant diagnostic, therapeutic, and epidemiological challenges, as they frequently go undetected by conventional microbiological methods. In this context, enhanced molecular surveillance and improved diagnostic strategies are urgently needed to enable early detection, guide antimicrobial therapy, and support infection control and stewardship efforts.IMPORTANCEAntibiotic resistance is a serious global health threat. Ceftazidime/avibactam (CZA) is a key treatment option for multidrug-resistant (MDR) Enterobacterales often used when other antibiotics fail. However, bacteria are now developing resistance to this drug as well, making infections increasingly difficult to treat. In this study, we examined CZA-resistant bacteria from multiple cities in Colombia and found uncommon resistance genes across several bacterial species. These genes are frequently missed, as they often do not test positive due to the limitations of most routinely used laboratory tests. Importantly, some of these genes can be transferred between bacteria, increasing the likelihood of indiscriminate dissemination in the hospital setting. Therefore, our findings highlight the urgent need for improved diagnostic tools and molecular surveillance. Early detection will help physicians select effective treatments quickly and prevent the wider dissemination of these MDR-resistant bacteria. | 2025 | 41070989 |
| 2114 | 8 | 0.9793 | Clinical, phenotypic, and genotypic characteristics of ESBL-producing Salmonella enterica bloodstream infections from Qatar. BACKGROUND: Resistant Salmonella infections are a major global public health challenge particularly for multidrug-resistant (MDR) isolates manifesting as bloodstream infections (BSIs). OBJECTIVES: To evaluate clinical, phenotypic, and genotypic characteristics of extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica BSIs from Qatar. METHODS: Phenotypic ESBL Salmonella enterica from adult patients presenting with positive BSIs were collected between January 2019 to May 2020. Microbiological identification and characterization were performed using standard methods while genetic characteristics were examined through whole genome sequencing studies. RESULTS: Of 151 episodes of Salmonella enterica BSI, 15 (10%) phenotypic ESBL isolates were collected. Recent travel was recorded in most cases (80%) with recent exposure to antimicrobials (27%). High-level resistance to quinolines, aminoglycosides, and cephalosporins was recorded (80-100%) while meropenem, tigecycline and colistin demonstrated universal susceptibility. Genomic evaluation demonstrated dominance of serotype Salmonella Typhi sequence type 1 (93%) while antimicrobial resistance genes revealed dominance of aminoglycoside resistance (100%), qnrS1 quinolones resistance (80%), bla(CTX-M-15) ESBLs (86.7%), and paucity of AmpC resistance genes (6.7%). CONCLUSIONS: Invasive MDR Salmonella enterica is mainly imported, connected to patients from high prevalent regions with recent travel and antimicrobial use caused by specific resistant clones. In suspected cases of multidrug resistance, carbapenem therapy is recommended. | 2024 | 38742235 |
| 1884 | 9 | 0.9792 | Genomic analysis of Klebsiella pneumoniae high-risk clone ST11 co-harbouring MCR-1.27 and KPC-2 recovered at a paediatric oncologic hospital in the Brazilian Amazon region. OBJECTIVES: The horizontal transfer of antibiotic resistance genes in Gram-negative bacteria, mainly through plasmids, is one of the greatest concerns for health systems worldwide and has been a growing threat in hospitals related to healthcare-associated infections by multidrug-resistant bacteria. Here we present p henotypic and genomic characterization of a KPC-2 and MCR-1.27-producing Klebsiella pneumoniae strain isolated from a paediatric patient at an oncologic hospital in Belém, Pará State, Brazilian Amazon region. METHODS: Antibiotic susceptibility test, whole genome sequencing, and in silico analysis were used to characterize the bacterial isolate (IEC48020) received in the Evandro Chagas Institute. RESULTS: The isolate was resistant to carbapenems, colistin, polymyxin B, and several other antimicrobials and was susceptible in vitro just to tigecycline, classified as an extensively drug-resistant phenotype. Genomic analysis revealed IEC48020 strain belonged to sequence type 11, clonal complex 258 high-risk clone and the presence of eight plasmids, two of them harbouring mcr-1.27 and bla(KPC-2) genes, and the presence of virulence-related genes encoding yersiniabactin, phospholipase D, and traT genes. CONCLUSIONS: The presence and dissemination of high-risk clone bacteria with high disseminating plasmids containing antibiotic resistance genes for last resource antibiotics treatment options is a threat to the healthcare system and demands efforts in surveillance and epidemiological research for better knowledge of the actual situation of antibiotic resistance in the healthcare system, especially in the Amazon region, Brazil. | 2023 | 37088246 |
| 842 | 10 | 0.9792 | Molecular characterization of antimicrobial resistance genes and plasmid profiles in enterobacterales isolated from urinary tract infections in rural outpatient women in Otavalo, Ecuador. BACKGROUND: The rise of antibiotic-resistant bacteria poses a significant public health threat, particularly in the context of urinary tract infections (UTIs), which rank as the second most common ambulatory illness. UTIs are often caused by Enterobacterales species, such as Escherichia coli and Klebsiella pneumoniae, with increasing resistance to critical antibiotics complicating treatment. Indigenous rural populations, like those in Ecuador, face unique challenges due to cultural, social, and economic barriers that hinder access to healthcare, exacerbating the issue of antibiotic resistance. METHODS: This study analyzed 154 Enterobacterales strains isolated from ambulatory UTI cases in outpatiens from Otavalo, Ecuador, between October 2021 and February 2022. DNA was extracted, and the presence of antibiotic resistance genes (ARGs) was screened using PCR for extended-spectrum beta-lactamases and carbapenemases. Plasmid incompatibility groups were identified through replicon typing, and multi-locus sequence typing (MLST) was performed to characterize strains. RESULTS: The analysis revealed four prevalent ARGs, with bla(TEM) being the most common (87.01% of isolates), followed by bla(CTX-M-1) (44.16%), bla(SHV) (18.83%), and bla(CTX-M-9) (13.64%). No carbapenemases or mcr-1 genes were detected. Among the incompatibility groups, IncFIB, IncF, and IncY were the most prevalent. A diverse array of ARG combinations was observed, indicating significant plasmid-mediated genetic plasticity. MLST identified 33 distinct sequence types among E. coli isolates, with ST10 and ST3944 being the most frequent. For K. pneumoniae, ST15 and ST25 were predominant. CONCLUSIONS: This study reveals significant antibiotic resistance among Enterobacterales from urinary tract infections in rural outpatients in Ecuador. The bla(TEM) gene was found in 87.01% of isolates, with notable clones like E. coli ST10 and ST3944 linked to extraintestinal infections. K. pneumoniae ST15 and ST25 were prevalent, indicating multidrug resistance. The findings highlight the need for ongoing surveillance and targeted public health strategies to combat resistance in these vulnerable communities. | 2025 | 41131447 |
| 841 | 11 | 0.9791 | blaOXA-48 carrying clonal colistin resistant-carbapenem resistant Klebsiella pneumoniae in neonate intensive care unit, India. Bacteria resistant to colistin, a last resort antibiotic reflect the pre-antibiotic era. In this study, colistin resistance carbapenem-resistant K. pneumoniae (COL(R)- CRKP) strains from neonate's intensive care unit were evaluated. Molecular analysis showed that all the four colistin resistant K. pneumoniae isolates were clonally related with strong biofilm formation ability and harbored bla(SHV-34) and bla(OXA-48) genes. Our result suggested the need of proper surveillance and adequate infection control to limiting the spread of these organisms. | 2016 | 27622347 |
| 2496 | 12 | 0.9791 | Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii. | 2020 | 32971809 |
| 5116 | 13 | 0.9791 | Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. BACKGROUND: Early detection of antimicrobial resistance in pathogens and prescription of more effective antibiotics is a fast-emerging need in clinical practice. High-throughput sequencing technology, such as whole genome sequencing (WGS), may have the capacity to rapidly guide the clinical decision-making process. The prediction of antimicrobial resistance in Gram-negative bacteria, often the cause of serious systemic infections, is more challenging as genotype-to-phenotype (drug resistance) relationship is more complex than for most Gram-positive organisms. METHODS AND FINDINGS: We have used NCBI BioSample database to train and cross-validate eight XGBoost-based machine learning models to predict drug resistance to cefepime, cefotaxime, ceftriaxone, ciprofloxacin, gentamicin, levofloxacin, meropenem, and tobramycin tested in Acinetobacter baumannii, Escherichia coli, Enterobacter cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae. The input is the WGS data in terms of the coverage of known antibiotic resistance genes by shotgun sequencing reads. Models demonstrate high performance and robustness to class imbalanced datasets. CONCLUSION: Whole genome sequencing enables the prediction of antimicrobial resistance in Gram-negative bacteria. We present a tool that provides an in silico antibiogram for eight drugs. Predictions are accompanied with a reliability index that may further facilitate the decision making process. The demo version of the tool with pre-processed samples is available at https://vancampn.shinyapps.io/wgs2amr/. The stand-alone version of the predictor is available at https://github.com/pieterjanvc/wgs2amr/. | 2020 | 32528441 |
| 2538 | 14 | 0.9790 | Passenger pathogens on physicians. BACKGROUND: Hospital acquired infections pose a significant risk for patients undergoing hematopoietic stem cell transplantation. Horizontal transfer of antimicrobial resistance genes contributes to prevalence of multidrug-resistant infections in this patient population. METHODS: At an academic bone marrow transplantation center, we performed whole genome DNA sequencing (WGS) on commonly used physician items, including badges, stethoscopes, soles of shoes, and smart phones from 6 physicians. Data were analyzed to determine antimicrobial resistance and virulence factor genes. RESULTS: A total of 1,126 unique bacterial species, 495 distinct bacteriophages, 91 unique DNA viruses, and 175 fungal species were observed. Every item contained bacteria with antibiotic and/or antiseptic resistance genes. Stethoscopes contained greatest frequency of antibiotic resistance and more plasmid-carriage of antibiotic resistance. DISCUSSION AND CONCLUSIONS: These data indicate that physician examination tools and personal items possess potentially pathogenic microbes. Infection prevention policies must consider availability of resources to clean physical examination tools as well as provider awareness when enacting hospital policies. Additionally, the prevalence of antimicrobial resistance genes (eg, encoding resistance to aminoglycosides, β-lactams, and quinolones) reinforces need for antimicrobial stewardship, including for immunocompromised patients. Further research is needed to assess whether minute quantities of microbes on physician objects detectable by WGS represents clinically significant inoculums for immunocompromised patients. | 2023 | 36306861 |
| 2518 | 15 | 0.9790 | Plasmids Carrying Antimicrobial Resistance Genes in Gram-Negative Bacteria. Gram-negative bacteria are prevalent pathogens associated with hospital-acquired infections (HAI) that are a major challenge for patient safety, especially in intensive care units [...]. | 2022 | 36014095 |
| 2256 | 16 | 0.9790 | Bacterial Resistance in Hospital-Acquired Infections Acquired in the Intensive Care Unit: A Systematic Review. PURPOSE: In this review we present the status of the prevalence of bacteria resistant to antibiotics and the main antibiotic resistance genes that are reported in infections acquired in intensive care units (ICU) around the world. METHODS: A systematic review based on the PRISMA guide was carried out, from the Science Direct, Redalyc, Scopus, Hinari, Scielo, Dialnet, PLOS, ProQuest, Taylor, Lilacs and PubMed/Medline databases. Inclusion criteria of this review were original research study published in a scientific journal in a 10-year time span from 1 January 2017 and 30 April 2022. RESULTS: A total of 1686 studies were identified, but only 114 studies were considered eligible for inclusion. Klebsiella pneumoniae and Escherichia coli resistant to carbapenems and producers of extended-spectrum β-lactamases (ESBL) are the most frequently isolated pathogens in ICUs in Asia, Africa and Latin America. The blaOXA and blaCTX were antibiotic resistance genes (ARG) most commonly reported in different geographic regions (in 30 and 28 studies, respectively). Moreover, multidrug-resistant (MDR) strains were reported in higher frequency in hospital-acquired infections. Reports of MDR strains vary between continents, with the majority of publications being in Asia and between countries, with Egypt and Iran being highlighted. There is a predominance of few bacterial clones with MDR phenotype, for example, clonal complex 5 Methicillin-Resistant Staphylococcus aureus (CC5-MRSA) circulates frequently in hospitals in the United States, clone ST23-K. pneumoniae is reported in India and Iran, and clone ST260 carbapenemase-producing P. aeruginosa in the United States and Estonia. CONCLUSION: Our systematic review reveals that ESBL- and carbapenemase-producing K. pneumoniae and E. coli are the most problematic bacteria that are reported, mainly in tertiary hospitals in Asia, Africa, and Latin America. We have also found propagation of dominant clones with a high degree of MDR, becoming a problem due to its high capacity to cause morbidity, mortality and additional hospital costs. | 2023 | 37384803 |
| 2261 | 17 | 0.9790 | Emergence of drug resistant bacteria at the Hajj: A systematic review. BACKGROUND: Hajj is the annual mass gathering of Muslims, and is a reservoir and potential source of bacterial transmission. The emergence of bacterial transmission, including multi-drug resistance (MDR) bacteria, during Hajj has not been systematically assessed. METHODS: Articles in Pubmed, Scopus, and Google scholar were identified using controlled words relating to antibiotic resistance (AR) at the Hajj from January 2002 to January 2017. Eligible studies were identified by two researchers. AR patterns of bacteria were obtained for each study. RESULTS: We included 31 publications involving pilgrims, Hajj workers or local patients attending hospitals in Mecca, Mina, and the Medina area. Most of these publications provided antibiotic susceptibility results. Ten of them used the PCR approach to identify AR genes. MRSA carriage was reported in pilgrims and food handlers at a rate of 20%. Low rates of vancomycin-resistant gram-positive bacteria were reported in pilgrims and patients. The prevalence of third-generation cephalosporin-resistant bacteria was common in the Hajj region. Across all studies, carbapenem-resistant bacteria were detected in fewer than 10% of E.coli isolates tested but up to 100% in K. pneumoniae and A. baumannii. Colistin-resistant Salmonella enterica, including mcr-1 colistin-resistant E.coli and K.pneumoniae were only detected in the pilgrim cohorts. CONCLUSION: This study provides an overview of the prevalence of MDR bacteria at the Hajj. Pilgrims are at high risk of AR bacterial transmission and may carry and transfer these bacteria when returning to their home countries. Thus, pilgrims should be instructed by health care practitioners about hygiene practices aiming at reducing traveler's diarrhea and limited use of antibiotics during travel in order to reduce the risk of MDR bacterial transmission. | 2017 | 28652197 |
| 839 | 18 | 0.9790 | Molecular characterization of carbapenemase-producing Enterobacterales in a tertiary hospital in Lima, Peru. Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-β-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The bla(NDM-1) gene was located in the truncated ΔISAba125 element, and the bla(KPC-2) gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (bla(NDM-1) and bla(KPC-2)) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The bla(KPC-2) genes were located in Tn4401a transposons, while the bla(NDM-1) genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control. | 2024 | 38193666 |
| 2108 | 19 | 0.9790 | Prevalence and Molecular Characterization of Carbapenemase-Producing Multidrug-Resistant Bacteria in Diabetic Foot Ulcer Infections. Background: Diabetic foot ulcers (DFUs) represent severe complications in diabetic patients, often leading to chronic infections and potentially resulting in nontraumatic lower-limb amputations. The increasing incidence of multidrug-resistant (MDR) bacteria in DFUs complicates treatment strategies and worsens patient prognosis. Among these pathogens, carbapenemase-producing pathogens have emerged as particularly concerning owing to their resistance to β-lactam antibiotics, including carbapenems. Methods: This study evaluated the prevalence of MDR bacteria, specifically carbapenemase-producing pathogens, in DFU infections. A total of 200 clinical isolates from DFU patients were analyzed via phenotypic assays, including the modified Hodge test (MHT) and the Carba NP test, alongside molecular techniques to detect carbapenemase-encoding genes (blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-48). Results: Among the isolates, 51.7% were confirmed to be carbapenemase producers. The key identified pathogens included Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The most commonly detected carbapenemase genes were blaKPC (27.6%) and blaNDM (24.1%). Carbapenemase-producing isolates presented high resistance to β-lactam antibiotics, whereas non-carbapenemase-producing isolates presented resistance through mechanisms such as porin loss and efflux pumps. Conclusions: The findings of this study highlight the significant burden of MDR infections, particularly carbapenemase-producing organisms, in DFUs. MDR infections were strongly associated with critical clinical parameters, including pyrexia (p = 0.017), recent antibiotic use (p = 0.003), and the severity of infections. Notably, the need for minor amputations was much higher in MDR cases (p < 0.001), as was the need for major amputations (p < 0.001). MDR infections were also strongly associated with polymicrobial infections (p < 0.001). Furthermore, Wagner ulcer grade ≥II was more common in MDR cases (p = 0.002). These results emphasize the urgent need for enhanced microbiological surveillance and the development of tailored antimicrobial strategies to combat MDR pathogens effectively. Given the high prevalence of carbapenem resistance, there is an immediate need to explore novel therapeutic options to improve clinical outcomes for diabetic patients with DFUs. | 2025 | 39857026 |