# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8283 | 0 | 0.9989 | Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations. | 2012 | 22424589 |
| 9340 | 1 | 0.9989 | Shigella viruses Sf22 and KRT47 require outer membrane protein C for infection. Viruses rely on hosts for their replication: thus, a critical step in the infection process is identifying a suitable host cell. Bacterial viruses, known as bacteriophages or phages, often use receptor binding proteins to discriminate between susceptible and non-susceptible hosts. By being able to evade predation, bacteria with modified or deleted receptor-encoding genes often undergo positive selection during growth in the presence of phage. Depending on the specific receptor(s) a phage uses, this may subsequently affect the bacteria's ability to form biofilms, its resistance to antibiotics, pathogenicity, or its phenotype in various environments. In this study, we characterize the interactions between two T4-like phages, Sf22 and KRT47, and their host receptor S. flexneri outer membrane protein C (OmpC). Results indicate that these phages use a variety of surface features on the protein, and that complete resistance most frequently occurs when hosts delete the ompC gene in full, encode premature stop codons to prevent OmpC synthesis, or eliminate specific regions encoding exterior loops. | 2022 | 35358430 |
| 712 | 2 | 0.9988 | Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. Dps, the DNA-binding protein from starved cells, is capable of providing protection to cells during exposure to severe environmental assaults; including oxidative stress and nutritional deprivation. The structure and function of Dps have been the subject of numerous studies and have been examined in several bacteria that possess Dps or a structural/functional homologue of the protein. Additionally, the involvement of Dps in stress resistance has been researched extensively as well. The ability of Dps to provide multifaceted protection is based on three intrinsic properties of the protein: DNA binding, iron sequestration, and its ferroxidase activity. These properties also make Dps extremely important in iron and hydrogen peroxide detoxification and acid resistance as well. Regulation of Dps expression in E. coli is complex and partially dependent on the physiological state of the cell. Furthermore, it is proposed that Dps itself plays a role in gene regulation during starvation, ultimately making the cell more resistant to cytotoxic assaults by controlling the expression of genes necessary for (or deleterious to) stress resistance. The current review focuses on the aforementioned properties of Dps in E. coli, its prototypic organism. The consequences of elucidating the protective mechanisms of this protein are far-reaching, as Dps homologues have been identified in over 1000 distantly related bacteria and Archaea. Moreover, the prevalence of Dps and Dps-like proteins in bacteria suggests that protection involving DNA and iron sequestration is crucial and widespread in prokaryotes. | 2011 | 21143355 |
| 8285 | 3 | 0.9988 | Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. INTRODUCTION: Bacteria are ubiquitous and many of them are pathogenic in nature. Entry of bacteria in host and its recognition by host defense system induce stress in host cells. With time, bacteria have also developed strategies including drug resistance to escape from antibacterial therapy as well as host defense mechanism. AREAS COVERED: Bacterial stress initiates and promotes adaptive immune response through several integrated mechanisms. The mechanisms of bacteria to up and down regulate different pathways involved in these responses have been discussed. The genetic expression of these pathways can be manipulated by the pharmacological interventions. Present review discusses in these contexts and explores the possibilities to overcome stress induced by bacterial pathogens and to suggest new possible therapeutic targets. EXPERT OPINION: In our opinion, there are two important fronts to regulate the bacterial stress. One is to target caspase involved in the process of transformation and translation at gene level and protein expression. Second is the identification of bacterial genes that lead to synthesis of abnormal end products supporting bacterial survival in host environment and also to surpass the host defense mechanism. Identification of such genes and their expression products could be an effective option to encounter bacterial resistance. | 2021 | 32811215 |
| 8286 | 4 | 0.9988 | RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications. | 2021 | 34440299 |
| 8291 | 5 | 0.9988 | Pseudomonas Can Survive Tailocin Killing via Persistence-Like and Heterogenous Resistance Mechanisms. Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents. | 2020 | 32312747 |
| 8311 | 6 | 0.9988 | Perturbation of Quorum Sensing after the Acquisition of Bacteriophage Resistance Could Contribute to Novel Traits in Vibrio alginolyticus. Bacteria employ a wide range of molecular mechanisms to confer resistance to bacteriophages, and these mechanisms are continuously being discovered and characterized. However, there are instances where certain bacterial species, despite lacking these known mechanisms, can still develop bacteriophage resistance through intricate metabolic adaptation strategies, potentially involving mutations in transcriptional regulators or phage receptors. Vibrio species have been particularly useful for studying the orchestrated metabolic responses of Gram-negative marine bacteria in various challenges. In a previous study, we demonstrated that Vibrio alginolyticus downregulates the expression of specific receptors and transporters in its membrane, which may enable the bacterium to evade infection by lytic bacteriophages. In our current study, our objective was to explore how the development of bacteriophage resistance in Vibrio species disrupts the quorum-sensing cascade, subsequently affecting bacterial physiology and metabolic capacity. Using a real-time quantitative PCR (rt-QPCR) platform, we examined the expression pattern of quorum-sensing genes, auto-inducer biosynthesis genes, and cell density regulatory proteins in phage-resistant strains. Our results revealed that bacteriophage-resistant bacteria downregulate the expression of quorum-sensing regulatory proteins, such as LuxM, LuxN, and LuxP. This downregulation attenuates the normal perception of quorum-sensing peptides and subsequently diminishes the expression of cell density regulatory proteins, including LuxU, aphA, and LuxR. These findings align with the diverse phenotypic traits observed in the phage-resistant strains, such as altered biofilm formation, reduced planktonic growth, and reduced virulence. Moreover, the transcriptional depletion of aphA, the master regulator associated with low cell density, was linked to the downregulation of genes related to virulence. This phenomenon appears to be phage-specific, suggesting a finely tuned metabolic adaptation driven by phage-host interaction. These findings contribute to our understanding of the role of Vibrio species in microbial marine ecology and highlight the complex interplay between phage resistance, quorum sensing, and bacterial physiology. | 2023 | 37764117 |
| 9338 | 7 | 0.9988 | Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Extensive data in a wide range of organisms point to the importance of polyamine homeostasis for growth. The two most common polyamines found in bacteria are putrescine and spermidine. The investigation of polyamine function in bacteria has revealed that they are involved in a number of functions other than growth, which include incorporation into the cell wall and biosynthesis of siderophores. They are also important in acid resistance and can act as a free radical ion scavenger. More recently it has been suggested that polyamines play a potential role in signaling cellular differentiation in Proteus mirabilis. Polyamines have also been shown to be essential in biofilm formation in Yersinia pestis. The pleiotropic nature of polyamines has made their investigation difficult, particularly in discerning any specific effect from more global growth effects. Here we describe key developments in the investigation of the function of polyamines in bacteria that have revealed new roles for polyamines distinct from growth. We describe the bacterial genes necessary for biosynthesis and transport, with a focus on Y. pestis. Finally we review a novel role for polyamines in the regulation of biofilm development in Y. pestis and provide evidence that the investigation of polyamines in Y. pestis may provide a model for understanding the mechanism through which polyamines regulate biofilm formation. | 2007 | 17966408 |
| 728 | 8 | 0.9988 | Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Sodium hypochlorite (NaOCl) and its active ingredient, hypochlorous acid (HOCl), are the most commonly used chlorine-based disinfectants. HOCl is a fast-acting and potent antimicrobial agent that interacts with several biomolecules, such as sulfur-containing amino acids, lipids, nucleic acids, and membrane components, causing severe cellular damage. It is also produced by the immune system as a first-line of defense against invading pathogens. In this review, we summarize the adaptive responses of Gram-negative bacteria to HOCl-induced stress and highlight the role of chaperone holdases (Hsp33, RidA, Cnox, and polyP) as an immediate response to HOCl stress. We also describe the three identified transcriptional regulators (HypT, RclR, and NemR) that specifically respond to HOCl. Besides the activation of chaperones and transcriptional regulators, the formation of biofilms has been described as an important adaptive response to several stressors, including HOCl. Although the knowledge on the molecular mechanisms involved in HOCl biofilm stimulation is limited, studies have shown that HOCl induces the formation of biofilms by causing conformational changes in membrane properties, overproducing the extracellular polymeric substance (EPS) matrix, and increasing the intracellular concentration of cyclic-di-GMP. In addition, acquisition and expression of antibiotic resistance genes, secretion of virulence factors and induction of the viable but nonculturable (VBNC) state has also been described as an adaptive response to HOCl. In general, the knowledge of how bacteria respond to HOCl stress has increased over time; however, the molecular mechanisms involved in this stress response is still in its infancy. A better understanding of these mechanisms could help understand host-pathogen interactions and target specific genes and molecules to control bacterial spread and colonization. | 2020 | 32796669 |
| 8309 | 9 | 0.9988 | The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. Virulence gene expression can represent a substantial fitness cost to pathogenic bacteria. In the model entero-pathogen Salmonella Typhimurium (S.Tm), such cost favors emergence of attenuated variants during infections that harbor mutations in transcriptional activators of virulence genes (e.g., hilD and hilC). Therefore, understanding the cost of virulence and how it relates to virulence regulation could allow the identification and modulation of ecological factors to drive the evolution of S.Tm toward attenuation. In this study, investigations of membrane status and stress resistance demonstrate that the wild-type (WT) expression level of virulence factors embedded in the envelope increases membrane permeability and sensitizes S.Tm to membrane stress. This is independent from a previously described growth defect associated with virulence gene expression in S.Tm. Pretreating the bacteria with sublethal stress inhibited virulence expression and increased stress resistance. This trade-off between virulence and stress resistance could explain the repression of virulence expression in response to harsh environments in S.Tm. Moreover, we show that virulence-associated stress sensitivity is a burden during infection in mice, contributing to the inherent instability of S.Tm virulence. As most bacterial pathogens critically rely on deploying virulence factors in their membrane, our findings could have a broad impact toward the development of antivirulence strategies. | 2022 | 35389980 |
| 9334 | 10 | 0.9988 | Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Antibiotic resistance, virulence, and other plasmids in bacteria use toxin-antitoxin gene pairs to ensure their persistence during host replication. The toxin-antitoxin system eliminates plasmid-free cells that emerge as a result of segregation or replication defects and contributes to intra- and interspecies plasmid dissemination. Chromosomal homologs of toxin-antitoxin genes are widely distributed in pathogenic and other bacteria and induce reversible cell cycle arrest or programmed cell death in response to starvation or other adverse conditions. The dissection of the interaction of the toxins with intracellular targets and the elucidation of the tertiary structures of toxin-antitoxin complexes have provided exciting insights into toxin-antitoxin behavior. | 2003 | 12970556 |
| 8343 | 11 | 0.9988 | Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria. | 2022 | 35889104 |
| 8314 | 12 | 0.9987 | Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome-bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections. | 2017 | 29043249 |
| 8324 | 13 | 0.9987 | Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence. Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile-bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection. | 2017 | 28484445 |
| 8315 | 14 | 0.9987 | The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Lipopolysaccharides (LPSs) are ubiquitous, indispensable components of the cell surface of Gram-negative bacteria that apparently have diverse roles in bacterial pathogenesis of plants. As an outer membrane component, LPS may contribute to the exclusion of plant-derived antimicrobial compounds promoting the ability of a bacterial plant pathogen to infect plants. In contrast, LPS can be recognized by plants to directly trigger some plant defense-related responses. LPS can also alter the response of plants to subsequent bacterial inoculation; these delayed effects include alterations in the expression patterns of genes coding for some pathogenesis-related (PR) proteins, promotion of the synthesis of antimicrobial hydroxycinnamoyl-tyramine conjugates, and prevention of the hypersensitive reaction caused by avirulent bacteria. Prevention of the response may allow expression of resistance in the absence of catastrophic tissue damage. Recognition of LPS (and other nonspecific determinants) may initiate responses in plants that restrict the growth of nonpathogenic bacteria, whereas plant pathogens may possess hrp gene-dependent mechanisms to suppress such responses. | 2000 | 11701843 |
| 308 | 15 | 0.9987 | Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology. Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilisIMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches. | 2017 | 28461449 |
| 8284 | 16 | 0.9987 | Redox signaling in human pathogens. In recent studies of human bacterial pathogens, oxidation sensing and regulation have been shown to impact very diverse pathways that extend beyond inducing antioxidant genes in the bacteria. In fact, some redox-sensitive regulatory proteins act as major regulators of bacteria's adaptability to oxidative stress, an ability that originates from immune host response as well as antibiotic stress. Such proteins play particularly important roles in pathogenic bacteria S. aureus, P. aeruginosa, and M. tuberculosis in part because reactive oxygen species and reactive nitrogen species present significant challenges for pathogens during infection. Herein, we review recent progress toward the identification and understanding of oxidation sensing and regulation in human pathogens. The newly identified redox switches in pathogens are a focus of this review. We will cover several reactive oxygen species-sensing global regulators in both gram-positive and gram-negative pathogenic bacteria in detail. The following discussion of the mechanisms that these proteins employ to sense redox signals through covalent modification of redox active amino acid residues or associated metalloprotein centers will provide further understanding of bacteria pathogenesis, antibiotic resistance, and host-pathogen interaction. | 2011 | 20578795 |
| 8329 | 17 | 0.9987 | Protozoan predation enhances stress resistance and antibiotic tolerance in Burkholderia cenocepacia by triggering the SOS response. Bacterivorous protists are thought to serve as training grounds for bacterial pathogens by subjecting them to the same hostile conditions that they will encounter in the human host. Bacteria that survive intracellular digestion exhibit enhanced virulence and stress resistance after successful passage through protozoa but the underlying mechanisms are unknown. Here we show that the opportunistic pathogen Burkholderia cenocepacia survives phagocytosis by ciliates found in domestic and hospital sink drains, and viable bacteria are expelled packaged in respirable membrane vesicles with enhanced resistance to oxidative stress, desiccation, and antibiotics, thereby contributing to pathogen dissemination in the environment. Reactive oxygen species generated within the protozoan phagosome promote the formation of persisters tolerant to ciprofloxacin by activating the bacterial SOS response. In addition, we show that genes encoding antioxidant enzymes are upregulated during passage through ciliates increasing bacterial resistance to oxidative radicals. We prove that suppression of the SOS response impairs bacterial intracellular survival and persister formation within protists. This study highlights the significance of protozoan food vacuoles as niches that foster bacterial adaptation in natural and built environments and suggests that persister switch within phagosomes may be a widespread phenomenon in bacteria surviving intracellular digestion. | 2024 | 38366016 |
| 8267 | 18 | 0.9987 | Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Bacteria can readily generate mutations that prevent bacteriophage (phage) adsorption and thus make bacteria resistant to infections with these viruses. Nevertheless, the majority of bacteria carry complex innate and/or adaptive immune systems: restriction-modification (RM) and CRISPR-Cas, respectively. Both RM and CRISPR-Cas are commonly assumed to have evolved and be maintained to protect bacteria from succumbing to infections with lytic phage. Using mathematical models and computer simulations, we explore the conditions under which selection mediated by lytic phage will favour such complex innate and adaptive immune systems, as opposed to simple envelope resistance. The results of our analysis suggest that when populations of bacteria are confronted with lytic phage: (i) In the absence of immunity, resistance to even multiple bacteriophage species with independent receptors can evolve readily. (ii) RM immunity can benefit bacteria by preventing phage from invading established bacterial populations and particularly so when there are multiple bacteriophage species adsorbing to different receptors. (iii) Whether CRISPR-Cas immunity will prevail over envelope resistance depends critically on the number of steps in the coevolutionary arms race between the bacteria-acquiring spacers and the phage-generating CRISPR-escape mutants. We discuss the implications of these results in the context of the evolution and maintenance of RM and CRISPR-Cas and highlight fundamental questions that remain unanswered. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'. | 2019 | 30905282 |
| 8282 | 19 | 0.9987 | Gut microbiota: a new player in regulating immune- and chemo-therapy efficacy. Development of drug resistance represents the major cause of cancer therapy failure, determines disease progression and results in poor prognosis for cancer patients. Different mechanisms are responsible for drug resistance. Intrinsic genetic modifications of cancer cells induce the alteration of expression of gene controlling specific pathways that regulate drug resistance: drug transport and metabolism; alteration of drug targets; DNA damage repair; and deregulation of apoptosis, autophagy, and pro-survival signaling. On the other hand, a complex signaling network among the entire cell component characterizes tumor microenvironment and regulates the pathways involved in the development of drug resistance. Gut microbiota represents a new player in the regulation of a patient's response to cancer therapies, including chemotherapy and immunotherapy. In particular, commensal bacteria can regulate the efficacy of immune checkpoint inhibitor therapy by modulating the activation of immune responses to cancer. Commensal bacteria can also regulate the efficacy of chemotherapeutic drugs, such as oxaliplatin, gemcitabine, and cyclophosphamide. Recently, it has been shown that such bacteria can produce extracellular vesicles (EVs) that can mediate intercellular communication with human host cells. Indeed, bacterial EVs carry RNA molecules with gene expression regulatory ability that can be delivered to recipient cells of the host and potentially regulate the expression of genes involved in controlling the resistance to cancer therapy. On the other hand, host cells can also deliver human EVs to commensal bacteria and similarly, regulate gene expression. EV-mediated intercellular communication between commensal bacteria and host cells may thus represent a novel research area into potential mechanisms regulating the efficacy of cancer therapy. | 2020 | 33062956 |