# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7755 | 0 | 0.9899 | Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river. | 2019 | 31726563 |
| 7215 | 1 | 0.9891 | High-throughput qPCR profiling of antimicrobial resistance genes and bacterial loads in wastewater and receiving environments. Wastewater treatment plants (WWTPs) are hot spots for the acquisition and spread of antimicrobial resistance (AMR). This regional-based study quantified antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacteria in hospital and community-derived wastewater and receiving environments, using high-throughput qPCR (HT-qPCR). This is the first study to apply Resistomap's Antibiotic Resistance Gene Index (ARGI) as a standardised metric to find the overall AMR level across different WWTPs. ARGI of WWTPs ranged from 2.0 to 2.3, indicating higher relative ARG levels than the mean European ARGI of 2.0, but lower than the global mean of 2.4. The highest diversity and abundance of ARGs were observed in untreated hospital and community wastewater. The reduction of total ARGs during wastewater treatment (0.2-2 logs) and bacteria (0.3-1.5 logs) varied spatio-temporally across the WWTPs. Despite a decrease in ARG and bacterial abundance in treated effluents, substantial loads were still released into receiving environments. Notably, ARG levels in coastal sediments were comparable to those in untreated wastewater, and most ARGs were shared between wastewater and receiving environments, highlighting the impact of wastewater discharge on these ecosystems. Sewage outfall exposure increased ARGs in shellfish, emphasising risks to shellfish hygiene. This study provides evidence to inform policymaking, emphasising advanced wastewater treatment methods and combined sewer overflow (CSO) management to mitigate ARG release, protecting water users and the food chain. | 2025 | 40127809 |
| 7228 | 2 | 0.9890 | Proliferation of antibiotic resistance genes in coastal recirculating mariculture system. The abuse of antibiotics has caused the propagation of antibiotic resistance genes (ARGs) in aquaculture systems. Although the recirculating systems have been considered as a promising approach for preventing the coastal water pollution of antibiotics and ARG, rare information is available on the distribution and proliferation of ARGs in the recirculating mariculture system. This study firstly investigated the proliferation of ARGs in coastal recirculating mariculture systems. Ten subtypes of ARGs including tet (tetB, tetG, tetX), sul (sul1, sul2), qnr (qnrA, qnrB, qnrS), and erm (ermF, ermT) were detected. The absolute abundances of the ARGs detected in the mariculture farm were more than 1 × 10(4) copies/mL. The sulfonamide resistance genes (sul1 and sul2) were the most abundant ARGs with the abundance of 3.5 × 10(7)-6.5 × 10(10) copies/mL. No obvious correlation existed between the antibiotics and ARGs. Some bacteria were positively correlated with two or more ARGs to indicate the occurrence of multidrug resistance. The fluidized-bed biofilter for wastewater treatment in the recirculating system was the main breeding ground for ARGs while the UV sterilization process could reduce the ARGs. The highest flux of ARGs (6.5 × 10(21) copies/d) indicated that the discharge of feces and residual baits was the main gateway for ARGs in the recirculating mariculture system to enter the environments. | 2019 | 30826609 |
| 7221 | 3 | 0.9888 | Profiles of bacteria/phage-comediated ARGs in pig farm wastewater treatment plants in China: Association with mobile genetic elements, bacterial communities and environmental factors. In this study, the profiles of bacteria/phage-comediated antibiotic resistance genes (b/pARGs) were monitored in water samples collected from 45 pig farm wastewater treatment plants (WWTPs) in seven different regions of China. We found that 8 major types and 112 subtypes of b/pARGs were detected in all the water samples, and the detected number ranged from 53 to 92. The absolute abundances of bARGs and pARGs in the influent were as high as 10(9) copies/mL and 10(6) copies/mL, respectively. Anaerobic anoxic/oxic (AAO) and anaerobic short-cut nitrification/denitrification (ASND) treatment plants can effectively reduce the absolute abundance and amount of b/pARGs. Anaerobic treatment plants cannot reduce the absolute abundance of pARGs, and even increase the amount of pARGs. Mobile genetic elements (MGEs), bacterial communities and environmental factors were important factors impacting the b/pARG profile. Among these factors, the bacterial community was the major driver that impacted the bARG profile, while bacterial community and MGEs were the major codrivers impacting the pARG profile. This study was the first to investigate the profiles of b/pARGs in pig farm WWTPs in China on such a large scale, providing a reference for the prevention and control of ARG pollution in agricultural environments. | 2021 | 33069996 |
| 7760 | 4 | 0.9885 | From the Reclaimed Water Treatment Plant to Irrigation in Intensive Agriculture Farms: Assessment of the Fate of Antibiotics, Antibiotic Resistance Bacteria and Genes, and Microbial Pathogens at Real Scale. This work aims to investigate the occurrence of 31 antibiotics (ABs), 2 bacteria (Escherichia coli and Pseudomonas spp.) and their counterpart antibiotic-resistant bacteria (carbapenem and cephalosporin families), and several antibiotic-resistant genes (ARGs) throughout a full distribution system of reclaimed water (RW) in a real-scale scenario. The RW was analyzed (i) before and after the tertiary treatment (sand filtration and chlorination), (ii) during the storage period in secondary ponds before its use in irrigation, and (iii) directly in the droppers installed in four plastic-based greenhouses over 9 months. The results obtained in RW showed a bacterial concentration below the minimum required to reach class A (<10 CFU/100 mL, Regulation EU 2020/741), a reduction of the initial AB concentration (up to 13 ABs, total 4847 ± 1413 ng/L) of 58%, and no significant reduction of ARGs (Log units/100 mL: 16S rRNA (9.99 ± 0.80) > intI1 (8.80 ± 0.95) > bla(CTX-M32) (7.53 ± 0.63) > sul1 (7.08 ± 1.05) > bla(TEM) (6.81 ± 1.05) > qnrS (5.72 ± 0.82)). The storage of RW was a hotspot only for bacteria; an increase in all concentrations was observed in both main and secondary reservoirs, demonstrating that direct RW reuse is the most beneficial option to avoid significant bacterial regrowth. In all greenhouse droppers' systems, a significantly higher concentration of all bacteria was generally detected than in secondary reservoirs, demonstrating that this is another hotspot independent of whether the RW is used directly or not. Therefore, the RW storage and distribution may negatively affect the microbial water quality, while ABs and ARGs are detected along the entire scheme of urban wastewater reclamation and reuse, reaching the greenhouse environment (including soil and plants). | 2025 | 40923533 |
| 3499 | 5 | 0.9885 | Diverse and abundant antibiotic resistance genes in mangrove area and their relationship with bacterial communities - A study in Hainan Island, China. Antibiotic resistance genes (ARGs) are emerging contaminants in the environment and have been highlighted as a worldwide environmental and health concern. As important participants in the biogeochemical cycles, mangrove ecosystems are subject to various anthropogenic disturbances, and its microbiota may be affected by various contaminants such as ARGs. This study selected 13 transects of mangrove-covered areas in Hainan, China for sediment sample collection. The abundance and diversity of ARGs and mobile genetic elements (MGEs) were investigated using high-throughput quantitative polymerase chain reaction (HT-qPCR), and high-throughput sequencing was used to study microbial structure and diversity. A total of 179 ARGs belonging to 9 ARG types were detected in the study area, and the detection rates of vanXD and vatE-01 were 100%. The abundance of ARGs was 8.30 × 10(7)-6.88 × 10(8) copies per g sediment (1.27 × 10(-2)-3.39 × 10(-2) copies per 16S rRNA gene), which was higher than similar studies, and there were differences in the abundance of ARGs in these sampling transects. The multidrug resistance genes (MRGs) accounted for the highest proportion (69.0%), which indicates that the contamination of ARGs in the study area was very complicated. The ARGs significantly positively correlated with MGEs, which showed that the high level of ARGs was related to its self-enhancement. The dominant bacteria at the genus level were Desulfococcus, Clostridium, Rhodoplanes, Bacillus, Vibrio, Enterococcus, Sedimentibacter, Pseudoalteromonas, Paracoccus, Oscillospira, Mariprofundus, Sulfurimonas, Aminobacterium, and Novosphingobium. There was a significant positive correlation between 133 bacterial genera and some ARGs. Chthoniobacter, Flavisolibacter, Formivibrio, Kaistia, Moryella, MSBL3, Perlucidibaca, and Zhouia were the main potential hosts of ARGs in the sediments of Hainan mangrove area, and many of these bacteria are important participants in biogeochemical cycles. The results contribute to our understanding of the distribution and potential hosts of ARGs and provide a scientific basis for the protection and management of Hainan mangrove ecosystem. | 2021 | 33652188 |
| 7306 | 6 | 0.9885 | Impact of the particulate matter from wastewater discharge on the abundance of antibiotic resistance genes and facultative pathogenic bacteria in downstream river sediments. Wastewater treatment plants (WWTPs) are point sources for both, the release of antibiotic resistance genes (ARGs) and the discharge of antibiotics (ABs) into the environment. While it is well established that ARGs emission by WWTPs leads to an ARGs increase in receiving rivers, also the role of sub-inhibitory AB concentrations in this context is being discussed. However, the results obtained in this study suggest that, at environmental concentrations, ABs do not have an effect on resistance selection. Instead, we emphasize the significance of ARG transport and, in that respect, highlight the relevance of wastewater particles and associated microorganisms. We can show that ARGs (ermB, bla(TEM,)tetM, qnrS) as well as facultative pathogenic bacteria (FPB) (enterococci, Pseudomonas aeruginosa, Acinetobacter baumannii) inside the particulate fraction of WWTP effluent are very likely to remain in the riverbed of the receiving water due to sedimentation. Moreover, ARG and FPB abundances measured in the particulate fraction strongly correlated with the delta ARG and FPB abundances measured in the receiving river sediment (downstream compared to upstream) (R(2) = 0.93, p < 0.05). Apparently, the sheer amount of settleable ARGs and FPB from WWTP effluent is sufficient, to increase abundances in the receiving riverbed by 0.5 to 2 log units. | 2019 | 30308888 |
| 7209 | 7 | 0.9884 | Role of a typical swine liquid manure treatment plant in reducing elements of antibiotic resistance. Biological treatment of swine liquid manure may be a favorable environment for the enrichment of bacteria carrying antibiotic resistance genes (ARGs), raising the alert about this public health problem. The present work sought to investigate the performance of a swine wastewater treatment plant (SWWTP), composed of a covered lagoon biodigester (CLB) followed by three facultative ponds, in the removal of usual pollutants, antibiotics, ARGs (blaTEM, ermB, qnrB, sul1, and tetA), and intI1. The SWWTP promoted a 70% of organic matter removal, mainly by the digester unit. The facultative ponds stood out in the solids' retention carried from the anaerobic stage and contributed to ammonia volatilization. The detected antibiotic in the raw wastewater was norfloxacin (< 0.79 to 60.55 μg L(-1)), and the SWWTP seems to equalize peaks of norfloxacin variation probably due to sludge adsorption. CLB reduced the absolute abundance of ARGs by up to 2.5 log, while the facultative stage does not seem to improve the quality of the final effluent in terms of resistance elements. Considering the relative abundances, the reduction rates of total and ARG-carrying bacteria appear to be similar. Finally, correlation tests also revealed that organic matter and solids control in liquid manure treatment systems could help reduce the spread of ARGs after the waste final disposal. | 2023 | 37477815 |
| 7160 | 8 | 0.9884 | High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province. | 2024 | 39080455 |
| 7055 | 9 | 0.9884 | Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake. Sewage treatment plants (STPs) are significant reservoirs of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Municipal STPs (MSTPs) and industrial STPs (ISTPs) are the two most important STP types in cities. In this study, the ARGs, mobile genetic elements (MGEs), and bacterial communities of selected STPs, including two MSTPs and one ISTP, in the vicinity of Poyang Lake were comprehensively investigated through high-throughput qPCR and high-throughput Illumina sequencing. The results showed that the profiles of ARGs, MGEs and bacteria differed between the ISTP and the two MSTPs, most likely due to differences in influent water quality, such as the Pb that characterized in the ISTP's influent. The longer hydraulic retention times (HRTs) of the two MSTPs than of the ISTP may also have accounted for the different profiles. Thus, a prolonged HRT in the CASS process seems to allow a more extensive removal of ARGs and bacteria in ISTPs with similar treatment process. By providing comprehensive insights into the characteristics of ARGs, MGEs and the bacterial communities of the selected MSTPs and ISTP, our study provides a scientific basis for controlling the propagation and diffusion of ARGs and ARB in different types of STPs. | 2020 | 32092547 |
| 7234 | 10 | 0.9884 | Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. The widespread of water borne antibiotic resistance genes (ARGs) represents a growing threat to the health of millions of people. Our study detected the relative abundances of 10 ARG subtypes in the Shanghai river network, where the major ARG components were strB, sul1, and ermB. These ARGs were significantly enriched by the combined sewage, tail water from urban wastewater treatment plant and runoff from agricultural areas, which reached the Suzhou (SZ), Dianpu (DP), and Huangpu (HP) River, respectively (one-way ANOVA, P < 0.01). The target ARGs were distributed in varying patterns across different rivers. bla(CTX-M) and bla(TEM) contributed to the increase of total ARGs in the rivers influenced by urban sources, particularly in the SZ River, whose distribution of ARGs was significantly related to that of the confluence of the whole river network (Mantel test, P < 0.01). The bacterial community was closely structured with ARGs and potential pathogenic bacteria's association with target ARGs became significant in downstream samples (Procrustes test, P = 0.03). Water near urban wastewater fallouts was observed to have the highest content of intl1 in the DP River, whose downstream samples' intl -ARG relationship fitted the same regression model as that of the network confluence (R = 0.84, P < 0.001). The amelioration of river water quality does not reduce ARGs, but may affect their distributional patterns in the river network in Shanghai. | 2019 | 31009830 |
| 7998 | 11 | 0.9884 | Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health. | 2017 | 26715413 |
| 7995 | 12 | 0.9884 | Risk of penicillin fermentation dreg: Increase of antibiotic resistance genes after soil discharge. Penicillin fermentation dreg (PFD) is a solid waste discharged by pharmaceutical enterprises in the fermentation production process. Due to the residual antibiotic of PFD, the risk of antibiotic resistance bacteria (ARB) generation should be considered in the disposal process. High-throughput quantitative PCR (HT-qPCR) and 16S rRNA gene sequencing were performed to investigate the effect of PFD on the dynamics of antibiotic resistance genes (ARGs) and bacterial community during a lab-scale soil experiment. After the application of PFD, the bacterial number and diversity showed an obvious decrease in the initial days. The abundances of Streptomyces and Bacillus, which are the most widespread predicted source phyla of ARGs, increased remarkably from 4.42% to 2.59%-22.97% and 21.35%. The increase of ARGs was observed during the PFD application and the ARGs carried by PFD itself contributed to the initiation of soil ARGs. The results of redundancy analysis (RDA) show that the shift in bacterial community induced by variation of penicillin content is the primary driver shaping ARGs compositions. | 2020 | 32023801 |
| 7999 | 13 | 0.9884 | Occurrence and distribution of five antibiotic resistance genes during the loading period in sludge treatment wetlands. The objectives of this study were to clarify the distribution as well as the removal mechanism of antibiotic resistance genes (ARGs) within three sludge treatment wetlands (STWs) during a loading period of two years. Three STW units were constructed and run during the loading period: Unit 1 (U1) built with aeration tubes, Unit 2 (U2) built with aeration tubes and reeds, and Unit 3 (U3) built with reeds only. All targeted ARGs, intI1, and 16S rRNA were detected in residual sludge in the order of magnitude: 16S rRNA>sul1>intI1>sul2>tetC>tetA>ermB. The abundance of the five targeted ARGs, intI1, and 16S rRNA increased in residual sludge, during the loading period, which may be due to the increase in bacteria caused by the continuous import of exogenous nutrients. However, STWs can also remove ARGs from sewage during the loading period and the mean removal efficiency of five resistance genes was 73.0%. The removal rates of intI1 and 16S rRNA were 73.5% and 78.6%, respectively. Positive correlations were detected in abundance of most ARGs and intI1, as well as 16S rRNA (P < 0.05), indicating intI1 plays a vital part in the propagation of ARGs. The removal of bacteria harboring these genes also occurs in the STW units. | 2020 | 32771773 |
| 7233 | 14 | 0.9883 | Distribution, sources, and potential risks of antibiotic resistance genes in wastewater treatment plant: A review. Irrational use of antibiotics produces a large number of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Wastewater treatment plants (WWTPs) act as important sources and sinks of ARGs, and play an important role in their generation, treatment, and dissemination. This study summarizes the types, concentrations, and factors of ARGs in WWTPs, investigates the sources of ARGs in wastewater, compares the removal efficiencies of different treatment processes on ARGs, and analyzes the potential risks of ARGs accumulation in effluent, sludge and their emission into the air. The results show that the main ARGs detected in the influent of WWTPs are the genes resistant to macrolides (ermB, ermF), tetracyclines (tetW, tetA, tetC), sulfonamides (sul1, sul2), and β-lactams (bla(OXA), bla(TEM)). The concentrations of ARGs in the influent of the WWTPs are 2.23 × 10(2)-3.90 × 10(9) copies/mL. Wastewater quality and microbial community are the dominant factors that affect the distribution characteristics of ARGs. The accumulation of ARGs in effluent, sludge, and aerosols pose potential risks to the regional ecological environment and human health. Based on these results, research trends with respect to ARGs in WWTPs are also prospected. | 2022 | 35921944 |
| 7167 | 15 | 0.9883 | Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems. | 2024 | 38782270 |
| 7820 | 16 | 0.9883 | Metagenomic analysis of MWWTP effluent treated via solar photo-Fenton at neutral pH: Effects upon microbial community, priority pathogens, and antibiotic resistance genes. The effectiveness of advanced technologies on eliminating antibiotic resistant bacteria (ARB) and resistance genes (ARGs) from wastewaters have been recently investigated. Solar photo-Fenton has been proven effective in combating ARB and ARGs from Municipal Wastewater Treatment Plant effluent (MWWTPE). However, most of these studies have relied solely on cultivable methods to assess ARB removal. This is the first study to investigate the effect of solar photo-Fenton upon ARB and ARGs in MWWTPE by high throughput metagenomic analysis (16S rDNA sequencing and Whole Genome Sequencing). Treatment efficiency upon priority pathogens and resistome profile were also investigated. Solar photo-Fenton (30 mg L(-1) of Fe(2+) intermittent additions and 50 mg L(-1) of H(2)O(2)) reached 76-86% removal of main phyla present in MWWTPE. An increase in Proteobacteria abundance was observed after solar photo-Fenton and controls in which H(2)O(2) was present as an oxidant (Fenton, H(2)O(2) only, solar/H(2)O(2)). Hence, tolerance mechanisms presented by this group should be further assessed. Solar photo-Fenton achieved complete removal of high priority Staphylococcus and Enterococcus, as well as Klebsiella pneumoniae and Pseudomonas aeruginosa. Substantial reduction of intrinsically multi-drug resistant bacteria was detected. Solar photo-Fenton removed nearly 60% of ARGs associated with sulfonamides, macrolides, and tetracyclines, and complete removal of ARGs related to β-lactams and fluoroquinolones. These results indicate the potential of using solar-enhanced photo-Fenton to limit the spread of antimicrobial resistance, especially in developing tropical countries. | 2021 | 34467925 |
| 7143 | 17 | 0.9883 | Simulated discharge of treated landfill leachates reveals a fueled development of antibiotic resistance in receiving tidal river. Around 350 million tons of solid waste is disposed of in landfills every year globally, with millions of cubic meters of landfill leachates released into neighboring environment. However, to date, little is known about the variations of antimicrobial resistance (AMR) in on-site leachate treatment systems and its development in leachate-receiving water environment. Here, we quantified 7 subtypes of antibiotic resistance genes (ARGs), 3 types of culturable antibiotic resistant bacteria (ARB) and 6 subtypes of mobile genetic elements (MGEs) in the effluents from a combined leachate treatment process, including biological treatment (MBR), physical separation (UF), ultraviolet (UV) disinfection and advanced oxidation process (AOP). The contents of ARGs, ARB and MGEs were generally enriched by the MBR, but then decreased significantly along with the tertiary treatment process. However, in the effluent-receiving water samples, the abundance of dominant ARGs (i.e. ermB, sul1, bla(TEM)) increased by 1.5 orders of magnitude within 96 h, alongside a general increase of MGEs (~10.0 log(10)(copies/mL) and total ARB (~1100 CFU/mL). Structural correlation analyses reveal that target ARGs were closely associated with MGEs, particularly in effluent-receiving samples (Procrustes test; M(2) = 0.49, R = 0.71, P = 0.001); and occurrences of ARB were majorly affected by ARG's distribution and environmental conditions (e.g. nitrogen speciation) in effluent and recipient groups, respectively. This study indicates that current treatment technologies and operation protocols are not feasible in countering the development of AMR in effluent-receiving water environment, particularly in tidal rivers that are capable of retaining contaminants for a long residence time. | 2018 | 29501852 |
| 7278 | 18 | 0.9883 | Effects of snowmelt runoff on bacterial communities and antimicrobial resistance gene concentrations in an urban river in a cold climate region. Urban rivers are essential for human activities and ecosystems. Urban runoff is a major source of various pollutants in urban rivers. In this study, we investigated the effect of rainfall and snowmelt subsequently causing urban runoff in a cold climate region on bacterial community structures and antimicrobial resistance gene concentrations in an urban river in Sapporo city, Japan, which has an average snowfall of 4.8 m. Bacterial community structures of the river water were analyzed by next generation sequencing of bacterial 16S rRNA genes. The antimicrobial resistance genes, mphA and bla(IMP), were determined using quantitative polymerase chain reaction. Rainfall and snowmelt increased the effluent discharge rate of treated wastewater, and river water depth. Rainfall and snowmelt also increased Escherichia coli concentrations by 4-20 folds in the river, probably because of combined sewer overflows, urban runoff, or increased effluent discharge rate of treated wastewater to the river. Urban runoff and the subsequent discharge of treated wastewater decreased the bacterial alpha diversity and increased the species evenness of bacteria. Bacterial beta diversity analysis showed that the discharge of treated wastewater caused by rainfall and snowmelt changed the structure and diversity of the bacterial community in the river. The concentrations of the antimicrobial resistance gene mphA were related to the discharge of treated wastewater. In contrast, the antimicrobial resistance gene bla(IMP) appeared to be present in the upstream pristine environment. Results of this study should be informative for challenge to reduce the antimicrobial resistance bacteria due to combined sewer overflows by wastewater management authorities. | 2025 | 40042701 |
| 7768 | 19 | 0.9883 | Drinking water biofiltration: Behaviour of antibiotic resistance genes and the association with bacterial community. Antibiotic resistance genes (ARGs) are being detected in drinking water frequently, constituting a major public health issue. As a typical drinking water treatment process, the biofilter may harbour various ARGs due to the filter biofilms established during the filtration process. The objective of this study was to investigate the behaviour of ARGs (bla(CTX-M), bla(OXA-1), bla(TEM), ermB, tetA, tetG, tetQ, tetW, tetX, sul 1, sul 2, dfrA1 and dfrA12) and their possible association with bacteria in a bench-scale biofiltration system. The impact of filter media on horizontal gene transfer (HGT) was also explored using a model conjugative plasmid, RP1. The biofiltration system comprised four types of biofilters, including sand, granular activated carbon (GAC), GAC sandwich, and anthracite-sand biofilters. Results showed that although the absolute abundance of ARGs decreased (0.97-log reduction on average), the ARGs' abundance normalised to bacterial numbers showed an increasing trend in the filtered water. Biofilms collected from the surface layer revealed the lowest relative abundance of ARGs (p < 0.01) compared to the deeper layer biofilms, indicating that the proportion of ARG-carrying bacteria was greater in the lower position. Most chosen ARG numbers correlated to Proteobacteria, Acidobacteria and Nitrospirae phyla, which accounted for 51.9%, 5.2% and 2.0% of the biofilm communities, respectively. GAC media revealed the highest transfer frequency (2.60 × 10(-5)), followed by anthracite (5.31 × 10(-6)) and sand (2.47 × 10(-6)). Backwashing can reduce the transferability of RP1 plasmid significantly in biofilms but introduces more transconjugants into the planktonic phase. Overall, the results of this study could enhance our understanding of the prevalence of ARGs in drinking water biofiltration treatment. | 2020 | 32650149 |