AAS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
348000.9550Short-term inhalation exposure evaluations of airborne antibiotic resistance genes in environments. Antibiotic resistance is a sword of Damocles that hangs over humans. In regards to airborne antibiotic resistance genes (AARGs), critical knowledge gaps still exist in the identification of hotspots and quantification of exposure levels in different environments. Here, we have studied the profiles of AARGs, mobile genetic elements (MGEs) and bacterial communities in various atmospheric environments by high throughput qPCR and 16S rRNA gene sequencing. We propose a new AARGs exposure dose calculation that uses short-term inhalation (STI). Swine farms and hospitals were high-risk areas where AARGs standardised abundance was more abundant than suburbs and urban areas. Additionally, resistance gene abundance in swine farm worker sputum was higher than that in healthy individuals in other environments. The correlation between AARGs with MGEs and bacteria was strong in suburbs but weak in livestock farms and hospitals. STI exposure analysis revealed that occupational intake of AARGs (via PM(10)) in swine farms and hospitals were 110 and 29 times higher than in suburbs, were 1.5 × 10(4), 5.6 × 10(4) and 5.1 × 10(2) copies, i.e., 61.9%, 75.1% and 10.7% of the overall daily inhalation intake, respectively. Our study comprehensively compares environmental differences in AARGs to identify high-risk areas, and forwardly proposes the STI exposure dose of AARGs to guide risk assessment.202235717091
307110.9550Human Disturbance Increases Health Risks to Golden Snub-Nosed Monkeys and the Transfer Risk of Pathogenic Antibiotic-Resistant Bacteria from Golden Snub-Nosed Monkeys to Humans. From the perspective of interactions in the human-animal-ecosystem, the study and control of pathogenic bacteria that can cause disease in animals and humans is the core content of "One Health". In order to test the effect of human disturbance (HD) on the health risk of pathogenic antibiotic-resistant bacteria (PARBs) to wild animals and transfer risk of the PARBs from wild animals to humans, golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel animals. Metagenomic analysis was used to analyze the characteristics of PARBs in the gut microbiota of golden snub-nosed monkeys. Then, the total contribution of antibiotic resistance genes (ARGs) and virulence factors (VFs) of the PARBs were used to assess the health risk of PARBs to golden snub-nosed monkeys, and the antimicrobial drug resistance and bacterial infectious disease of PARBs were determined to assess the transfer risk of PARBs from golden snub-nosed monkeys to humans. There were 18 and 5 kinds of PARBs in the gut microbiota of golden snub-nosed monkeys under HD (HD group) and wild habitat environments (W group), respectively. The total health risks of PARBs to the W group and the HD group were -28.5 × 10(-3) and 125.8 × 10(-3), respectively. There were 12 and 16 kinds of KEGG pathways of human diseases in the PARBs of the W group and the HD group, respectively, and the gene numbers of KEGG pathways in the HD group were higher than those in the W group. HD increased the pathogenicity of PARBs to golden snub-nosed monkeys, and the PARBs in golden snub-nosed monkeys exhibited resistance to lincosamide, aminoglycoside, and streptogramin antibiotics. If these PARBs transfer from golden snub-nosed monkeys to humans, then humans may acquire symptoms of pathogens including Tubercle bacillus, Staphylococcus, Streptococcus, Yersinia, Pertussis, and Vibrio cholera.202337835689
773820.9545The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexF(YTV-1), mexF(YTV-2), mexF(YTV-3), vanR(YTV-1), vanS(YTV-1) (carried by unclassified viruses), and bacA(YTB-1) (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity.202235870206
620030.9545Heterologous expression of bacterial and human multidrug resistance proteins protect Escherichia coli against mercury and zinc contamination. In order to determine the role of multidrug resistance proteins in mercury and zinc resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA genes were expressed in an Escherichia coli tolC mutant which is hypersensitive to metals. The three transporters conferred an increased mercury and zinc resistance to E. coli as compared to the control bacteria. This improved resistance correlated with a decreased zinc and mercury bioaccumulation. Indeed, quantification of intracellular metal concentrations by atomic absorption spectrometry (AAS) showed a 2.1-, 3-, and 5.1-fold decrease in zinc in cells expressing hMDR1, omrA, and lmrA, respectively, and a 2.7-, 7.5-, and 7.7-fold decrease in mercury in cells expressing omrA, lmrA, and hMDR1, respectively, as compared to the control bacteria. This means that hMDR1, LmrA, and OmrA proteins which are specialised in xenobiotic scavenging, their main known function, are nevertheless able to confer some resistance against metals. Our results show that the tolC mutated strain is well adapted to the study of MDR transporter activity and could be used to screen substrates and competitive hMDR1 inhibitors.200616703280
616740.9542Differential gene expression in Escherichia coli during aerosolization from liquid suspension. Comparative transcriptome analysis was used to determine the differentially expressed genes in Escherichia coli during aerosolization from liquid suspension. Isogenic mutant studies were then used to examine the potential part played by some of these genes in bacterial survival in the air. Bioaerosols were sampled after 3 min of nebulization, which aerosolized the bacteria from the liquid suspension to an aerosol chamber (A0), and after further 30 min of airborne suspension in the chamber (A30). Bacteria at A0 showed 65 differentially expressed genes (30 downregulated and 35 upregulated) as compared to the original bacteria in the nebulizer. Droplet evaporation models predicted a drop in temperature in the bioaerosols, which coincides with the change in the expression of cold shock protein genes-cspB and cspG in the bacteria. The most notable group of differentially expressed genes was sorbitol transport and metabolism genes (srlABDEMR). Other genes associated with osmotic stress, nutrient limitation, DNA damage, and other stresses were differentially expressed in the bacteria at A0. After further airborne suspension, one gene (ypfM, which encodes a hypothetical protein with unknown function) was downregulated in the bacteria at A30 as compared to those at A0. Finally, isogenic mutants with either the dps or srlA gene deleted (both genes were upregulated at A0) had lower survival than the parental strain, which is a sign of their potential ability to protect the bacteria in the air.201829808326
307450.9539Metagenomic analysis of microbial communities and antibiotic resistant genes in the Tijuana river, and potential sources. The Tijuana River is a transborder river that flows northwest across the border from Baja California in Mexico into Southern California before discharging into the Pacific Ocean. The river is frequently contaminated with raw sewage due to inadequate sanitary infrastructure in Tijuana. To assess the type and degree of microbial contamination, water samples were collected monthly from a near-border and an estuarine site from August 2020 until May 2021. A portion of each sample was used for epifluorescent microscopy and DNA was extracted directly from the rest for shotgun metagenomic sequencing. After sequence quality checking and processing, we used the rapid taxonomic identifier tool Kaiju to characterize the microbial diversity of the metagenomes and matched the sequences against the Comprehensive Antibiotic Resistance Database (CARD) to examine antimicrobial resistance genes (ARGs). Bacterial and viral-like particle (VLP) abundance was consistently higher in the near-border samples than in the estuarine samples, while alpha diversity (within sample biodiversity) was higher in estuarine samples. Beta-diversity analysis found clear compositional separation between samples from the two sites, and the near-border samples were more dissimilar to one another than were the estuarine sites. Near-border samples were dominated by fecal-associated bacteria and bacteria associated with sewage sludge, while estuarine sites were dominated by marine bacteria. ARGs were more abundant at the near-border site, but were also readily detectable in the estuarine samples, and the most abundant ARGs had multi-resistance to beta-lactam antibiotics. SourceTracker analysis identified human feces and sewage sludge to be the largest contributors to the near-border samples, while marine waters dominated estuarine samples except for two sewage overflow dates with high fecal contamination. Overall, our research determined human sewage microbes to be common in the Tijuana River, and the prevalence of ARGs confirms the importance of planned infrastructure treatment upgrades for environmental health.202438043772
354260.9539Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of Bla(TEM) and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of Bla(TEM) and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future.202133445049
319070.9537Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective. Higher usage of antimicrobial agents in both healthcare facilities and the communities has resulted in an increased spread of resistant bacteria. However, the improved infection prevention and control practices may also contribute to decreasing antimicrobial resistance (AMR). In the present study, wastewater-based epidemiology (WBE) approach was applied to explore the link between COVID-19 and the community usage of antimicrobials, as well as the prevalence of resistance genes. Longitudinal study has been conducted to monitor the levels of 50 antimicrobial agents (AAs), 24 metabolites, 5 antibiotic resistance genes (ARGs) and class 1 integrons (intI 1) in wastewater influents in 4 towns/cities over two years (April 2020 - March 2022) in the South-West of England (a total of 1,180 samples collected with 87,320 individual AA measurements and 8,148 ARG measurements). Results suggested higher loads of AAs and ARGs in 2021-22 than 2020-21, with beta-lactams, quinolones, macrolides and most ARGs showing statistical differences. In particular, the intI 1 gene (a proxy of environmental ARG pollution) showed a significant increase after the ease of the third national lockdown in England. Positive correlations for all quantifiable parent AAs and metabolites were observed, and consumption vs direct disposal of unused AAs has been identified via WBE. This work can help establish baselines for AMR status in communities, providing community-wide surveillance and evidence for informing public health interventions. Overall, studies focused on AMR from the start of the pandemic to the present, especially in the context of environmental settings, are of great importance to further understand the long-term impact of the pandemic on AMR.202438692256
810780.9537Effects of micron-scale zero valent iron on behaviors of antibiotic resistance genes and pathogens in thermophilic anaerobic digestion of waste activated sludge. This work investigated the metagenomics-based behavior and risk of antibiotic resistance genes (ARGs), and their potential hosts during thermophilic anaerobic digestion (TAD) of waste activated sludge, enhanced by micron-scale zero valent iron (mZVI). Tests were conducted with 0, 25, 100, and 250 mg mZVI/g total solids (TS). Results showed that up to 7.3% and 4.8% decrease in ARGs' abundance and diversity, respectively, were achieved with 100 mg mZVI/g TS. At these conditions, ARGs with health risk in abundance and human pathogenic bacteria (HPB) diversity were also decreased by 8.3% and 3.6%, respectively. Additionally, mZVI reduced abundance of 72 potential pathogenic supercarriers for ARGs with high health risk by 2.5%, 5.0%, and 6.1%, as its dosage increased. Overall, mZVI, especially at 100 mg/g TS, can mitigate antibiotic resistance risk in TAD. These findings are important for better understanding risks of ARGs and their pathogenic hosts in ZVI-enhanced TAD of solid wastes.202336931448
264490.9535Prevalence of Antimicrobial-Resistant Escherichia coli in Migratory Greater White-Fronted Geese (Anser albifrons) and their Habitat in Miyajimanuma, Japan. The spread of antimicrobial-resistant bacteria (ARB) in natural environments including wild animals is a concern for public health. Birds cover large areas, and some fly across borders to migrate in large flocks. As a migratory bird, the Greater White-fronted Goose (Anser albifrons) travels to Miyajimanuma, North Japan, each spring and autumn. To investigate the ARB in migratory birds and their surroundings, we collected 110 fecal samples of A. albifrons and 18 water samples from Miyajimanuma in spring and autumn of 2019. Isolation of Escherichia coli was performed using selective agars with or without antimicrobials (cefazolin and nalidixic acid). Isolates of E. coli were recovered from 56 fecal samples (50.9%) and five water samples (27.8%) on agars without antimicrobials. No isolates were recovered on agars with antimicrobials. One E. coli isolate derived from a fecal sample exhibited resistance to β-lactams (ampicillin and cefazolin), whereas all other isolates exhibited susceptibility to all tested antimicrobials. The resistant isolate harbored blaACC, which could be transferred to other bacteria and confer resistance to β-lactams. These results suggest a low prevalence of antimicrobial resistance in wild migratory birds and their living environments; however, wild migratory birds sometimes carry ARB harboring transferrable antimicrobial resistance genes and therefore present a risk of spreading antimicrobial resistance.202134410412
3545100.9534Fecal indicators and antibiotic resistance genes exhibit diurnal trends in the Chattahoochee River: Implications for water quality monitoring. Water bodies that serve as sources of drinking or recreational water are routinely monitored for fecal indicator bacteria (FIB) by state and local agencies. Exceedances of monitoring thresholds set by those agencies signal likely elevated human health risk from exposure, but FIB give little information about the potential source of contamination. To improve our understanding of how within-day variation could impact monitoring data interpretation, we conducted a study at two sites along the Chattahoochee River that varied in their recreational usage and adjacent land-use (natural versus urban), collecting samples every 30 min over one 24-h period. We assayed for three types of microbial indicators: FIB (total coliforms and Escherichia coli); human fecal-associated microbial source tracking (MST) markers (crAssphage and HF183/BacR287); and a suite of clinically relevant antibiotic resistance genes (ARGs; blaCTX-M, blaCMY, MCR, KPC, VIM, NDM) and a gene associated with antibiotic resistance (intl1). Mean levels of FIB and clinically relevant ARGs (blaCMY and KPC) were similar across sites, while MST markers and intI1 occurred at higher mean levels at the natural site. The human-associated MST markers positively correlated with antibiotic resistant-associated genes at both sites, but no consistent associations were detected between culturable FIB and any molecular markers. For all microbial indicators, generalized additive mixed models were used to examine diurnal variability and whether this variability was associated with environmental factors (water temperature, turbidity, pH, and sunlight). We found that FIB peaked during morning and early afternoon hours and were not associated with environmental factors. With the exception of HF183/BacR287 at the urban site, molecular MST markers and intI1 exhibited diurnal variability, and water temperature, pH, and turbidity were significantly associated with this variability. For blaCMY and KPC, diurnal variability was present but was not correlated with environmental factors. These results suggest that differences in land use (natural or urban) both adjacent and upstream may impact overall levels of microbial contamination. Monitoring agencies should consider matching sample collection times with peak levels of target microbial indicators, which would be in the morning or early afternoon for the fecal associated indicators. Measuring multiple microbial indicators can lead to clearer interpretations of human health risk associated with exposure to contaminated water.202236439800
5243110.9533Multiplex Hybrid Capture Improves the Deep Detection of Antimicrobial Resistance Genes from Wastewater Treatment Plant Effluents to Assess Environmental Issues. Metagenomic sequencing (mDNA-seq) is one of the best approaches to address antimicrobial resistance (AMR) issues and characterize AMR genes (ARGs) and their host bacteria (ARB); however, the sensitivity provided is insufficient for the overall detection in wastewater treatment plant (WWTP) effluents because the effluent is well treated. This study investigated the multiplex hybrid capture (xHYB) method (QIAseq × HYB AMR Panel) and its potential to increase AMR assessment sensitivity. The mDNA-Seq analysis suggested that the WWTP effluents had an average of 104 reads per kilobase of gene per million (RPKM) for the detection of all targeted ARGs, whereas xHYB significantly improved detection at 601,576 RPKM, indicating an average 5,805-fold increase in sensitivity. For instance, sul1 was detected at 15 and 114,229 RPKM using mDNA-seq and xHYB, respectively. The bla(CTX-M), bla(KPC), and mcr gene variants were not detected by mDNA-Seq but were detected by xHYB at 67, 20, and 1,010 RPKM, respectively. This study demonstrates that the multiplex xHYB method could be a suitable evaluation standard with high sensitivity and specificity for deep-dive detection, highlighting a broader illustration of ongoing dissemination in the entire community.202337433210
7056120.9533Shift in antibiotic resistance gene profiles associated with nanosilver during wastewater treatment. This study investigated the response of antibiotic resistance genes (ARGs) to nanosilver (Ag) in lab-scale nitrifying sequencing batch reactors (SBRs), compared to Ag(+)-dosed and undosed controls. Quantitative polymerase chain reaction (q-PCR) targeting sul1, tet(O), ermB and the class I integron gene intI1 and corresponding RNA expression did not indicate measureable effects of nanoAg or Ag(+) on abundance or expression of these genes. However, high-throughput sequencing based metagenomic analysis provided a much broader profile of gene responses and revealed a greater abundance of aminoglycoside resistance genes (mainly strA) in reactors dosed with nanoAg. In contrast, bacitracin and macrolide-lincosamide-streptogramin (MLS) resistance genes were more abundant in the SBRs dosed with Ag(+). The distinct ARG profiles associated with nanoAg and Ag(+) were correlated with the taxonomic composition of the microbial communities. This study indicates that nanoAg may interact with bacteria differently from Ag(+) during biological wastewater treatment. Therefore, it cannot necessarily be assumed that nanosilver behaves identically as Ag(+) when conducting a risk assessment for release into the environment.201626850160
8741130.9533Acclimation of electroactive biofilms under different operating conditions: comprehensive analysis from architecture, composition, and metabolic activity. Electroactive biofilms (EABs) have aroused wide concern in waste treatment due to their unique capability of extracellular electron transfer with solid materials. The combined effect of different operating conditions on the formation, microbial architecture, composition, and metabolic activity of EABs is still unknown. In this study, the impact of three different factors (anode electrode, substrate concentration, and resistance) on the acclimation and performance of EABs was investigated. The results showed that the shortest start-up time of 127.3 h and highest power density of 0.84 W m(-2) were obtained with carbon brush as electrode, low concentration of substrate (1.0 g L(-1)), and 1000 Ω external resistance (denoted as N1). The EABs under N1 condition also represented strongest redox capacity, lowest internal resistance, and close arrangement of bacteria. Moreover, the EABs cultured under different conditions both showed similar results, with direct electron transfer (DET) dominated from EABs to anode. Microbial community compositions indicated that EABs under N1 condition have lowest diversity and highest abundance of electroactive bacteria (46.68%). Higher substrate concentration (3.0 g L(-1)) promoted the proliferation of some other bacteria without electroactivity, which was adverse to EABs. The metabolic analysis showed the difference of genes related to electron transfer (cytochrome C and pili) and biofilm formation (xap) of EABs under different conditions, which further demonstrated the higher electroactivity of EABs under N1. These results provided a comprehensive understanding of the effect of different operating conditions on EABs including biofilm formation and electrochemical activity.202337749470
7295140.9533Dissemination of antibiotic resistance in receiving environments under a changing climate: A modeling exercise. Antibiotic resistance in rivers has become a global problem, particularly due to the discharge of wastewater treatment plant (WWTP) effluents into these systems. These effluents contain residual antibiotics, antibiotic-resistance genes (ARGs), and antibiotic-resistant bacteria (ARB). While watershed-scale models are commonly used to address other water quality issues, they have not typically been used to address antibiotic resistance. In this study, we present a new model called SWAT-ARB (SWAT- Antibiotic-Resistant Bacteria) that can simulate antibiotic resistance in E. coli at the watershed scale. SWAT-ARB is an adaptation of the widely-used SWAT (Soil and Water Assessment Tool) model, which is a physically-based, watershed-scale hydrological model. We used SWAT-ARB to study the receiving environments of WWTPs in the Adyar River basin in India, Crab Creek in the United States, and the Upper Viskan basin in Sweden. We analyzed the simulations of resistant fractions (the ratio of resistant E. coli concentration to total E. coli concentration) in the streamflow at different flow levels. We also examined the long-term trends of resistant fractions to understand how rising temperatures may impact resistance. We found that in the Adyar and Crab Creek basins, the resistant fractions were largely influenced by temperature rather than flow and wash-off processes, while in the Upper Viskan basin, the resistant fractions were affected by both temperature and flow conditions. In a simulation where we only increased temperatures by 2 °C in the bacteria sub-routine, we found that the Adyar basin showed a decrease in resistant fractions of up to 17 % in dry conditions, while Crab Creek showed increases of 17.5-24.1 % and Upper Viskan showed increases of 4.6-33.5 % across flow classes. Under future climate scenarios (SSP 2-4.5 and SSP 5-8.5), Adyar's resistant fractions decreased by up to 55.5 % as temperatures approached the bacterial growth inhibition threshold, while Crab Creek's resistant fractions increased by up to 175 % as temperatures remained within the optimal 10-20 °C growth range. Our results suggest that the SWAT-ARB model could be further improved by incorporating temperature-dependent parameters into the resistance simulation component.202540743959
3117150.9532Detection of antimicrobial resistance genes in urban air. To understand antibiotic resistance in pathogenic bacteria, we need to monitor environmental microbes as reservoirs of antimicrobial resistance genes (ARGs). These bacteria are present in the air and can be investigated with the whole metagenome shotgun sequencing approach. This study aimed to investigate the feasibility of a method for metagenomic analysis of microbial composition and ARGs in the outdoor air. Air samples were collected with a Harvard impactor in the PM(10) range at 50 m from a hospital in Budapest. From the DNA yielded from samples of PM(10) fraction single-end reads were generated with an Ion Torrent sequencer. During the metagenomic analysis, reads were classified taxonomically. The core bacteriome was defined. Reads were assembled to contigs and the ARG content was analyzed. The dominant genera in the core bacteriome were Bacillus, Acinetobacter, Leclercia and Paenibacillus. Among the identified ARGs best hits were vanRA, Bla1, mphL, Escherichia coli EF-Tu mutants conferring resistance to pulvomycin; BcI, FosB, and mphM. Despite the low DNA content of the samples of PM(10) fraction, the number of detected airborne ARGs was surprisingly high.202134964297
6732160.9532Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria.202032786566
7988170.9532Electrokinetic treatment at the thermophilic stage achieves more effective control of heavy metal resistance in swine manure composting. Excessive heavy metals (HMs) and metal resistance genes (MRGs) in manure pose significant environmental and human health risks. Our previous work proved enhanced control of antibiotic resistance and quality of swine manure composting with electrokinetic technology (EK). As a continuous study, EK treatments were further employed at typical stages of composting. The humification level increased significantly in EK treatments applied at the thermophilic stage (EK1) and throughout the whole composting period (EK2). The immobilization efficiency of heavy metals increased by 3.02 %-20.90 % for EK1, and 3.86 %-20.56 % for EK2, compared with the EK treatment applied at maturity stage (EK3). EK1 showed the highest ability to remove MRGs (29.38 %-87.13 %), while the abundance of potential host bacteria increased in EK2, raising potential transmission risk of MRGs. Furthermore, there was an elevated presence of bacteria associated with membrane transport as a response mechanism to HMs stress in EK1. Considering economic factors and environmental effects, EK treatment during the thermophilic stage was more effective in compost maturation, HMs passivation, as well as control of HMs resistance. This study provides an effective method to address HMs-related contamination with highly efficient maturation in swine manure composting.202540543370
7163180.9531Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs pose a high risk to soil ecology and public health. Here, we used a metagenomic approach to investigate their diversity and abundance in chicken manures and greenhouse soils collected from Guli, Pulangke, and Hushu vegetable bases with different greenhouse planting years in Nanjing, Eastern China. There was a positive correlation between the levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in manures and greenhouse soils. In total, 156.2–5001.4 μg/kg of antibiotic residues, 22 classes of ARGs, 32 HPB species, and 46 species of HPB carrying ARGs were found. The highest relative abundance was tetracycline resistance genes (manures) and multidrug resistance genes (greenhouse soils). The dominant HPB and HPB carrying ARGs in the manures were Bacillus anthracis, Bordetella pertussis, and B. anthracis (sulfonamide resistance gene, sul1), respectively. The corresponding findings in greenhouse soils were Mycobacterium tuberculosis and M. ulcerans, M. tuberculosis (macrolide-lincosamide-streptogramin resistance protein, MLSRP), and B. anthracis (sul1), respectively. Our findings confirmed high levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in the manured greenhouse soils compared with those in the field soils, and their relative abundance increased with the extension of greenhouse planting years.201525514174
6385190.9531Study on microbes and antibiotic resistance genes in karst primitive mountain marshes - A case study of Niangniang Mountain in Guizhou, China. Previous research on antibiotic resistance genes and microorganisms centered on those in urban sewage treatment plants, breeding farms, hospitals and others with serious antibiotic pollution. However, at present, there are evident proofs that antibiotic resistance genes (ARGs) indeed exist in a primitive environment hardly without any human's footprints. Accordingly, an original karst mountain swamp ecosystem in Niangniang Mountain, Guizhou, China, including herbaceous swamp, shrub swamp, sphagnum bog and forest swamp, was selected to analyze the physical and chemical parameters of sediments. Moreover, microbial compositions, functions, as well as their connections with ARGs were assayed and analyzed using metagenomic technology. The results showed that there was no significant difference in the dominant microorganisms and ARGs in the four marshes, in which the dominant bacteria phyla were Proteobacteria (37.82 %), Acidobacteriota (22.17 %) and Actinobacteriota (20.64 %); the dominant archaea Euryarchaeota. (1.00 %); and the dominant eukaryotes Ascomycota (0.07 %), with metabolism as their major functions. Based on the ARDB database, the number of ARGs annotated reached 209 including 30 subtypes, and the dominant ARGs were all Bacitracin resistance genes (bacA, 84.77 %). In terms of the diversity of microorganisms and ARGs, the herbaceous swamp ranked the top, and the shrub swamp were at the bottom. Correlation analysis between microorganisms and resistance genes showed that, apart from aac2ic, macB, smeE, tetQ, and tetL, other ARGs were positively correlated with microorganisms. Among them, baca coexisted with microorganisms. Pearson correlation analysis results showed that contrary to ARGs, microorganisms were more affected by environmental factors.202236306620