AB - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
219300.9933Distributions and Types of Multidrug-Resistant Acinetobacter baumannii in Different Departments of a General Hospital. BACKGROUND: Acinetobacter baumannii is the most prevalent strain in hospitals and different clinical departments. OBJECTIVES: The current study aimed to investigate the genetic characteristics and resistance mechanisms of A. baumannii isolated from clinical samples in Shaoxing people's hospital affiliated to Zhejiang University, Shaoxing, China. PATIENTS AND METHODS: Acinetobacter baumannii strains were isolated from blood, phlegm and skin of the patients hospitalized in different departments as respiratory medicine, plastic surgery and intensive care unit (ICU). Multilocus sequence typing (MLST) was used to characterize the isolates. Kirby-Bauer test was used to evaluate antibiotic resistance of the bacteria. The expression of resistance inducing genes was detected by reverse transcription polymerase chain reaction (RT-PCR). The results were analyzed and compared. RESULTS: Two bacterial types, ST208, and ST218, were identified in all 140 samples. The ST208 mainly came from ICU and department of respiratory medicine, while ST218 from department of plastic surgery; 70.21% of ST208 and 84.78% of ST218 were carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-susceptible Acinetobacter baumannii (CSAB), respectively. Multidrug-resistance genes in CRAB isolated from the hospital mainly included, oxa-23, oxa-5, intl 1 and qaceΔ1-sul 1. Besides, the highest and lowest antibiotic resistance was observed in the strains isolated from blood samples and wounds, respectively. CONCLUSIONS: The distribution of AB varies in different clinical departments and samples. In the hospital under study, the main types of AB were ST208 and ST218. The genes which affect the ability of antibiotic-resistance were oxa-23, oxa-51, intl 1 and qaceΔ1-sul 1.201526487921
227210.9933Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. BACKGROUND: Wastewater-based monitoring represents a useful tool for antibiotic resistance surveillance. AIM: To investigate the prevalence and abundance of antibiotic resistance genes (ARGs) in hospital wastewater over time. METHODS: Wastewater from two hospitals in Finland (HUS1 and HUS2) was monitored weekly for nine weeks (weeks 25-33) in summer 2020. A high-throughput real-time polymerization chain reaction (HT-qPCR) system was used to detect and quantify 216 ARGs and genes associated with mobile genetic elements (MGEs), integrons, and bacteria causing hospital-acquired infections (HAIs), as well as the 16S rRNA gene. Data from HT-qPCR were analysed and visualized using a novel digital platform, ResistApp. Eight carbapenem resistance genes (blaGES, blaKPC, blaVIM, blaNDM, blaCMY, blaMOX, blaOXA48, and blaOXA51) and three genes associated with bacteria causing HAIs (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were studied. FINDINGS: There was a significantly higher number of ARGs at both hospitals in weeks 27-30 (174-191 genes) compared to other sampling weeks (151-171 genes). Our analyses also indicated that the two hospitals, which used different amounts of antibiotics, had significantly different resistance gene profiles. Carbapenem resistance genes were more prevalent and abundant in HUS1 than HUS2. Across both hospitals, blaGES and blaVIM were the most prevalent and abundant. There was also a strong positive association between blaKPC and K. pneumoniae in HUS1 wastewater. CONCLUSION: Routine wastewater-based monitoring using ResistApp can provide valuable information on the prevalence and abundance of ARGs in hospitals. This helps hospitals understand the spread of antibiotic resistance in hospitals and identify potential areas for intervention.202134537275
224220.9932Unveiling meropenem resistance and co-resistance patterns in Klebsiella pneumoniae and Acinetobacter baumannii: a global genome analysis using ML/DL and association mining. The increasing prevalence of meropenem-resistant gram-negative bacteria has led to higher treatment failure and mortality rates. The global availability of bacterial WGS data with antimicrobial resistance phenotypes enables large-scale analyses to explore resistance determinants. This study investigated meropenem resistance mechanisms in multidrug-resistant Klebsiella pneumoniae (KP) and Acinetobacter baumannii (AB) isolates using advanced data analytics. We analysed AMR genes and mutations from 2,411 KP and 375 AB isolates. Notable differences were observed in the proportions of genes contributing to the meropenem resistance mechanism categories between KP and AB, including carbapenemases (4% in KP, 23% in AB), antibiotic efflux (30%, 60%), target alteration (23%, 12%), and reduced permeability (18%, 3%). Mutation frequencies also varied, with antibiotic efflux (26%, 67%), target alteration (64%, 5%), and reduced permeability (7%, 15%). Using ML/DL and association mining approaches, we identified key features such as bla(KPC-2), bla(KPC-3), ble(MBL), and aac(6')-Ib9 in KP, and bla(OXA-23), Abau_gyrA_FLO|Ser81Leu, and Abau_OprD_IMP|Asn411Asp in AB. The co-occurrences of AAC genes and gyrA mutation suggest co-resistance to meropenem, aminoglycosides, and fluoroquinolones, while oprD mutations may indicate a shared resistance potential. These results offer additional insights into the complexity of meropenem resistance and its associated factors.202541162893
227030.9931Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks. Increasing isolation rates of resistant bacteria in the last years require identification of potential infection reservoirs in healthcare facilities. Especially the clinical wastewater network represents a potential source of antibiotic resistant bacteria. In this work, the siphons of the sanitary installations from 18 hospital rooms of two German hospitals were examined for antibiotic resistant bacteria and antibiotic residues including siphons of showers and washbasins and toilets in sanitary units of psychosomatic, haemato-oncological, and rehabilitation wards. In addition, in seven rooms of the haemato-oncological ward, the effect of 24 h of stagnation on the antibiotic concentrations and MDR (multi-drug-resistant) bacteria in biofilms was evaluated. Whereas no antibiotic residues were found in the psychosomatic ward, potential selective concentrations of piperacillin, meropenem and ciprofloxacin were detected at a rehabilitation ward and ciprofloxacin and trimethoprim were present at a haemato-oncology ward. Antibiotic resistant bacteria were isolated from the siphons of all wards, however in the psychosomatic ward, only one MDR strain with resistance to piperacillin, third generation cephalosporins and quinolones (3MRGN) was detected. In contrast, the other two wards yielded 11 carbapenemase producing MDR isolates and 15 3MRGN strains. The isolates from the haemato-oncological ward belonged mostly to two specific rare sequence types (ST) (P. aeruginosa ST823 and Enterobacter cloacae complex ST167). In conclusion, clinical wastewater systems represent a reservoir for multi-drug-resistant bacteria. Consequently, preventive and intervention measures should not start at the wastewater treatment in the treatment plant, but already in the immediate surroundings of the patient, in order to minimize the infection potential.201930905579
224440.9930Mechanical ventilation-associated pneumonia caused by Acinetobacter baumannii in Northeast China region: analysis of genotype and drug resistance of bacteria and patients' clinical features over 7 years. OBJECTIVE: To investigate the clinical features and outcomes of patients with mechanical ventilation-associated pneumonia (VAP) caused by Acinetobacter baumannii (Ab), and to characterize the drug resistance of pathogenic strains and carbapenem resistance-associated genes. METHODS: Clinical data were collected from the PICU of Shengjing Hospital. Patients who met the diagnostic criteria of VAP and for whom Ab was a pathogen were selected as study participants. The patients were divided into carbapenem-resistant A. baumannii (CRAB) and carbapenem-sensitive A. baumannii (CSAB) groups. The genes closely associated with Ab resistance to carbapenems and the efflux pump-related genes were detected by real-time polymerase chain reaction, and results compared between the two groups. RESULTS: The total mechanical ventilation time and the administration time of antibiotics after a diagnosis of Ab infection were significantly higher in the CRAB group. And the CRAB group strains were only sensitive to amikacin, cephazolin, compound sulfamethoxazole, and tigecycline. Genetic test results indicated that IPM expression was not significantly different between two groups. The OXA-51 and OXA-23 in the CRAB group was markedly higher than that in the CSAB group, while OXA-24 expression was markedly lower. The expression of AdeABC and AdeFGH was significantly greater in the CRAB compared to CSAB group. CONCLUSION: In pediatric patients with VAP caused by Ab infection, the detection rate of CRAB strains is far higher than that of CSAB strains; The abnormal expression of β-lactamase-producing genes (OXA-23, OXA-24, and OXA-51) and efflux pump-related genes (AdeABC and AdeFGH) is closely related to the production of CRAB.202134526127
272850.9930The pollution level of the bla(OXA-58) carbapenemase gene in coastal water and its host bacteria characteristics. This paper investigated 10 carbapenemase genes and selected the hosts of these genes in the estuary of Bohai Bay. The results showed that the OXA-58 producer accounted for a large percentage of carbapenem resistant bacteria in the sampling points, whereas the VIM, KPC, NDM, IMP, GES, OXA-23, OXA-24, OXA-48 and OXA-51 producers were not detected in the study. In addition, 9 bacterial genera with 100% identical bla(OXA-58) sequences, including Pseudomonas, Rheinheimera, Stenotrophomonas, Shewanella, Raoultella, Vibrio, Pseudoalteromonas, Algoriphagus, Bowmanella and Thalassospira, were isolated from seawater. It is suggested that the host of bla(OXA-58) gene were varied and many kinds of them could survive in the seawater. Moreover, we preformed the quantitative RT-PCR and the result shown the abundance of bla(OXA-58) fluctuated between 2.8×10(-6) copies/16S and 2.46×10(-4) copies/16S, which was of the same order of magnitude as some common antibiotic resistance genes in environment. Furthermore, the variation trend of bla(OXA-58) gene suggested that pollution discharge and horizontal gene transfer could contribute to the increase of the gene in coastal area.201930321713
276760.9930Characterisation of class 3 integrons with oxacillinase gene cassettes in hospital sewage and sludge samples from France and Luxembourg. In this study, antibiotic resistance class 3 integrons in Gram-negative bacteria isolated from hospital sewage and sludge and their genetic contents were characterised. Two samples of hospital effluent from France and Luxembourg and one sample of sludge from a wastewater treatment plant in France were collected in 2010 and 2011. Bacteria were cultured on selective agar plates and integrons were detected in colonies by quantitative PCR. Integron gene cassette arrays and their genetic environments were analysed by next-generation sequencing. Three class 3 integron-positive isolates were detected, including Acinetobacter johnsonii LIM75 (French hospital effluent), Aeromonas allosaccharophila LIM82 (sludge) and Citrobacter freundii LIM86 (Luxembourg hospital effluent). The gene cassettes were all implicated in antibiotic (aminoglycoside and β-lactam) or antiseptic resistance. An oxacillinase gene cassette (blaOXA-10, blaOXA-368 or blaOXA-2) was found in each integron. All of the class 3 integrons were located on small mobilisable plasmids. This study highlights the role of class 3 integrons in the dissemination of clinically relevant antibiotic resistance genes, notably oxacillinase genes, in hospital effluent.201627499434
277870.9930The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany. Between August 2018 and June 2019, a river system in Germany that supplies a drinking water reservoir and is subject to the discharge from two sewage treatment plants was monitored for antibiotic residues via liquid chromatography-tandem mass spectrometry, antibiotic resistance genes (including bla(NDM), bla(VIM), bla(OXA-48), bla(KPC), bla(GIM), bla(SME), bla(IMI), bla(IMP), bla(SPM), bla(SIM), bla(OXA-23), bla(OXA-24), bla(OXA-51), bla(OXA-58), mcr) via qualitative real-time PCR and antibiotic-resistant bacteria [belonging to the ESKAPE-group (Enterococcus faecium, Staphyhlococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter ssp.; with resistance against Carbapenemases, Cephalosporines and Colistin) and Escherichia coli] based on cultivation methods followed by a characterization via MALDI-TOF MS and susceptibility testing applying microdilution. Residues of macrolide antibiotics such as clarithromycin (up to 0.60 μg/L) and residues of sulfamethoxazole (up to 0.40 μg/L) and trimethoprim (up to 0.39 μg/L) were detected downstream of the sewage treatment plants. In addition, no antibiotic residues were detected upstream the respective sewage treatment plants, except for anhydroerythromycin (n = 1, 202031978723
525580.9929Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Hospital wastewater contains a variety of human antibiotics and pathogens, which makes the treatment of hospital wastewater essential. However, there is a lack of research on these pollutants at hospital wastewater treatment plants. In this study, the characteristics and removal of antibiotics and antibiotic resistance genes (ARGs) in the independent treatment processes of hospitals of different scales (primary hospital, H1; secondary hospital, H2; and tertiary hospital, H3) were investigated. The occurrence of antibiotics and ARGs in wastewater from three hospitals varied greatly. The first-generation cephalosporin cefradine was detected at a concentration of 2.38 μg/L in untreated wastewater from H1, while the fourth-generation cephalosporin cefepime had the highest concentration, 540.39 μg/L, at H3. Ofloxacin was detected at a frequency of 100% and had removal efficiencies of 44.2%, 51.5%, and 81.6% at H1, H2, and H3, respectively. The highest relative abundances of the β-lactam resistance gene bla(GES-1) (1.77×10(-3) copies/16S rRNA), the quinolone resistance gene qnrA (8.81×10(-6) copies/16S rRNA), and the integron intI1 (1.86×10(-4) copies/16S rRNA) were detected in the treated wastewater. The concentrations of several ARGs were increased in the treated wastewater (e.g. bla(OXA-1), bla(OXA-10), and bla(TEM-1)). Several pathogenic or opportunistic bacteria (e.g. Acinetobacter, Klebsiella, Aeromonas, and Pseudomonas) were observed at high relative abundances in the treated wastewater. These results suggested the co-occurrence of antibiotics, ARGs, and antibiotic-resistant pathogens in hospital wastewater, and these factors may spread into the receiving aquatic environment.202134089156
83490.9929Molecular diversity of class 2 integrons in antibiotic-resistant gram-negative bacteria found in wastewater environments in China. The molecular architecture of class 2 integrons among gram-negative bacteria from wastewater environments was investigated in Jinan, China. Out of the 391 antibiotic-resistant bacteria found, 38 isolates harboring class 2 integrons encoding potentially transferrable genes that could confer antibiotic resistance were found. These isolates were classified into 19 REP-PCR types. These strains were identified using 16S rRNA gene sequencing and found to be as follows: Proteus mirabilis (16), Escherichia coli (7), Providencia spp. (7), Proteus spp. (2), P. vulgaris (3), Shigella sp. (1), Citrobacter freundii (1), and Acinetobacter sp. (1). Their class 2 integron cassette arrays were amplified and then either analyzed using PCR-RFLP or sequenced. The typical array dfrA1-sat2-aadA1 was detected in 27 isolates. Six atypical arrays were observed, including three kinds of novel arrangements (linF2(∆attC1)-dfrA1(∆attC2)-aadA1-orf441 or linF2(∆attC1)-dfrA1(∆attC2)-aadA1, dfrA1-catB2-sat2-aadA1, and estX(Vr)-sat2-aadA1) and a hybrid with the 3'CS of class 1 integrons (dfrA1-sat2-aadA1-qacH), and dfrA1-sat1. Twenty-four isolates were also found to carry class 1 integrons with 10 types of gene cassette arrays. Several non-integron-associated antibiotic resistance genes were found, and their transferability was investigated. Results showed that water sources in the Jinan region harbored a diverse community of both typical and atypical class 2 integrons, raising concerns about the overuse of antibiotics and their careless disposal into the environment.201323264021
2449100.9929Transcriptional expression of secondary resistance genes ccdB and repA2 is enhanced in presence of cephalosporin and carbapenem in Escherichia coli. BACKGROUND: The issue of carbapenem resistance in E.coli is very concerning and it is speculated that cumulative effect of both primary resistance genes and secondary resistance genes that act as helper to the primary resistance genes are the reason behind their aggravation. Therefore, here we attempted to find the role of two secondary resistance genes (SRG) ccdB and repA2 in carbapenem resistance in E. coli (CRE). In this context influential genes belonging to secondary resistome that act as helper to the primary resistance genes like bla(NDM) and bla(CTX-M) in aggravating β-lactam resistance were selected from an earlier reported in silico study. Transcriptional expression of the selected genes in clinical isolates of E.coli that were discretely harboring bla(NDM-1), bla(NDM-4), bla(NDM-5), bla(NDM-7) and bla(CTX-M-15) with and without carbapenem and cephalosporin stress (2 μg/ml) was determined by real time PCR. Cured mutants sets that were lacking (i) primary resistance genes, (ii) secondary resistance genes and (iii) both primary and secondary resistance genes were prepared by SDS treatment. These sets were then subjected to antibiotic susceptibility testing by Kirby Bauer disc diffusion method. RESULTS: Out of the 21 genes reported in the in silico study, 2 genes viz. repA2 and ccdB were selected for transcriptional expression analysis. repA2, coding replication regulatory protein, was downregulated in response to carbapenems and cephalosporins. ccdB, coding for plasmid maintenance protein, was also downregulated in response to carbapenems except imipenem and cephalosporins. Following plasmid elimination assay increase in diameter of zone of inhibition under stress of both antibiotics was observed as compared to uncured control hinting at the reversion of antibiotic susceptibility by the-then resistant bacteria. CONCLUSION: SRGs repA2 and ccdB help sustenance of bla(NDM) and bla(CTX-M) under carbapenem and cephalosporin stress.202133750290
1179110.9929Detection of 5 Kinds of Genes Related to Plasmid-Mediated Quinolone Resistance in Four Species of Nonfermenting Bacteria with 2 Drug Resistant Phenotypes. OBJECTIVE: This study aimed to detect 5 kinds of genes related to plasmid-mediated quinolone resistance in four species of nonfermenting bacteria with 2 drug resistance phenotypes (multidrug resistance and pandrug resistance), which were Acinetobacter baumannii (Ab), Pseudomonas aeruginosa (Pa), Stenotrophomonas maltophilia (Sm), and Elizabethkingia meningoseptica (Em). METHODS: The Phoenix NMIC/ID-109 panel and API 20NE panel were applied to 19 isolated strains, including 6 Ab strains (2 strains with multidrug resistance and 4 strains with pandrug resistance), 6 Pa strains (3 strains with multidrug resistance and 3 strains with pandrug resistance), 4 Sm strains (2 strains with multidrug resistance and 2 strains with pandrug resistance), and 3 Cm strains (2 strains with multidrug resistance and 1 strain with pandrug resistance). After strain identification and drug susceptibility test, PCR was applied to detect 5 genes related to plasmid-mediated quinolone resistance. The genes detected were quinolone resistance A (qnrA), aminoglycoside acetyltransferase ciprofloxacin resistance variant, acc(6')-Ib-cr, and 3 integrons (intI1, intI2, and intI3). The amplified products were analyzed by 1% agarose gel electrophoresis and sequenced. Sequence alignment was carried out using the bioinformatics technique. RESULTS: Of 19 strains tested, 8 strains carried acc(6')-Ib-cr and 6 of them were of pandrug resistance phenotype (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of acc(6')-Ib-cr was 60.0% for strains of pandrug resistance (6/10). Two strains were of multidrug resistance (1 Ab strain and 1 Pa strain), and the carrying rate of acc(6')-Ib-cr was 22.0% (2/9). The carrying rate was significantly different between strains of multidrug resistance and pandrug resistance (P < 0.05). The class 1 integron was detected in 11 strains, among which 6 strains were of pandrug resistance (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of the class 1 integron was 60.0% (6/10). Five strains were of multidrug resistance (3 Pa strains, 1 Ab strain, and 1 Em strain), and the carrying rate was 55.6% (5/9). The carrying rate of the class 1 integron was not significantly different between strains of multidrug resistance and pandrug resistance (P > 0.05). Both acc(6')-Ib-cr and intI1 were detected in 6 strains, which were negative for qnrA, intI2, and intI3. CONCLUSION: Quinolone resistance of isolated strains was related to acc(6')-Ib-cr and intI1 but not to qnrA, intI2, or intI3. The carrying rate of acc(6')-Ib-cr among the strains of pandrug resistance was much higher than that among the strains of multidrug resistance. But, the strains of two drug resistant phenotypes were not significantly different in the carrying rate of intI1. The detection rates of the two genes were high and similar in Ab and Pa strains. 1 Em strain carried the class 1 integron.202032351636
831120.9928RmtC and RmtF 16S rRNA Methyltransferase in NDM-1-Producing Pseudomonas aeruginosa. We investigated 16S rRNA methyltransferases in 38 blaNDM-1-positive Pseudomonas aeruginosa isolates and found RmtC in 3 isolates, 1 of which also harbored RmtF. The isolates were clonally unrelated; rmtC and rmtF genes were located on a chromosome with the blaNDM-1 gene. Strategies are needed to limit the spread of such isolates.201526488937
1984130.9928Genetic characterization of clinically relevant class 1 integrons carried by multidrug resistant bacteria (MDRB) isolated from the gut microbiota of highly antibiotic treated Salmo salar. OBJECTIVES: The main objective of this study was the genetic characterization of clinically relevant class 1 integrons carried by multidrug resistant bacteria isolated from the intestinal microbiota of aquaculture salmon treated with high concentrations of antibiotics. METHODS: In 82 multidrug resistant bacterial isolates, the prevalence of both the conserved elements of the integrons, qacEΔ1 and sul1 genes, and the variable region (VR) was determined. Further, whole genome sequencing and complete genetic analysis was performed in VR-positive isolates. RESULTS: Despite the fact that 100% of the bacterial isolates presented the intI1 gene, only 12.3% carried the qacEΔ1 and sul1 genes and only two (2.4%) presented a VR with gene cassettes. In the Pseudomonas baetica 25P2F9 isolate, a VR carrying aac(6')31, qacH, and bla(OXA-2) gene cassettes was described, whereas the VR of Aeromonas salmonicida 30PB8 isolate showed a dfrA14 gene cassette. The array of gene cassettes found in the Pseudomonas isolate appears with high frequency in clinically relevant pathogens such as Pseudomonas aeruginosa or Escherichia coli. Additionally, it was possible to determine that these integrons are contained in plasmids and coul be easily transferred. Resistome analysis demonstrated that both isolates carried a great diversity of antibiotic resistance genes, including many β-lactamases. Even in the Aeromonas isolate a new oxacillin-hydrolyzing beta-lactamase gene was described (bla(OXA-956)). CONCLUSION: The presence of multidrug resistant bacteria and clinically relevant genetic elements in the salmon intestinal microbiota make the aquaculture a hotspot in the phenomenon of antibiotic resistance; therefore, the control of antibiotics used in this activity is a key point to avoid its escalation.202235158077
905140.9928Cefiderocol-resistant pathogens in German hospital wastewater: a reservoir for multidrug resistance. Cefiderocol-resistant bacteria pose a growing concern in both clinical and environmental settings. This study investigates cefiderocol-resistant bacteria in wastewater from six German tertiary care hospitals. A total of 36 samples were analysed using a culture-dependent approach involving cefiderocol pre-enrichment, yielding 97 cefiderocol-resistant isolates-primarily Enterobacter roggenkampii, Klebsiella oxytoca, Serratia marcescens, and Citrobacter farmeri. Most isolates exhibited high minimum inhibitory concentrations against cefiderocol and resistance to multiple antibiotics. Resistance rates were lower for meropenem-vaborbactam (10.3%) and imipenem-relebactam (33.0%), while all isolates remained susceptible to aztreonam-avibactam. Whole-genome sequencing of 79 isolates revealed a diverse resistome, with 78.5% (62/79) carrying carbapenemase genes. Some isolates harbored up to six distinct β-lactamase genes, including combinations of extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases, and one or multiple carbapenemases-such as as bla(OXA-48) co-occurring with bla(NDM-1) or bla(VIM-1). In addition, biocide and heavy metal resistance genes were prevalent, highlighting bacterial adaptation to harsh environments. Plasmid profiling showed significant interspecies variation, with C. farmeri and K. oxytoca displaying the highest plasmid loads. Across all isolates, 38 unique plasmid incompatibility types were detected, 18 of which were species-specific. These findings highlight the multidrug-resistant nature of wastewater-derived pathogens and the importance of monitoring resistance dissemination in healthcare environments.202540866524
2779150.9927Antibiotic resistance determinants among carbapenemase producing bacteria isolated from wastewaters of Kathmandu, Nepal. The emergence of carbapenem resistant bacteria (CRB) possesses a remarkable threat to the health of humans. CRB and carbapenem resistance genes (CRGs) have frequently been reported in clinical isolates from hospitals, however, their occurrence and distribution in wastewaters from various sources and river water have not been emphasized in Nepal. So, this study aimed to detect carbapenem resistant bacterial isolates and their resistance determinants in river water and different types of wastewaters. River water and both untreated and treated wastewater samples from hospitals, pharmaceutical industries, and municipal sewage were collected in summer and winter seasons. From 68 grab wastewater samples, CRB were detected only in 16 samples, which included eight hospital wastewater, and four each from untreated municipal sewage and river water. A total of 25 CRB isolates were detected with dominance of E. coli (44.0%) and K. pneumoniae (24.0%). The majority of the isolates harbored bla(NDM-1) (76.0%), followed by bla(OXA) (36.0%) and bla(KPC) (20.0%) genes. Hospital wastewater majorly contributed to the presence of bla(NDM-1), bla(KPC), and bla(OXA) along with intI1 genes compared to river water and untreated municipal sewage, especially during the winter season. However, CRB were not detected in treated effluents of hospitals and municipal sewage, and both influents and effluents from pharmaceutical industries. The combined presence of each bla(NDM-1) & bla(OXA) and bla(KPC) & bla(OXA) occurred in 16.0% of the bacterial isolates. The increased minimum inhibitory concentration (MIC) of meropenem was significantly associated with the presence of CRGs. The results of this study highlight the significance of carbapenem resistance in bacteria isolated from wastewater and river water, and underscore the necessity for efficient monitoring and control strategies to prevent the dispersion of carbapenem resistance in the environment and its potential consequences on human health.202438114055
1189160.9927Detection of the carbapenemase gene bla(VIM-5) in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. There are increasing concerns about possible dissemination of clinically relevant antibiotic resistance genes, including genes encoding for carbapenemases in the environment. However, little is known about environmental distribution of antibiotic resistance in Africa. In this study, four polluted urban wetlands in Nigeria were investigated as potential reservoirs of carbapenem-resistant bacteria (CRB). CRB were isolated from the wetlands, characterized by Blue-Carba test, MIC determinations and whole genome sequencing (WGS). Nine of 65 bacterial isolates identified as members of the Pseudomonas putida group (P. plecoglossicida and P. guariconensis, respectively) harboured the metallo-beta-lactamase gene bla(VIM-5). WGS revealed the bla(VIM-5) in three novel Tn402-like class 1 integron structures containing the cassette arrays aadB|bla(VIM-5)|bla(PSE-1), aadB|bla(VIM-5)|aadB|bla(PSE-1), and bla(VIM-5)|aadB|tnpA|bla(PSE-1)|smr2|tnpA, respectively. Strains carrying the aadB|bla(VIM-5)|bla(PSE-1) cassette also carried an identical integron without bla(VIM-5). In addition(,) the strains harboured another Tn402-like class 1 integron carrying bcr2, several multidrug resistance efflux pumps, and at least one of ampC, aph(3")-lb, aph(6)-ld, tetB, tetC, tetG, floR, and macAB. This is the first report of a carbapenemase gene in bacteria from environmental sources in Nigeria and the first report of bla(VIM-5) in environmental bacteria isolates. This result underscores the role of the Nigerian environment as reservoir of bacteria carrying clinically relevant antibiotic resistance genes.201830310126
2472170.9927A 'Tuba Drain' incorporated in sink drains reduces counts of antibiotic-resistant bacterial species at the plughole: a blinded, randomized trial in 36 sinks in a hospital outpatient department with a low prevalence of sink colonization by antibiotic-resistant species. BACKGROUND: Multi-resistant Gram-negative bacteria (GNB) survive in hospital drains in traps that contain water and may ascend into the sink because of splashes, or biofilm growth. AIM: To investigate whether the 'Tuba Drain' (TD) a long, bent, continually descending copper tube between the sink outlet and the trap prevents the ascent of bacteria. METHODS: After initial laboratory tests confirmed that the TD prevented bacteria in the U-bend from splashing upwards into the sink outlet, TDs were assessed in a randomized, blinded trial in a hospital outpatient department built in 2019. Sinks were paired into those with a similar clinical exposure and each member of each pair was randomized to receive either new, standard plumbing up to and including the trap (18 sinks) or the same new standard plumbing but including the TD inserted between the sink outlet and trap. Bacterial counts in swabs from the sink outlets were determined blindly before and monthly after the plumbing change for a year. GNB that are associated with clinical infection and carriage of resistance genes, Pseudomonas aeruginosa, Acinetobacter baumanii, Stenotrophomonas maltophilia and all Enterobacterales were the organisms of primary interest and termed target bacteria. FINDINGS: The TDs fitted into the required spaces and functioned without problems. The geometric means (over months) of the counts of target bacteria in TD-plumbed sinks was lower than those in their paired controls, P=0.012 (sign test, two-tailed). Prevalence of target bacteria in sinks was low. CONCLUSION: TDs were effective for reducing target bacteria in sinks.202539515476
865180.9927High Prevalence of bla(NDM-1), bla(VIM), qacE, and qacEΔ1 Genes and Their Association with Decreased Susceptibility to Antibiotics and Common Hospital Biocides in Clinical Isolates of Acinetobacter baumannii. The objective of this study was to evaluate the susceptibility of metallo-β-lactamase (MBL)-producing Acinetobacter baumannii (A. baumannii) clinical isolates to biocides. We also determined the prevalence and correlation of efflux pump genes, class 1 integron and MBL encoding genes. In addition, bla(VIM), bla(NDM-1), qacE and qacEΔ1 nucleotide sequence analysis was performed and compared to sequences retrieved from GenBank at the National Center for Biotechnology Information database. A. baumannii had a resistance rate to carbapenem of 71.4% and 39.3% and was found to be a MBL producer. The minimum inhibitory concentrations (MICs) of chlorhexidine and cetrimide were higher than the recommended concentrations for disinfection in 54.5% and 77.3% of MBL-positive isolates respectively and their MICs were significantly higher among qac gene-positive isolates. Coexistence of qac genes was detected in 68.1% and 50% of the isolates with bla(VIM) and bla(NDM-1) respectively. There was a significant correlation between the presence of qac genes and MBL-encoding bla(VIM) and bla(NDM-1) genes. Each of the bla(NDM-1), bla(VIM), qacE and qacEΔ1 DNA sequences showed homology with each other and with similar sequences reported from other countries. The high incidence of Verona integron-encoded metallo-β-lactamases (VIM) and New-Delhi-metallo-β-lactamase (NDM) and qac genes in A.baumannii highlights emerging therapeutic challenges for being readily transferable between clinically relevant bacteria. In addition reduced susceptibility to chlorhexidine and cetrimide and the potential for cross resistance to some antibiotics necessitates the urgent need for healthcare facilities to periodically evaluate biocides efficacy, to address the issue of antiseptic resistance and to initiate a "biocidal stewardship".201728417918
2770190.9927Prevalence and Abundance of Beta-Lactam Resistance Genes in Hospital Wastewater and Enterobacterales Wastewater Isolates. Antimicrobial resistance may develop in nature including in hospital wastewater through horizontal genetic transfer. Few studies were conducted on the antimicrobial resistance genes in hospital wastewater and wastewater isolates in Indonesia. The prevalence and abundance of beta-lactam resistance genes in hospital wastewater and Enterobacterales wastewater isolates were investigated. Twelve wastewater samples were collected from an influent wastewater treatment plant. Escherichia coli and Klebsiella pneumoniae were isolated from the wastewater samples by culture-based methods. DNA was extracted from wastewater samples and the isolates. Nineteen beta-lactam resistance genes were tested by a high throughput qRT-PCR method. bla(GES) and bla(TEM) were the most abundant genes detected in hospital wastewater and Escherichia coli, respectively (p < 0.001). The relative abundance of bla(CMY_2), bla(CTX-M5), bla(CTX-M8), bla(GES), bla(NDM), and bla(SHV11) in Klebsiella pneumoniae was higher than in the wastewater and Escherichia coli (p < 0.001; p = 0.006; p = 0.012; p < 0.001; p = 0.005; p < 0.001). Klebsiella pneumoniae might be associated with resistance to piperacillin/tazobactam, ceftriaxone, and cefepime (p < 0.001; p = 0.001; p < 0.001). In conclusion, ESBL genes showed higher abundance than carbapenemase genes in hospital wastewater samples. The ESBL-producing bacteria that were predominantly found in hospital wastewater may originate from clinical specimens. The culture-independent antibiotic resistance monitoring system might be developed as an early warning system for the increasing beta-lactam resistance level in clinical settings.202337104319