ABSENCE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
936400.9985Predictable properties of fitness landscapes induced by adaptational tradeoffs. Fitness effects of mutations depend on environmental parameters. For example, mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes. We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and previous observations on antibiotic resistance mutations. Our model generates a succession of landscapes with predictable properties as antibiotic concentration is varied. The landscape is nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness maxima in the landscapes are evolutionarily accessible from the wild type. This implies that selection for antibiotic resistance in multiple mutational steps is relatively facile despite the complexity of the underlying landscape.202032423531
891110.9985Susceptible bacteria can survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance. Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.202438359828
634120.9984Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. In Gram negative bacteria, the multiple antibiotic resistance or mar operon, is known to control the expression of multi-drug efflux genes that protect bacteria from a wide range of drugs. As many different chemical compounds can induce this operon, identifying the parameters that govern the dynamics of its induction is crucial to better characterize the processes of tolerance and resistance. Most experiments have assumed that the properties of the mar transcriptional network can be inferred from population measurements. However, measurements from an asynchronous population of cells can mask underlying phenotypic variations of single cells. We monitored the activity of the mar promoter in single Escherichia coli cells in linear micro-colonies and established that the response to a steady level of inducer was most heterogeneous within individual colonies for an intermediate value of inducer. Specifically, sub-lineages defined by contiguous daughter-cells exhibited similar promoter activity, whereas activity was greatly variable between different sub-lineages. Specific sub-trees of uniform promoter activity persisted over several generations. Statistical analyses of the lineages suggest that the presence of these sub-trees is the signature of an inducible memory of the promoter state that is transmitted from mother to daughter cells. This single-cell study reveals that the degree of epigenetic inheritance changes as a function of inducer concentration, suggesting that phenotypic inheritance may be an inducible phenotype.202337485524
893430.9984A tradeoff between bacteriophage resistance and bacterial motility is mediated by the Rcs phosphorelay in Escherichia coli. Across the tree of life, pleiotropy is thought to constrain adaptation through evolutionary tradeoffs. However, few examples of pleiotropy exist that are well explained at the genetic level, especially for pleiotropy that is mediated by multiple genes. Here, we describe a set of pleiotropic mutations that mediate two key fitness components in bacteria: parasite resistance and motility. We subjected Escherichia coli to strong selection by phage U136B to obtain 27 independent mucoid mutants. Mucoidy is a phenotype that results from excess exopolysaccharide and can act as a barrier against viral infection but can also interfere with other cellular functions. We quantified the mutants' phage resistance using efficiency of plaquing assays and swimming motility using swim agar plates, and we sequenced the complete genomes of all mutants to identify mucoid-causing mutations. Increased phage resistance co-occurred with decreased motility. This relationship was mediated by highly parallel (27/27) mutations to the Rcs phosphorelay pathway, which senses membrane stress to regulate exopolysaccharide production. Together, these results provide an empirical example of a pleiotropic relationship between two traits with intermediate genetic complexity.202439194382
63940.9984A Single Residue within the MCR-1 Protein Confers Anticipatory Resilience. The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.202337071007
960550.9984Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations. The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation.201527623410
899360.9984Adaptation Through Lifestyle Switching Sculpts the Fitness Landscape of Evolving Populations: Implications for the Selection of Drug-Resistant Bacteria at Low Drug Pressures. Novel genotypes evolve under selection through mutations in pre-existing genes. However, mutations have pleiotropic phenotypic effects that influence the fitness of emerging genotypes in complex ways. The evolution of antimicrobial resistance is mediated by selection of mutations in genes coding for antibiotic-target proteins. Drug-resistance is commonly associated with a fitness cost due to the impact of resistance-conferring mutations on protein function and/or stability. These costs are expected to prohibit the selection of drug-resistant mutations at low drug pressures. Using laboratory evolution of rifampicin resistance in Escherichia coli, we show that when exposed intermittently to low concentration (0.1 × minimal inhibitory concentration) of rifampicin, the evolution of canonical drug resistance was indeed unfavorable. Instead, these bacterial populations adapted by evolving into small-colony variants that displayed enhanced pellicle-forming ability. This shift in lifestyle from planktonic to pellicle-like was necessary for enhanced fitness at low drug pressures, and was mediated by the genetic activation of the fim operon promoter, which allowed expression of type I fimbriae. Upon continued low drug exposure, these bacteria evolved exclusively into high-level drug-resistant strains through mutations at a limited set of loci within the rifampicin-resistance determining region of the rpoB gene. We show that our results are explained by mutation-specific epistasis, resulting in differential impact of lifestyle switching on the competitive fitness of different rpoB mutations. Thus, lifestyle-alterations that are selected at low selection pressures have the potential to modify the fitness effects of mutations, change the genetic structure, and affect the ultimate fate of evolving populations.201930670539
936170.9983Evolutionary consequences of bacterial resistance to a flagellotropic phage. Bacteria often rapidly evolve resistance to bacteriophages (phages) by mutating or suppressing the phage-receptors, the factors that phages first target to initiate infection. Flagellotropic phages infect bacteria by initially binding to the flagellum. Since motility is an important fitness factor that allows bacteria to efficiently explore their environment, losing flagellar function to evade infection by flagellotropic phages represents a crucial trade-off. In this study, we investigated the evolutionary responses of Escherichia coli when exposed to the flagellotropic phage χ. Using an experimental evolution approach, E. coli cells were repeatedly subjected to environments rich in phage χ but selective for motility. Unlike traditional well-mixed cultures, we employed swim-plate assays to simulate spatial confinement and promote motility. Whole genome sequencing of evolved populations revealed early emergence of non-motile, χ-resistant mutants with mutations disrupting motility-related genes. Motile mutants emerged in later passages, possessing mutations in the flagellin gene fliC. Swim-plate assays showed a diverse range of motility among these mutants, with some displaying slower, and others faster, expansion speeds compared to the ancestral strain. Single-cell tracking experiments indicated an increased tumble bias in χ-resistant mutants, suggesting an adaptive response involving altered flagellar rotation. Our findings demonstrate that motility can undergo trade-offs and trade-ups with phage resistance, shedding light on the complex evolutionary dynamics between motile bacteria and flagellotropic phages.202540654869
892480.9983Genomic Signatures of Experimental Adaptation to Antimicrobial Peptides in Staphylococcus aureus. The evolution of resistance against antimicrobial peptides has long been considered unlikely due to their mechanism of action, yet experimental selection with antimicrobial peptides (AMPs) results in rapid evolution of resistance in several species of bacteria. Although numerous studies have utilized mutant screens to identify loci that determine AMP susceptibility, there is a dearth of data concerning the genomic changes that accompany experimental evolution of AMP resistance. Using genome resequencing, we analyzed the mutations that arose during experimental evolution of resistance to the cationic AMPs iseganan, melittin, and pexiganan, as well as to a combination of melittin and pexiganan, or to the aminoglycoside antibiotic streptomycin. Analysis of 17 independently replicated Staphylococcus aureus selection lines, including unselected controls, showed that each AMP selected for mutations at distinct loci. We identify mutations in genes involved in the synthesis and maintenance of the cell envelope. These include genes previously identified from mutant screens for AMP resistance, and genes involved in the response to AMPs and cell-wall-active antibiotics. Furthermore, transposon insertion mutants were used to verify that a number of the identified genes are directly involved in determining AMP susceptibility. Strains selected for AMP resistance under controlled experimental evolution displayed consistent AMP-specific mutations in genes that determine AMP susceptibility. This suggests that different routes to evolve resistance are favored within a controlled genetic background.201627172179
823490.9983Contradictory roles for antibody and complement in the interaction of Brucella abortus with its host. The ability of serum complement to kill bacteria has been linked to host resistance to Gram-negative bacteria. A mechanism for killing extracellular organisms during early invasion, following release from infected phagocytic cells, or during bacteremia would contribute to a host's ability to resist disease. In fact, the ability of serum complement to kill bacteria has been linked to disease resistance. Brucella abortus are Gram-negative intracellular pathogens. Resistance to these bacteria involves the coordinated activities of the cellular and humoral immune systems. The existence of serum-resistant forms of B. abortus has been established, and it has been shown that these bacteria can resist the killing action of complement even in the presence of specific antibody. Antibody is usually necessary for complement-mediated killing of smooth (virulent) forms of Gram-negative bacteria. An anomolous situation exists with some isolates of smooth B. abortus. Sera containing high titers of specific antibody do not support killing unless they are diluted. In the bovine, this phenomenon is associated with IgG1 and IgG2 antibodies. This finding may account for the lack of positive correlation between antibody levels and resistance to disease, which has led, perhaps wrongly, to the idea that antibody and complement are not important in resistance to brucellosis. Available evidence suggests that antibody may have contradictory roles in the interactions between a host and bacteria. Avirulent (rough) forms of the organism would be rapidly killed by complement shortly after invasion, but serum-resistant smooth forms of the organism would survive and invade resident phagocytic cells. During the process of invasion and phagocytosis, the bacteria would initiate an immune response. With time, some B. abortus organisms would be released from infected phagocytic cells. In the early stages of this process, the bacteria would encounter IgM antibody and low concentrations of IgG antibody. These would cause complement-mediated killing, and infection would be restricted to resident phagocytic cells. However, the immune response to B. abortus antigens would be intensified, and IgG antibody levels would increase. High concentrations of antibody do no support complement-mediated killing of extracellular B. abortus, but the bacteria would be opsonized by antibody and complement component fragments. This would lead to increased phagocytosis of extracellular B. abortus as they appear, and concomitant extension of disease. Because of high levels of antibody would block complement-mediated killing of B. abortus, resistance to disease at this point would be dependent on cell-mediated immunity.19958845060
8991100.9983Salicylate Increases Fitness Cost Associated with MarA-Mediated Antibiotic Resistance. Antibiotic resistance is generally associated with a fitness deficit resulting from the burden of producing and maintaining resistance machinery. This additional cost suggests that resistant bacteria will be outcompeted by susceptible bacteria in conditions without antibiotics. However, in practice, this process is slow in part because of regulation that minimizes expression of these genes in the absence of antibiotics. This suggests that if it were possible to turn on their expression, the cost would increase, thereby accelerating removal of resistant strains. Experimental and theoretical studies have shown that environmental chemicals can change the fitness cost associated with resistance and therefore have a significant impact on population dynamics. The multiple antibiotic resistance activator (MarA) is a clinically important regulator in Escherichia coli that activates downstream genes to increase resistance against multiple classes of antibiotics. Salicylate is an inducer of MarA that can be found in the environment and derepresses marA's expression. In this study, we sought to unravel the interplay between salicylate and the fitness cost of MarA-mediated antibiotic resistance. Using salicylate as an inducer of MarA, we found that a wide spectrum of concentrations can increase burden in resistant strains compared to susceptible strains. Induction resulted in rapid exclusion of resistant bacteria from mixed populations of antibiotic-resistant and susceptible cells. A mathematical model captures the process and predicts its effect in various environmental conditions. Our work provides a quantitative understanding of salicylate exposure on the fitness of different MarA variants and suggests that salicylate can lead to selection against MarA-mediated resistant strains. More generally, our findings show that natural inducers may serve to bias population membership and could impact antibiotic resistance and other important phenotypes.201931349991
8989110.9983EPISTATIC INTERACTIONS CAN LOWER THE COST OF RESISTANCE TO MULTIPLE CONSUMERS. It is widely assumed that resistance to consumers (e.g., predators or pathogens) comes at a "cost," that is, when the consumer is absent the resistant organisms are less fit than their susceptible counterparts. It is unclear what factors determine this cost. We demonstrate that epistasis between genes that confer resistance to two different consumers can alter the cost of resistance. We used as a model system the bacterium Escherichia coli and two different viruses (bacteriophages), T4 and Λ, that prey upon E. coli. Epistasis tended to reduce the costs of multiple resistance in this system. However, the extent of cost savings and its statistical significance depended on the environment in which fitness was measured, whether the null hypothesis for gene interaction was additive or multiplicative, and subtle differences among mutations that conferred the same resistance phenotype.199928565201
8935120.9983The Molecular and Genetic Basis of Repeatable Coevolution between Escherichia coli and Bacteriophage T3 in a Laboratory Microcosm. The objective of this study was to determine the genomic changes that underlie coevolution between Escherichia coli B and bacteriophage T3 when grown together in a laboratory microcosm. We also sought to evaluate the repeatability of their evolution by studying replicate coevolution experiments inoculated with the same ancestral strains. We performed the coevolution experiments by growing Escherichia coli B and the lytic bacteriophage T3 in seven parallel continuous culture devices (chemostats) for 30 days. In each of the chemostats, we observed three rounds of coevolution. First, bacteria evolved resistance to infection by the ancestral phage. Then, a new phage type evolved that was capable of infecting the resistant bacteria as well as the sensitive bacterial ancestor. Finally, we observed second-order resistant bacteria evolve that were resistant to infection by both phage types. To identify the genetic changes underlying coevolution, we isolated first- and second-order resistant bacteria as well as a host-range mutant phage from each chemostat and sequenced their genomes. We found that first-order resistant bacteria consistently evolved resistance to phage via mutations in the gene, waaG, which codes for a glucosyltransferase required for assembly of the bacterial lipopolysaccharide (LPS). Phage also showed repeatable evolution, with each chemostat producing host-range mutant phage with mutations in the phage tail fiber gene T3p48 which binds to the bacterial LPS during adsorption. Two second-order resistant bacteria evolved via mutations in different genes involved in the phage interaction. Although a wide range of mutations occurred in the bacterial waaG gene, mutations in the phage tail fiber were restricted to a single codon, and several phage showed convergent evolution at the nucleotide level. These results are consistent with previous studies in other systems that have documented repeatable evolution in bacteria at the level of pathways or genes and repeatable evolution in viruses at the nucleotide level. Our data are also consistent with the expectation that adaptation via loss-of-function mutations is less constrained than adaptation via gain-of-function mutations.201526114300
8912130.9983Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins. The fitness cost of antibiotic resistance is a key parameter in determining the evolutionary success of resistant bacteria. Studies of the effect of antibiotic resistance on bacterial fitness are heavily biased toward target alterations. Here we investigated how the costs in the form of a severely impaired growth rate associated with resistance due to absence of two major outer membrane porins can be genetically compensated. We performed an evolution experiment with 16 lineages of a double mutant of Escherichia coli with the ompCF genes deleted, and reduced fitness and increased resistance to different classes of antibiotics, including the carbapenems ertapenem and meropenem. After serial passage for only 250 generations, the relative growth rate increased from 0.85 to 0.99 (susceptible wild type set to 1.0). Compensation of the costs followed two different adaptive pathways where upregulation of expression of alternative porins bypassed the need for functional OmpCF porins. The first compensatory mechanism involved mutations in the phoR and pstS genes, causing constitutive high-level expression of the PhoE porin. The second mechanism involved mutations in the hfq and chiX genes that disrupted Hfq-dependent small RNA regulation, causing overexpression of the ChiP porin. Although susceptibility was restored in compensated mutants with PhoE overexpression, evolved mutants with high ChiP expression maintained the resistance phenotype. Our findings may explain why porin composition is often altered in resistant clinical isolates and provide new insights into how bypass mechanisms may allow genetic adaptation to a common multidrug resistance mechanism.201526358402
8900140.9983Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis. Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.202134175952
307150.9983Escape from Lethal Bacterial Competition through Coupled Activation of Antibiotic Resistance and a Mobilized Subpopulation. Bacteria have diverse mechanisms for competition that include biosynthesis of extracellular enzymes and antibiotic metabolites, as well as changes in community physiology, such as biofilm formation or motility. Considered collectively, networks of competitive functions for any organism determine success or failure in competition. How bacteria integrate different mechanisms to optimize competitive fitness is not well studied. Here we study a model competitive interaction between two soil bacteria: Bacillus subtilis and Streptomyces sp. Mg1 (S. Mg1). On an agar surface, colonies of B. subtilis suffer cellular lysis and progressive degradation caused by S. Mg1 cultured at a distance. We identify the lytic and degradative activity (LDA) as linearmycins, which are produced by S. Mg1 and are sufficient to cause lysis of B. subtilis. We obtained B. subtilis mutants spontaneously resistant to LDA (LDAR) that have visibly distinctive morphology and spread across the agar surface. Every LDAR mutant identified had a missense mutation in yfiJK, which encodes a previously uncharacterized two-component signaling system. We confirmed that gain-of-function alleles in yfiJK cause a combination of LDAR, changes in colony morphology, and motility. Downstream of yfiJK are the yfiLMN genes, which encode an ATP-binding cassette transporter. We show that yfiLMN genes are necessary for LDA resistance. The developmental phenotypes of LDAR mutants are genetically separable from LDA resistance, suggesting that the two competitive functions are distinct, but regulated by a single two-component system. Our findings suggest that a subpopulation of B. subtilis activate an array of defensive responses to counter lytic stress imposed by competition. Coordinated regulation of development and antibiotic resistance is a streamlined mechanism to promote competitive fitness of bacteria.201526647299
8862160.9983Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid. Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any potential side effects of long-term exposure of the pathogen to the probionts or any compounds they produce. Here we exposed the fish pathogen Vibrio anguillarum to TDA for several hundred generations in an adaptive evolution experiment. No tolerance or resistance arose during the 90 days of exposure, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None of the virulence genes of V. anguillarum was affected, and infectivity assays using fish cell lines indicated that the TDA-exposed lineages and clones were less invasive than the wild-type strain. Thus, long-term TDA exposure does not appear to result in TDA resistance and the physiology of V. anguillarum appears unaffected, supporting the application of TDA-producing roseobacters as probiotics in aquaculture. IMPORTANCE: It is important to limit the use of antibiotics in our food production, to reduce the risk of bacteria developing antibiotic resistance. We showed previously that marine bacteria of the Roseobacter clade can prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish pathogen. Therefore, we exposed the fish pathogen Vibrio anguillarum to increasing TDA concentrations over 3 months. We did not see the development of any resistance to TDA, and subsequent infection assays revealed that none of the TDA-exposed clones had increased virulence toward fish cells. Hence, this study supports the use of roseobacters as a non-risk-based disease control measure in aquaculture.201627235441
8877170.9983Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. While in transit within and between hosts, uropathogenic Escherichia coli (UPEC) encounters multiple stresses, including substantial levels of nitric oxide and reactive nitrogen intermediates. Here we show that UPEC, the primary cause of urinary tract infections, can be conditioned to grow at higher rates in the presence of acidified sodium nitrite (ASN), a model system used to generate nitrosative stress. When inoculated into the bladder of a mouse, ASN-conditioned UPEC bacteria are far more likely to establish an infection than nonconditioned bacteria. Microarray analysis of ASN-conditioned bacteria suggests that several NsrR-regulated genes and other stress- and polyamine-responsive factors may be partially responsible for this effect. Compared to K-12 reference strains, most UPEC isolates have increased resistance to ASN, and this resistance can be substantially enhanced by addition of the polyamine cadaverine. Nitrosative stress, as generated by ASN, can stimulate cadaverine synthesis by UPEC, and growth of UPEC in cadaverine-supplemented broth in the absence of ASN can also promote UPEC colonization of the bladder. These results suggest that UPEC interactions with polyamines or stresses such as reactive nitrogen intermediates can in effect reprogram the bacteria, enabling them to better colonize the host.200919255192
6169180.9983The effect of mating on immunity can be masked by experimental piercing in female Drosophila melanogaster. Mating and immunity are two major components of fitness and links between them have been demonstrated in a number of recent investigations. In Drosophila melanogaster, a seminal fluid protein, sex-peptide (SP), up-regulates a number of antimicrobial peptide (AMP) genes in females after mating but the resulting effect on pathogen resistance is unclear. In this study, we tested (1) whether SP-induced changes in gene expression affect the ability of females to kill injected non-pathogenic bacteria and (2) how the injection process per se affects the expression of AMP genes relative to SP. The ability of virgin females and females mated to SP lacking or control males to clear bacteria was assayed using an established technique in which Escherichia coli are injected directly into the fly body and the rate of clearance of the injected bacteria is determined. We found no repeatable differences in clearance rates between virgin females and females mated to SP producing or SP lacking males. However, we found that the piercing of the integument, as occurs during injection, up-regulates AMP gene expression much more strongly than SP. Thus, assays that involve piercing, which are commonly used in immunity studies, can mask more subtle and biologically relevant changes in immunity, such as those induced by mating.200818068720
8307190.9983PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Adaptive evolution depends on both the genetic variability in a population of organisms and the selection of the better adapted genotypes. However, for the fittest variants to be selected they must survive over a sufficient period under the new conditions. Bacteria are often exposed to different types of stress in nature, including antibiotics. We analysed the global expression profiles of the opportunistic pathogen Pseudomonas aeruginosa in response to ceftazidime, a PBP3 inhibitor, at different concentrations and times. PBP3 inhibition exerts a global impact on the transcription of a large number of genes. From an adaptive perspective, it is noteworthy the induction of several SOS genes, as well as adaptation, protection and antibiotic resistance genes. Intriguingly, transcription of pyocin genes, previously described as SOS-regulated, was repressed upon PBP3 inhibition. Ciprofloxacin, an SOS inducer, produced transcriptional induction of pyocins. Our results indicate that: (i) the SOS responses resulting from treatments with these two antibiotics cause only partially overlapping transcription profiles; (ii) PBP3 and DNA-gyrase inhibition produce opposite effects on transcription of pyocin genes. Consequently, ceftazidime decreases ciprofloxacin toxicity; (iii) error-prone DNA-polymerase DinB is induced by PBP3 inhibition but not by DNA-gyrase inhibition; (iv) PBP3 inhibition causes induced mutagenesis; (v) ceftazidime upregulates several antibiotic-resistance and adaptation genes; and (vi) ceftazidime concentrations thought previously to be lethal are not, as most cells treated with ceftazidime remain alive and recover their capacity to form colonies. Thus, transcriptional changes demonstrated in this work are likely to be adaptively relevant to cells that survive.200616956383