# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 830 | 0 | 0.9840 | Detection and characterisation of 16S rRNA methyltransferase-producing Pseudomonas aeruginosa from the UK and Republic of Ireland from 2003-2015. 16S rRNA methyltransferase (16S RMTase) genes confer high-level aminoglycoside resistance, reducing treatment options for multidrug-resistant Gram-negative bacteria. Pseudomonas aeruginosa isolates (n = 221) exhibiting high-level pan-aminoglycoside resistance (amikacin, gentamicin and tobramycin MICs ≥64, ≥32 and ≥32 mg/L, respectively) were screened for 16S RMTase genes to determine their occurrence among isolates submitted to a national reference laboratory from December 2003 to December 2015. 16S RMTase genes were identified using two multiplex PCRs, and whole-genome sequencing (WGS) was used to identify other antibiotic resistance genes, sequence types (STs) and the genetic environment of 16S RMTase genes. 16S RMTase genes were found in 8.6% (19/221) of isolates, with rmtB4 (47.4%; 9/19) being most common, followed by rmtD3 (21.1%; 4/19), rmtF2 (15.8%; 3/19) and single isolates harbouring rmtB1, rmtC and rmtD1. Carbapenemase genes were found in 89.5% (17/19) of 16S RMTase-positive isolates, with bla(VIM) (52.9%; 9/17) being most common. 16S RMTase genes were found in 'high-risk' clones known to harbour carbapenemase genes (ST233, ST277, ST357, ST654 and ST773). Analysis of the genetic environment of 16S RMTase genes identified that IS6100 was genetically linked to rmtB1; IS91 to rmtB4, rmtC or rmtD3; ISCR14 to rmtD1; and rmtF2 was linked to Tn3, IS91 or Tn1721. Although 16S RMTase genes explained only 8.6% of pan-aminoglycoside resistance in the P. aeruginosa isolates studied, the association of 16S RMTase genes with carbapenemase-producers and 'high-risk' clones highlights that continued surveillance is required to monitor spread as well as the importance of suppressing the emergence of dually-resistant clones in hospital settings. | 2022 | 35176475 |
| 1218 | 1 | 0.9835 | Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. We report on the genomic characterization of 47 multi-drug resistant, carbapenem resistant and ESBL-producing K. pneumoniae isolates from the influent (I) and effluent (E) of three wastewater treatment plants (WWTPs) and from Romanian hospital units which are discharging the wastewater in the sampled WWTPs. The K. pneumoniae whole genome sequences were analyzed for antibiotic resistance genes (ARGs), virulence genes and sequence types (STs) in order to compare their distribution in C, I and E samples. Both clinical and environmental samples harbored prevalent and widely distributed ESBL genes, i.e. blaSHV, blaOXA, blaTEM and blaCTX M. The most prevalent carbapenemase genes were blaNDM-1, blaOXA-48 and blaKPC-2. They were found in all types of isolates, while blaOXA-162, a rare blaOXA-48 variant, was found exclusively in water samples. A higher diversity of carbapenemases genes was seen in wastewater isolates. The aminoglycoside modifying enzymes (AME) genes found in all types of samples were aac(6'), ant(2'')Ia, aph(3'), aaD, aac(3) and aph(6). Quinolone resistance gene qnrS1 and the multi-drug resistance oqxA/B pump gene were found in all samples, while qnrD and qnrB were associated to aquatic isolates. The antiseptics resistance gene qacEdelta1 was found in all samples, while qacE was detected exclusively in the clinical ones. Trimethroprim-sulfamethoxazole (dfrA, sul1 and sul2), tetracyclines (tetA and tetD) and fosfomycin (fosA6, known to be located on a transpozon) resistance genes were found in all samples, while for choramphenicol and macrolides some ARGs were detected in all samples (catA1 and catB3 / mphA), while other (catA2, cmIA5 and aac(6')Ib / mphE and msrE) only in wastewater samples. The rifampin resistance genes arr2 and 3 (both carried by class I integrons) were detected only in water samples. The highly prevalent ARGs preferentially associating with aquatic versus clinical samples could ascribe potential markers for the aquatic (blaSHV-145, qacEdelta1, sul1, aadA1, aadA2) and clinical (blaOXA-1, blaSHV-106,blaTEM-150, aac(3)Iia, dfrA14, oqxA10; oqxB17,catB3, tetD) reservoirs of AR. Moreover, some ARGs (oqxA10; blaSHV-145; blaSHV-100, aac(6')Il, aph(3')VI, armA, arr2, cmlA5, blaCMY-4, mphE, msrE, oqxB13, blaOXA-10) showing decreased prevalence in influent versus effluent wastewater samples could be used as markers for the efficiency of the WWTPs in eliminating AR bacteria and ARGs. The highest number of virulence genes (75) was recorded for the I samples, while for E and C samples it was reduced to half. The most prevalent belong to three functional groups: adherence (fim genes), iron acquisition (ent, fep, fyu, irp and ybt genes) and the secretion system (omp genes). However, none of the genes associated with hypervirulent K. pneumoniae have been found. A total of 14 STs were identified. The most prevalent clones were ST101, ST219 in clinical samples and ST258, ST395 in aquatic isolates. These STs were also the most frequently associated with integrons. ST45 and ST485 were exclusively associated with I samples, ST11, ST35, ST364 with E and ST1564 with C samples. The less frequent ST17 and ST307 aquatic isolates harbored blaOXA-162, which was co-expressed in our strains with blaCTX-M-15 and blaOXA-1. | 2020 | 31999747 |
| 5209 | 2 | 0.9833 | Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment. Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes. | 2016 | 26941718 |
| 1219 | 3 | 0.9833 | Characterization of extended-spectrum beta-lactamase and carbapenemase genes in bacteria from environment in Burkina Faso. INTRODUCTION: This study aimed to characterize extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in bacteria from the environment in Bobo-Dioulasso, Burkina Faso. METHODOLOGY: This study was conducted from January 18 to December 31, 2019. Environmental samples were collected from the effluents of Souro Sanou University Hospital Center and the wastewater treatment plant at Bobo-Dioulasso. MacConkey agar media supplemented with 4 µg/mL cefotaxime was used for bacterial growth, and identification of bacteria was performed using API 20E system (BioMerieux SA, Lyon, France). Antibiotic susceptibility testing, synergy test, carbapenem inactivation method and molecular characterization were performed. RESULTS: A total of 180 bacterial isolates were identified from the different sites with a predominance of Klebsiella oxytoca and Klebsiella pneumoniae (27.5%). All 180 bacterial isolates were ESBL producers and 18 (10.0%) of them produced carbapenemases. Out of the 180 bacterial isolates, DNAs of 98.9% (178/180) bacterial isolates were extracted and tested through polymerase chain reaction (PCR) for characterization of resistant genes. The study showed that 89.8% (160/178) carried the bla-CTX-M genes including 54.4 (87/160) from hospital effluents and 45.6 (73/160) from the wastewater treatment plant. Regarding the carriage of carbapenemase genes, 7.9 (14/178) blaNDM-1 was found in all the sites including 71.4% (10/14) from hospital effluents and 28.6 (4/14) from the wastewater treatment plant. blaOXA-48-like was only found in bacteria from hospital effluents and represented 2.2% (4/178). CONCLUSIONS: This study highlights the need to build hospital effluent treatment plants to reduce the load of resistant bacteria before discharging the effluents into the urban wastewater system. | 2023 | 38252715 |
| 1087 | 4 | 0.9833 | Characterization and Comparative Genomics Analysis of lncFII Multi-Resistance Plasmids Carrying bla (CTX) (-) (M) and Type1 Integrons From Escherichia coli. This research aimed to investigate the presence and transferability of the extended-spectrum β-lactamase resistance genes to identify the genetic context of multi-drug resistant (MDR) loci in two Escherichia coli plasmids from livestock and poultry breeding environment. MICs were determined by broth microdilution. A total of 137 E. coli resistant to extended-spectrum β-lactam antibiotics were screened for the presence of the ESBL genes by PCR. Only two E. coli out of 206 strains produced carbapenemases, including strain 11011 that produced enzyme A, and strain 417957 that produced enzyme B. The genes were bla (KPC) and bla (NDM) , respectively. The plasmids containing bla (CTX) (-) (M) were conjugatable, and the plasmids containing carbapenem resistance gene were not conjugatable. Six extended-spectrum β-lactamase resistance genes were detected in this research, including bla (TEM), bla (CTX) (-) (M), bla (SHV), bla (OAX) (-) (1), bla (KPC), and bla (NDM) , and the detection rates were 94.89% (130/137), 92.7% (127/137), 24.81% (34/137), 20.43% (28/137), 0.72% (1/137), and 0.72% (1/137), respectively. Two conjugative lncFII multi-resistance plasmids carrying bla (CTX) (-) (M), p11011-fosA and p417957-CTXM, were sequenced and analyzed. Both conjugative plasmids were larger than 100 kb and contained three accessory modules, including MDR region. The MDR region of the two plasmids contained many antibiotic resistance genes, including bla (CTX) (-) (M), mph (A), dfrA17, aadA5, sul1, etc. After transfer, both the transconjugants displayed elevated MICs of the respective antimicrobial agents. A large number of resistance genes clusters in specific regions may contribute to the MDR profile of the strains. The presence of mobile genetic elements at the boundaries can possibly facilitate transfer among Enterobacteriaceae through inter-replicon gene transfer. Our study provides beta-lactam resistance profile of bacteria, reveals the prevalence of β-lactamase resistance genes in livestock and poultry breeding environment in Zhejiang Province, and enriches the research on IncFII plasmids containing bla (CTX) (-) (M). | 2021 | 34867876 |
| 2192 | 5 | 0.9832 | Distribution and Drug Resistance of Pathogenic Bacteria in Diabetic Patients with Double J-Stent Associated Infections. OBJECTIVE: To analyze the distribution and drug resistance of pathogenic bacteria in diabetic patients with double J-stent associated infections, and to explore the strategies for prevention and treatment of the infections. METHODS: From January 2019 to December 2021, 266 diabetic patients treated with double J-stent placement in our hospital assessed for eligibility were recruited. Urine and double J-stent samples were collected for pathogenicity assay and screened for biofilm bacteria. Pathogenic bacteria distribution and drug resistance were examined. RESULTS: A total of 97 strains (36.5%) of pathogenic bacteria were isolated from urine samples and 129 strains (48.5%) from double J-stent samples (P > 0.05). 3 strains (1.1%) of biofilm bacteria were separated from urine samples and 106 strains (39.8%) from double J-stent samples (P < 0.05). In the double J-stent samples, there were significantly higher ratios of Gram-positive bacteria separated from biofilm bacteria versus the urine-cultured pathogens (44.3%/61.3%, P < 0.05), and higher drug resistance was observed in biofilm bacteria versus urine-cultured pathogens (P < 0.05). Fosfomycin tromethamine showed remarkable susceptibility to both urinary cultured pathogens and double J-stent biofilm bacteria. CONCLUSION: Diabetic patients with double J-stent biofilm-positive bacteria are mainly Gram-positive bacteria, which are prone to biofilm formation and show strong drug resistance. | 2022 | 35652084 |
| 1235 | 6 | 0.9832 | Characterization of integrons and antimicrobial resistance genes in clinical isolates of Gram-negative bacteria from Palestinian hospitals. Sixty Gram-negative bacterial isolates were collected from Palestinian hospitals in 2006. Thirty-two (53.3%) isolates showed multidrug resistance phenotypes. PCR and DNA sequencing were used to characterize integrons and antimicrobial resistance genes. PCR screening showed that 19 (31.7%) and five (8.3%) isolates were positive for class 1 and class 2 integrons, respectively. DNA-sequencing results for the captured antimicrobial resistance gene cassettes within class 1 integrons identified the following genes: dihydrofolate reductases, dfrA1, dfrA5, dfrA7, dfrA12, dfrA17 and dfrA25; aminoglycoside adenyltransferases, aadA1, aadA2, aadA5, aadA12 and aadB; aminoglycoside acetyltransferase, aac(6')-Ib; and chloramphenicol resistance gene, cmlA1. ESBL were identified in 25 (41.7%) isolates. The identified ESBL were bla(CTX-M-15), bla(CTX-M-56), bla(OXA-1), bla(SHV-1), bla(SHV-12), bla(SHV-32) and bla(TEM-1) genes. Moreover, we characterized the plasmid-mediated quinolone resistance genes, aac(6')-Ib-cr and qnrB2, which were detected in seven (11.7%) and two (3.3%) isolates, respectively. In this study various types of antibiotic resistance genes have been identified in Gram-negative bacteria from Palestinian hospitals, many of which are reported in the Middle East area for the first time. | 2009 | 19903259 |
| 1487 | 7 | 0.9832 | Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. We evaluated the Verigene Gram-negative blood culture (BC-GN) test, a microarray that detects Gram-negative bacteria and several resistance genes. A total of 102 positive blood cultures were tested, and the BC-GN test correctly identified 97.9% of the isolates within its panel. Resistance genes (CTX-M, KPC, VIM, and OXA genes) were detected in 29.8% of the isolates, with positive predictive values of 95.8% (95% confidence interval [CI], 87.7% to 98.9%) in Enterobacteriaceae and 100% (95% CI, 75.9% to 100%) in Pseudomonas aeruginosa and negative predictive values of 100% (95% CI, 93.9% to 100%) and 78.6% (95% CI, 51.0% to 93.6%), respectively. | 2014 | 24478405 |
| 1454 | 8 | 0.9831 | OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II. | 2023 | 37010165 |
| 2268 | 9 | 0.9831 | Profile of Bacteria with ARGs Among Real-World Samples from ICU Admission Patients with Pulmonary Infection Revealed by Metagenomic NGS. BACKGROUND: Treatment of pulmonary infections in the intensive care unit (ICU) represents a great challenge, especially infections caused by antibiotic resistance pathogens. A thorough and up-to-date knowledge of the local spectrum of antibiotic resistant bacteria can improve the antibiotic treatment efficiency. In this study, we aimed to reveal the profile of bacteria with antibiotic resistance genes (ARGs) in real-world samples from ICU admission patients with pulmonary infection in Mainland, China, by metagenomic next-generation sequencing (mNGS). METHODS: A total of 504 different types of clinical samples from 452 ICU admission patients with pulmonary infection were detected by mNGS analysis. RESULTS: A total of 485 samples from 434 patients got successful mNGS results. Among 434 patients, one or more bacteria with ARGs were detected in 192 patients (44.24%, 192/434), and ≥2 bacteria with ARGs were detected in 85 (19.59%, 85/434) patients. The predominant detected bacteria were Corynebacterium striatum (C. striatum) (11.76%, 51/434), Acinetobacter baumannii (A. baumannii) (11.52%, 50/434) and Enterococcus faecium (E. faecium) (8.99%, 39/434). ermX conferred resistance to MSL(B) and cmx to phenicol were the only two ARGs detected in C. striatum; in A. baumannii, most of ARGs were resistance-nodulation-division (RND)-type efflux pumps genes, which conferred resistance to multi-drug; ermB conferred resistance to MSL(B) and efmA to multi-drug were the predominant ARGs in E. faecium. Bacteria with ARGs were detected in 50% (140/280) bronchoalveolar lavage fluid (BALF) and 50.5% (48/95) sputum samples, which were significantly higher than in blood and cerebrospinal fluid (CSF) samples. CONCLUSION: High level of bacteria with ARGs was observed in clinical samples, especially BALF and sputum samples from ICU admission patients with pulmonary infection in Mainland, China. And C. striatum resistant to MSL(B) and/or phenicol, multi-drug resistance A. baumannii and E. faecium were the lead bacteria. | 2021 | 34866919 |
| 1189 | 10 | 0.9831 | Detection of the carbapenemase gene bla(VIM-5) in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. There are increasing concerns about possible dissemination of clinically relevant antibiotic resistance genes, including genes encoding for carbapenemases in the environment. However, little is known about environmental distribution of antibiotic resistance in Africa. In this study, four polluted urban wetlands in Nigeria were investigated as potential reservoirs of carbapenem-resistant bacteria (CRB). CRB were isolated from the wetlands, characterized by Blue-Carba test, MIC determinations and whole genome sequencing (WGS). Nine of 65 bacterial isolates identified as members of the Pseudomonas putida group (P. plecoglossicida and P. guariconensis, respectively) harboured the metallo-beta-lactamase gene bla(VIM-5). WGS revealed the bla(VIM-5) in three novel Tn402-like class 1 integron structures containing the cassette arrays aadB|bla(VIM-5)|bla(PSE-1), aadB|bla(VIM-5)|aadB|bla(PSE-1), and bla(VIM-5)|aadB|tnpA|bla(PSE-1)|smr2|tnpA, respectively. Strains carrying the aadB|bla(VIM-5)|bla(PSE-1) cassette also carried an identical integron without bla(VIM-5). In addition(,) the strains harboured another Tn402-like class 1 integron carrying bcr2, several multidrug resistance efflux pumps, and at least one of ampC, aph(3")-lb, aph(6)-ld, tetB, tetC, tetG, floR, and macAB. This is the first report of a carbapenemase gene in bacteria from environmental sources in Nigeria and the first report of bla(VIM-5) in environmental bacteria isolates. This result underscores the role of the Nigerian environment as reservoir of bacteria carrying clinically relevant antibiotic resistance genes. | 2018 | 30310126 |
| 1390 | 11 | 0.9830 | Oxacillinase-484-Producing Enterobacterales, France, 2018-2023. We examined the emergence and characteristics of oxacillinase-484-producing Enterobacterales in France during 2012-2023. Genomic analysis identified 2 predominant sequence types in Escherichia coli: ST410 and ST1722. Plasmid analysis revealed that bla(OXA-484) genes were carried mostly on an IncX3-type plasmid associated with genetic elements including insertion sequences IS3000 and ISKpn19. | 2024 | 39320334 |
| 1421 | 12 | 0.9830 | Predominance of Acinetobacter spp., Harboring the bla(IMP) Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect bla(IMP) and bla(KPC), and a singleplex PCR assay was used to detect bla(OXA-48). Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of bla(IMP) (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of bla(IMP)/bla(KPC)/bla(OXA-48) (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the bla(IMP) gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds. | 2022 | 35056011 |
| 940 | 13 | 0.9830 | Acquisition of multidrug-resistant bacteria and colistin resistance genes in French medical students on internships abroad. BACKGROUND: Acquisition of multidrug resistant bacteria (MDR) and colistin resistance genes by international travellers has been demonstrated. Studies conducted in medical students during internships abroad are scant. METHODS: Nasopharyngeal, rectal, and vaginal swabs samples were collected from 382 French medical students before and after travel to investigate the acquisition of MDR bacteria. The bacterial diversity in the samples was assessed by culture on selective media. We also genetically characterised the isolates of MDR bacteria including Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E), methicillin-resistant Staphylococcus aureus (MRSA), and Carbapenemase-producing Enterobacteriacae (CPE) using the real-time polymerase chain reaction method. The samples were collected from 293 students and were investigated for mcr colistin-resistance genes using RT-PCR directly on the samples, followed by conventional PCR and sequencing. RESULTS: A proportion of 29.3% (112/382) of the participants had acquired ESBL-E and 2.6% (10/382) had acquired CPE. The most common species and ESBL-E encoding gene were Escherichia coli (125/127 isolates, 98.4%) and bla(CTX-M-A) (121/127, 95.3%), respectively. A proportion of 6.8% (20/293) of the participants had acquired mcr-1 genes, followed by mcr-3 (1/293, 0.3%) and mcr-8 (1/293, 0.3%). We found that taking part in humanitarian missions to orphanages (aRR = 2.01, p < 0.0001), being in contact with children during travel (aRR = 1.78, p = 0.006), the primary destination of travel being Vietnam (aRR = 2.15, p < 0.0001) and north India (aRR = 2.41, p = 0.001), using antibiotics during travel (aRR = 1.77, p = 0.01), and studying in 2018 (aRR = 1.55, p = 0.03) were associated with the acquisition of ESBL-E. When the primary destination of travel was Vietnam (aRR = 2.74, p < 0.0001) and the year of study was 2018 (aRR = 1.93, p < 0.002), this was associated with acquisition of colistin resistance genes. CONCLUSION: Medical students are at a potential risk of acquiring ESBL-E, CPE and colistin resistance genes. A number of risk factors have been identified, which may be used to develop targeted preventive measures. | 2021 | 33248262 |
| 5242 | 14 | 0.9830 | Highly sensitive detection of antimicrobial resistance genes in hospital wastewater using the multiplex hybrid capture target enrichment. Wastewater can be useful in monitoring the spread of antimicrobial resistance (AMR) within a hospital. The abundance of antibiotic resistance genes (ARGs) in hospital effluent was assessed using metagenomic sequencing (mDNA-seq) and hybrid capture (xHYB). mDNA-seq analysis and subsequent xHYB targeted enrichment were conducted on two effluent samples per month from November 2018 to May 2021. Reads per kilobase per million (RPKM) values were calculated for all 1,272 ARGs in the constructed database. The monthly numbers of patients with presumed extended-spectrum β-lactamase (ESBL)-producing and metallo-β-lactamase (MBL)-producing bacteria, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE) were compared with the monthly RPKM values of bla(CTX-M), bla(IMP), mecA, vanA, and vanB by xHYB. The average RPKM value for all ARGs detected by xHYB was significantly higher than that of mDNA-seq (665, 225, and 328, respectively, and P < 0.05). The average number of patients with ESBL producers and RPKM values of bla(CTX-M-1) genes in 2020 were significantly higher than that in 2019 (17 and 13 patients per month and 921 vs 232 per month, respectively, both P < 0.05). The average numbers of patients with MBL-producers, MRSA, and VRE were 1, 28, and 0 per month, respectively, while the average RPKM values of bla(IMP), mecA, vanA, and vanB were 6,163, 6, 0, and 126 per month, respectively. Monitoring ARGs in hospital effluent using xHYB was found to be more useful than conventional mDNA-seq in detecting ARGs including bla(CTX-M), bla(IMP,) and vanB, which are important for infection control.IMPORTANCEEnvironmental ARGs play a crucial role in the emergence and spread of AMR that constitutes a significant global health threat. One major source of ARGs is effluent from healthcare facilities, where patients are frequently administered antimicrobials. Culture-independent methods, including metagenomics, can detect environmental ARGs carried by non-culturable bacteria and extracellular ARGs. mDNA-seq is one of the most comprehensive methods for environmental ARG surveillance; however, its sensitivity is insufficient for wastewater surveillance. This study demonstrates that xHYB appropriately monitors ARGs in hospital effluent for sensitive identification of nosocomial AMR dissemination. Correlations were observed between the numbers of inpatients with antibiotic-resistant bacteria and the ARG RPKM values in hospital effluent over time. ARG surveillance in hospital effluent using the highly sensitive and specific xHYB method could improve our understanding of the emergence and spread of AMR within a hospital. | 2023 | 37222510 |
| 2193 | 15 | 0.9830 | Distributions and Types of Multidrug-Resistant Acinetobacter baumannii in Different Departments of a General Hospital. BACKGROUND: Acinetobacter baumannii is the most prevalent strain in hospitals and different clinical departments. OBJECTIVES: The current study aimed to investigate the genetic characteristics and resistance mechanisms of A. baumannii isolated from clinical samples in Shaoxing people's hospital affiliated to Zhejiang University, Shaoxing, China. PATIENTS AND METHODS: Acinetobacter baumannii strains were isolated from blood, phlegm and skin of the patients hospitalized in different departments as respiratory medicine, plastic surgery and intensive care unit (ICU). Multilocus sequence typing (MLST) was used to characterize the isolates. Kirby-Bauer test was used to evaluate antibiotic resistance of the bacteria. The expression of resistance inducing genes was detected by reverse transcription polymerase chain reaction (RT-PCR). The results were analyzed and compared. RESULTS: Two bacterial types, ST208, and ST218, were identified in all 140 samples. The ST208 mainly came from ICU and department of respiratory medicine, while ST218 from department of plastic surgery; 70.21% of ST208 and 84.78% of ST218 were carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-susceptible Acinetobacter baumannii (CSAB), respectively. Multidrug-resistance genes in CRAB isolated from the hospital mainly included, oxa-23, oxa-5, intl 1 and qaceΔ1-sul 1. Besides, the highest and lowest antibiotic resistance was observed in the strains isolated from blood samples and wounds, respectively. CONCLUSIONS: The distribution of AB varies in different clinical departments and samples. In the hospital under study, the main types of AB were ST208 and ST218. The genes which affect the ability of antibiotic-resistance were oxa-23, oxa-51, intl 1 and qaceΔ1-sul 1. | 2015 | 26487921 |
| 5243 | 16 | 0.9830 | Multiplex Hybrid Capture Improves the Deep Detection of Antimicrobial Resistance Genes from Wastewater Treatment Plant Effluents to Assess Environmental Issues. Metagenomic sequencing (mDNA-seq) is one of the best approaches to address antimicrobial resistance (AMR) issues and characterize AMR genes (ARGs) and their host bacteria (ARB); however, the sensitivity provided is insufficient for the overall detection in wastewater treatment plant (WWTP) effluents because the effluent is well treated. This study investigated the multiplex hybrid capture (xHYB) method (QIAseq × HYB AMR Panel) and its potential to increase AMR assessment sensitivity. The mDNA-Seq analysis suggested that the WWTP effluents had an average of 104 reads per kilobase of gene per million (RPKM) for the detection of all targeted ARGs, whereas xHYB significantly improved detection at 601,576 RPKM, indicating an average 5,805-fold increase in sensitivity. For instance, sul1 was detected at 15 and 114,229 RPKM using mDNA-seq and xHYB, respectively. The bla(CTX-M), bla(KPC), and mcr gene variants were not detected by mDNA-Seq but were detected by xHYB at 67, 20, and 1,010 RPKM, respectively. This study demonstrates that the multiplex xHYB method could be a suitable evaluation standard with high sensitivity and specificity for deep-dive detection, highlighting a broader illustration of ongoing dissemination in the entire community. | 2023 | 37433210 |
| 1232 | 17 | 0.9830 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1441 | 18 | 0.9829 | Molecular characterisation of carbapenem-resistant Klebsiella pneumoniae clinical isolates: preliminary experience from a tertiary care teaching hospital in the Himalayas. BACKGROUND: There is a lack of whole-genome sequencing (WGS) data on multidrug-resistant (MDR) bacteria from the Uttarakhand region of India. The aim of this study was to generate WGS data of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates recovered from patients in Uttarakhand's tertiary care centre. METHODS: A cross-sectional study included 29 MDR K. pneumoniae test isolates obtained from various clinical samples submitted to the bacteriology laboratory for culture and sensitivity testing from July 2018 to August 2019. After preliminary identification and antibiotic susceptibility testing, these isolates were subjected to WGS. RESULTS: A total of 27 of 29 isolates were CRKP. ST14 was the most common sequence type (n=8 [29.6%]). Carbapenem resistance was mainly encoded by OXA-48-like genes (21/27 [77.8%]). All isolates had a varied arsenal of resistance genes to different antibiotic classes. KL2 (9/27 [33.3%]) and KL51 (8/27 [29.6%]) were dominant K loci types. O1 and O2 together accounted for 88.9% (n=27) of CRKP isolates. Genes encoding yersiniabactin (ybt) and aerobactin (iuc) were identified in 88.9% (24/27) and 29.6% (8/27) of isolates. The predominant plasmid replicons present were ColKP3 (55.5%), IncFII(K) (51.8%) and IncFIB(pQil) (44.4%). CONCLUSIONS: This study emphasises the need for continued genomic surveillance of MDR bacteria that could be instrumental in developing treatment guidelines based on integrating phenotypic and molecular methods. | 2022 | 35029688 |
| 1252 | 19 | 0.9829 | Fluoroquinolone resistance in bacterial isolates from ocular infections: Trend in antibiotic susceptibility patterns between 2005-2020. PURPOSE: To assess the fluoroquinolone resistance pattern and trends among bacterial isolates from ocular infections over a 16-year period and explore alternative antibiotics in fluoroquinolone-resistant strains. METHODS: In this retrospective, longitudinal study, the microbiology laboratory records of patients with different ocular infections diagnosed at an eye institute in central India from 2005-2020 were reviewed to determine the pattern of fluoroquinolone (ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin) resistance. Antibiotic susceptibility testing was done using the Kirby-Bauer disc diffusion method. RESULTS: In 725 Gram-positive bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 55.9% (95% confidence interval [CI]: 52.2 - 59.6), 42.7% (95% CI: 39.0 - 46.4), 47.6% (95% CI: 43.9 - 51.3), and 45.6% (95% CI: 41.7-49.5), respectively. In 266 Gram-negative bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 57.9% (95% CI: 51.9 - 63.9), 56.0% (95% CI: 49.7 - 62.1), 59.9% (95% CI: 53.8 - 66.0), and 74.3% (95% CI: 68.3 - 80.2), respectively. A declining trend in resistance to ciprofloxacin (P < 0.001), ofloxacin (P < 0.001), and moxifloxacin (P < 0.001) was seen in Gram-positive bacteria, whereas a reduction in resistance to only moxifloxacin (P = 0.04) was seen in Gram-negative bacteria. In fluoroquinolone-resistant Gram-positive bacteria, cefuroxime exhibited the highest susceptibility, whereas in fluoroquinolone-resistant Gram-negative bacteria, colistin exhibited the highest susceptibility. CONCLUSION: Fluoroquinolone resistance was high among bacteria from ocular infections in central India, but a declining trend in resistance to some of the fluoroquinolones was observed in recent times. Cefuroxime and colistin emerged as alternatives in fluoroquinolone-resistant Gram-positive and Gram-negative bacterial infections, respectively. | 2022 | 36453351 |