# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1407 | 0 | 0.9869 | World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil. | 2025 | 39957800 |
| 2101 | 1 | 0.9854 | Antibiotic resistance genes circulating in Nigeria: a systematic review and meta-analysis from the One Health perspective. BACKGROUND: The misuse of antibiotics in developing countries has created serious threats to public healthcare systems and reduced treatment options. Multidrug-resistant bacteria harbour antibiotic resistance genes that help them subdue the effectiveness of several available antibiotics. This review aimed to assess antimicrobial resistance genes circulating in Nigeria via a systematic review and meta-analysis. METHODS: A comprehensive literature search was performed using five electronic databases: PubMed, Web of Science, Scopus, Google Search, and African Journals Online (AJOL). Articles related to antibiotic resistance genes in Nigeria, published between January 1, 2015 and October 31, 2024, were included. The Newcastle-Ottawa scale (NOS) was used to assess the risk of bias. The meta-analysis for random effects was performed to determine the proportions and pooled prevalence of the resistance genes from the various One Health domains, as well as heterogeneity in the data, using R software (Version 4.3.3) and the metaprop package. RESULTS: Of the 762 articles retrieved, 56 (humans [n = 33], animals [n = 8], environment [n = 12], human/animal [n = 1], and human/animal/environment [n = 2]) from the six geopolitical zones in Nigeria met the inclusion criteria. The extended-spectrum beta-lactamase (ESBL) gene with the highest pooled prevalence was blaSHV (24.0% [95% CI: 12.0–44.0]), followed by blaCTX-M (23.0% [95% CI: 14.0–37.0]), and the least was blaTEM (18.0% [95% CI: 8.0–37.0]). Among the carbapenemase genes, blaKPC (33.0% [95% CI: 7.0–76.0]) was the most prevalent, followed by blaNDM (21.0% [95% CI: 9.0–41.0]), blaOXA (11.0% [95% CI: 2.0–46.0]) and the least was blaVIM (9.0% [95% CI: 3.0–26.0]). The mecA gene also had a high pooled prevalence (51.0% [95% CI: 14.0–86.0]). The pooled prevalence of the erm, sul, tet, and qnr genes ranged from 19.0% (95% CI: 8.0–38.0) to 27.0% (95% CI: 13.0–47.0). Some antibiotic resistance genes were shared among the three domains. CONCLUSION: This systematic review and meta-analysis has demonstrated the co-existence of antibiotic resistance genes among bacteria causing infection in Nigeria, via the One Health approach. There is a need for future research on the circulation of antibiotic resistance genes in developing countries using internationally approved approaches to track down this menace. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-025-02163-y. | 2025 | 40619397 |
| 1424 | 2 | 0.9853 | Source-tracking ESBL-producing bacteria at the maternity ward of Mulago hospital, Uganda. INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as β-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum β-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes. | 2023 | 37289837 |
| 1433 | 3 | 0.9852 | Carbapenem resistance in gram-negative pathogens in an Iranian hospital: high prevalence of OXA-type carbapenemase genes. BACKGROUND: The widespread dissemination of carbapenem- resistant gram-negative bacteria poses a significant threat to global public health. PURPOSE: This study aimed to investigate the prevalence of carbapenem resistance in gram-negative bacteria isolated from patients at the Children's Medical Center Hospital, Tehran, Iran, to understand the molecular mechanisms underlying this resistance. METHODS: During the period spanning from June 2019 to June 2020, 777 gram-negative bacterial strains were isolated. Antibiotic susceptibility testing was performed according to Clinical and Laboratory Standards Institute. Polymerase chain reaction was used to detect carbapenem resistance genes including bla OXA23, bla OXA24, bla OXA48, bla OXA51, bla OXA58, bla OXA143, bla KPC, bla IMP, bla VIM, and bla NDM. RESULTS: Among the total bacterial isolates, 141 (18.1%) exhibited carbapenem resistance. Escherichia coli was the most prevalent (57.4%), followed by Klebsiella pneumoniae (11.3%), and Acinetobacter baumannii (10.6%). Other notable contributors included Enterobacter spp. (5.7%), Salmonella spp. (3.5%), and Stenotrophomonas maltophilia (2.8%). Citrobacter spp., Proteus mirabilis, and Pseudomonas aeruginosa contributed to the distributions of 2, 1, and 3 isolates, respectively. Notably, bla OXA48 showed the highest prevalence (33%), followed by bla OXA143 and bla OXA5 8 (27% and 24%, respectively). In addition, bla OXA24 was present in 11% of the total isolates, bla OXA23 in 10%, and bla NDM in 10%, whereas bla KPC, bla VIM, and bla IMP were not detected. CONCLUSION: Our study highlights the prevalence of carbapenemase- producing gram-negative isolates among pediatric patients. Notable resistance patterns, especially in K. pneumoniae and E. coli, underline the urgent need for proactive interventions, including appropriate antibiotic prescription practices and strengthening of antibiotic stewardship programs. | 2025 | 39483044 |
| 1410 | 4 | 0.9851 | A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. BACKGROUND: Multi-drug resistance (MDR) and extensive-drug resistance (XDR) associated with extended-spectrum beta-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria are global public health concerns. Data on circulating antimicrobial resistance (AMR) genes in Gram-negative bacteria and their correlation with MDR and ESBL phenotypes from Nepal is scarce. METHODS: A retrospective study was performed investigating the distribution of ESBL and carbapenemase genes and their potential association with ESBL and MDR phenotypes in E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. isolated in a major tertiary hospital in Kathmandu, Nepal, between 2012 and 2018. RESULTS: During this period, the hospital isolated 719 E. coli, 532 Klebsiella spp., 520 Enterobacter spp. and 382 Acinetobacter spp.; 1955/2153 (90.1%) of isolates were MDR and half (1080/2153) were ESBL producers. Upon PCR amplification, bla(TEM) (1281/1771; 72%), bla(CTXM-1) (930/1771; 53%) and bla(CTXM-8) (419/1771; 24%) were the most prevalent ESBL genes in the enteric bacilli. Bla(OXA) and bla(OXA-51) were the most common bla(OXA) family genes in the enteric bacilli (918/1771; 25%) and Acinetobacter spp. (218/382; 57%) respectively. Sixteen percent (342/2153) of all isolates and 20% (357/1771) of enteric bacilli harboured bla(NDM-1) and bla(KPC) carbapenemase genes respectively. Of enteric bacilli, Enterobacter spp. was the most frequently positive for bla(KPC) gene (201/337; 60%). The presence of each bla(CTX-M) and bla(OXA) were significantly associated with non-susceptibility to third generation cephalosporins (OR 14.7, p < 0.001 and OR 2.3, p < 0.05, respectively).The presence of each bla(TEM), bla(CTXM) and bla(OXA) family genes were significantly associated with ESBL positivity (OR 2.96, p < 0.001; OR 14.2, p < 0.001 and OR 1.3, p < 0.05 respectively) and being MDR (OR 1.96, p < 0.001; OR 5.9, p < 0.001 and OR 2.3, p < 0.001 respectively). CONCLUSIONS: This study documents an alarming level of AMR with high prevalence of MDR ESBL- and carbapenemase-positive ESKAPE microorganisms in our clinical setting. These data suggest a scenario where the clinical management of infected patients is increasingly difficult and requires the use of last-resort antimicrobials, which in turn is likely to intensify the magnitude of global AMR crisis. | 2020 | 33087115 |
| 1411 | 5 | 0.9848 | Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BACKGROUND: Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan. RESULTS: Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blaVIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed. CONCLUSIONS: The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined. | 2021 | 33947325 |
| 2115 | 6 | 0.9847 | Assessment of carbapenemase genes and antibiotic resistance profiles in ceftazidime-avibactam resistant Klebsiella pneumoniae isolates: A single-center cross-sectional study. BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKp) is an urgent global health threat due to its rapid spread and limited treatment options. Ceftazidime-avibactam exhibits broad efficacy against gram-negative bacteria, including CRKp; however, emerging resistance to this agent is increasingly reported. Understanding the prevalence of ceftazidime-avibactam resistance and the underlying carbapenemase genes is critical for optimizing antimicrobial stewardship and guiding clinical management. This study aimed to determine the prevalence of ceftazidime avibactam resistance among CRKp isolates collected from various clinical specimens, and to analyze their associated carbapenemase genes and antibiotic resistance profiles. METHODS: This cross-sectional study analyzed 312 K pneumoniae isolates obtained from various clinical specimens of hospitalized patients at a tertiary care hospital in Turkey. Antibiotic susceptibility testing was performed using the disk diffusion method for ceftazidime-avibactam and broth microdilution for both colistin and ceftazidime-avibactam. Molecular detection of carbapenemase genes was carried out using polymerase chain reaction. RESULTS: Ceftazidime-avibactam resistance was identified in 21.5% (67/312) of CRKp isolates. Among these isolates, 37.3% harbored both OXA-48 and NDM genes, 13.4% carried NDM alone, 10.4% carried OXA-48 alone, and 38.8% lacked these genes. The majority of resistant isolates originated from urine (31.3%), followed by tracheal aspirate (29.9%), and blood (22.4%) specimens. The prevalence of colistin susceptibility among ceftazidime-avibactam-resistant CRKp isolates was 56.7%. CONCLUSIONS: The coexistence of NDM and OXA-48 genes is a major contributor to ceftazidime-avibactam resistance in CRKp isolates, particularly in urinary and respiratory tract infections. These findings underscore the need for ongoing surveillance and tailored antibiotic stewardship programs to control the spread of resistance in hospital settings. | 2025 | 41088587 |
| 2104 | 7 | 0.9847 | A systematic review and meta-analysis on antibiotic resistance genes in Ghana. BACKGROUND: Addressing antimicrobial resistance (AMR) poses a complex challenge, primarily because of the limited understanding of bacterial antibiotic resistance genes (ARGs) and the spread of these genes across different domains. To bridge this knowledge gap in Ghana, we undertook a comprehensive systematic review and meta-analysis to quantify and estimate the prevalence of circulating ARGs in bacteria isolated from human, animal, and environmental sources. METHODS: A thorough literature search was conducted across three major databases-Web of Science, PubMed, and Scopus-to retrieve all relevant articles related to ARGs in Ghana from the inception of the databases to February 25, 2024. A risk-of-bias evaluation was performed using the Newcastle-Ottawa Scale (NOS), and the data analysis involved descriptive statistics and proportional meta-analysis. RESULTS: Of the 371 articles initially obtained, 38 met the inclusion criteria. These studies adequately covered Ghana geographically. The most prevalent ESBL gene identified was bla(CTX-M), with a prevalence of 31.6% (95% CI: 17.6-45.7), followed by bla(TEM) (19.5% [95% CI: 9.7-29.3]), and bla(SHV) (3.5% [95% CI: 0.3-6.6]). The pooled prevalence of carbapenemase genes ranged from 17.2% (95% CI: 6.9-27.6) for bla(NDM) to 10.3% (95% CI: 1.9-18.7) for bla(OXA). Additionally, other ARGs, including sul1, qnrS, gyrA, erm(B), and mecA, were detected, with prevalence ranging from 3.9% (95% CI: 0.0-8.5) to 16.4% (95% CI: 3.1-29.8). Several ARGs were shared across human, animal, and environmental sources. CONCLUSION: This review revealed that bacteria obtained from human, animal, and environmental samples in Ghana shared genes associated with AMR. This finding provides evidence on the interconnection of AMR across these three domains. Horizontal gene transfer, which enables the dissemination of ARGs between genetically diverse bacteria, can occur, necessitating a multidisciplinary approach to addressing antimicrobial resistance in Ghana. | 2025 | 40075357 |
| 1425 | 8 | 0.9845 | Distribution and Antimicrobial Resistance of Complicated Intraabdominal Infection Pathogens in Two Tertiary Hospitals in Egypt. Background: Management of complicated intraabdominal infections (cIAIs) requires containment of the source and appropriate initial antimicrobial therapy. Identifying the local data is important to guide the empirical selection of antimicrobial therapy. In this study, we aimed to describe the pathogen distribution and antimicrobial resistance of cIAI. Methods: In two major tertiary care hospitals in Egypt, we enrolled patients who met the case definition of cIAI from October 2022 to September 2023. Blood cultures were performed using the BACTAlert system (BioMerieux, Marcy l'Etoile, France). A culture of aspirated fluid, resected material, or debridement of the infection site was performed. Identification of pathogens and antimicrobial susceptibility testing were conducted by the VITEK-2 system (BioMerieux, Marcy l'Etoile, France). Gram-negative resistance genes were identified by PCR and confirmed by whole bacterial genome sequencing using the Nextera XT DNA Library Preparation Kit and sequencing with the MiSeq Reagent Kit 600 v3 (Illumina, USA) on the Illumina MiSeq. Results: We enrolled 423 patients, 275 (65.01%) males. The median age was 61.35 (range 25-72 years). We studied 452 recovered bacterial isolates. Gram-negative bacteria were the vast majority, dominated by E. coli, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Proteus mirabilis (33.6%, 30.5%, 13.7%, 13%, and 5.4%, respectively). High rates of resistance were detected to third- and fourth-generation cephalosporins and fluoroquinolones. No resistance was detected to colistin. Resistance to amikacin and tigecycline was low among all isolates. Resistance to meropenem and ceftazidime/avibactam was moderate. ESBL genes were common in E. coli and K. pneumoniae. CTX-M15 gene was the most frequent. Among Enterobacterales, bla(OXA-48) and bla(NDM) were the most prevalent carbapenemase genes. Pseudomonas aeruginosa isolates harbored a wide variety of carbapenemase genes (OXA, NDM, VIM, SIM, GIM, SPM, IMP, AIM), dominated by metallo-beta-lactamases. In 20.6% of isolates, we identified two or more resistance genes. Conclusion: High resistance rates were detected to third- and fourth-generation cephalosporins and fluoroquinolones. Amikacin and tigecyclines were the most active antimicrobials. Our data call for urgent implementation of antimicrobial stewardship programs and reinforcement of infection control. | 2024 | 39172656 |
| 2196 | 9 | 0.9845 | Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens. | 2025 | 40585877 |
| 1434 | 10 | 0.9844 | Molecular characterization of carbapenemases production among environmental Gram-negative isolates at Addis Ababa, Ethiopia: first detection of NDM Producers in hospital environments. INTRODUCTION: The Gram-Negative bacteria, particularly carbapenem-resistant strains (CR-GNB), pose a global health threat due to high morbidity and mortality. Detecting carbapenemase-encoding genes is essential for understanding their spread in hospital environments. This study investigated environmental colonization by CR-GNB in Ethiopian hospitals, including genetic characterization of resistance genes. METHODOLOGY: A cross-sectional study analyzed 103 environmental GNB isolates collected from inanimate surfaces at Tikur Anbessa Specialized Hospital (TASH) and ALERT Hospital (June-September 2021). Conventional microbiological methods identified the isolates, and antimicrobial susceptibility was tested using the Kirby-Bauer disk diffusion method. Carbapenemase production was screened using the Modified Hodge test (MHT) and combined disk test (CDT). Resistance genes (blaKPC, blaNDM, blaOXA-48) were detected via PCR in isolates with reduced meropenem susceptibility. RESULTS: The predominant GNB were Acinetobacter baumannii (47%), Pseudomonas aeruginosa (33%), and E. coli (12%). Among 103 isolates, 62% showed reduced meropenem susceptibility. The most common CR-GNB was Acinetobacter baumannii (37.5%), followed by E. coli (18.8%) and Klebsiella pneumoniae (12.5%). Carbapenemase production was detected in 41.7% of isolates via PCR, with blaNDM being the most common (43 isolates). Linens (26.4%) and beds (21.4%) had the highest contamination rates. Most carbapenemase-producing isolates were multidrug-resistant (MDR). CONCLUSIONS: The presence of blaNDM and blaKPC genes highlights hospital surfaces as reservoirs for resistance genes, contributing to healthcare-associated infections. Routine surveillance and early detection of carbapenemase producers are crucial for infection control and antimicrobial resistance management. | 2025 | 40305531 |
| 2103 | 11 | 0.9844 | Antibiotic resistance in hospital wastewater in West Africa: a systematic review and meta-analysis. BACKGROUND: The occurrence of antibiotic-resistant bacteria (ARB) has become a global menace and therefore increases morbidity, mortality and healthcare costs. Globally, hospital wastewater (HWW) has been identified as a significant source of antibiotic-resistant elements. OBJECTIVES: This review aims to systematically review and to perform meta-analyses from evidence on antibiotic resistance studies in HWW in West Africa. METHODS: The review was conducted in compliance with PRISMA and included studies published between 1990 and 2024 in West Africa from the Scopus, PubMed, and Web of Science databases. Eligible studies that characterized resistant bacteria, genes, or antibiotic residues in HWW were included. Meta-analyses for resistant bacteria and genes as well risk of bias using the Newcastle-Ottawa scale were conducted. RESULTS: Out of 23 studies reviewed, resistant bacteria were reported in 39% (E. coli), 26% (K. pneumoniae), and 17% (P. aeruginosa), while 17 studies reported ARGs, with blaTEM (29%), blaOXA- 48 (18%), blaSHV (18%), and mecA (18%) being the most common. Only 4% and 9% of studies focused on toxin genes and antibiotic residues, respectively. Meta-analysis showed pooled prevalence rates for resistant bacteria: E. coli 42.6% (95% CI: 26.7%-60.3%) and K. pneumoniae 32.1% (95% Cl: 28.8%- 36.5%), and ARGs: blaTEM 76.0% (95% CI = 64.6%-84.6%) and blaSHV 59.3% (95% CI = 19.5%-89.8%). CONCLUSION: This systematic review highlights significant findings of high levels of ARGs and ARBs of public health concern in HWW in West Africa. This highlights the need to improve upon the monitoring of antibiotic resistance and treatment of HWW in West Africa. | 2025 | 40217451 |
| 1405 | 12 | 0.9844 | The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC). | 2022 | 35732546 |
| 978 | 13 | 0.9844 | Beta-lactamase resistance genes in Enterobacteriaceae from Nigeria. BACKGROUND: Beta-lactamase genes are one of the most important groups of antimicrobial resistance genes in human and animal health. Therefore, continuous surveillance of this group of resistance genes is needed for a better understanding of the local epidemiology within a country and global dissemination. AIM: This review was carried out to identify different beta-lactamase resistance genes reported in published literature from Nigeria. METHODS: Systematic review and meta-analysis was carried out on eligible Nigerian articles retrieved from electronic literature searches of PubMed(®), African Journals Online, and Google Scholar published between January 1990 and December 2019. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was adopted to facilitate clarity and transparency in reporting review findings. RESULTS: Fifty-seven articles were included. All beta-lactamases reported were detected from Gram-negative bacteria, particularly from Enterobacteriaceae. Thirty-six different beta-lactamase genes were reported in Nigeria. These genes belong to the narrow-spectrum, AmpC, extended-spectrum and carbapenemase beta-lactamase resistance genes. The pooled proportion estimate of extended-spectrum beta-lactamase genes in Nigeria was 31% (95% confidence interval [CI]: 26% - 36%, p < 0.0001), while the estimate of the bla (CTX-M-15) gene in Nigeria was 46% (95% CI: 36% - 57%, p < 0.0001). The proportion estimate of AmpC genes was 32% (95% CI: 11% - 52%, p < 0.001), while the estimate for carbapenemases was 8% (95% CI: 5% - 12%, p < 0.001). CONCLUSION: This study provides information on beta-lactamase distribution in Nigeria. This is necessary for a better understanding of molecular epidemiology of clinically important beta-lactamases, especially the extended-spectrum beta-lactamases and carbapenemases in Nigeria. | 2022 | 35282396 |
| 949 | 14 | 0.9844 | Molecular and clinical insights into extended-spectrum β-lactamase genes of Klebsiella pneumoniae isolated from neonatal sepsis in Ethiopia. BACKGROUND: Klebsiella bacterial strains harboring Extended-Spectrum Beta-Lactamase (ESBL) enzymes are the primary culprits behind neonatal sepsis globally. These strains significantly impact clinical outcomes due to their multi-drug resistance patterns in local healthcare settings. In response to this spiraling threat, we studied the prevalence and clinical implications of ESBL-encoding genes in neonates hospitalized with confirmed sepsis. METHODS: A correlational study was conducted on 51 neonates diagnosed with sepsis caused by ESBL-positive Klebsiella pneumoniae at Jimma Medical Center spanning from May 2022 to July 2023. Antimicrobial resistance profiles of the bacterial isolates were determined using the Kirby-Bauer diffusion test, while multiplex polymerase chain reaction (mPCR) techniques were employed to identify resistance genes. The correlation between resistance genes and treatment outcomes was analyzed using the phi coefficient (φ) with a significance level below 0.05. The data management was executed through the utilization of WHONET and STATA software platforms. RESULTS: The sample consisted of 26 (50.9%) male and the remaining 25 (49.1%) female neonates, with diverse clinical characteristics. All 51 Klebsiella pneumoniae isolates were 100% resistant to trimethoprim/sulfamethoxazole and ceftriaxone, but showed varying resistance profiles ranging from 30.8% to meropenem to 94.2% to ceftazidime. Notably, all isolates demonstrated multidrug resistance, with 23% of cases showing resistance to seven different antimicrobial classes. The most prevalent resistance genes identified were bla(CTX-M) (96.1%), bla(TEM) (94.1%), and bla(SHV) (88.2%). The majority of isolates (94.1%) carried at least two resistance genes, such as bla(TEM) and bla(CTX) (94.1%), bla(TEM) and bla(SHV) (86.2%), and bla(CTX) and bla(SHV) (86.2%). Notably, 84.3% of the bacteria harbored the trio of bla(TEM), bla(CTX), and bla(SHV) resistance genes, and only the presence of bla(SHV) in monogenic (φ = 0.4, P = 0.01) or the trio of bla(TEM), bla(CTX), and bla(SHV) genes (φ = 0.3, P = 0.02) showed positive correlation with neonatal mortality. CONCLUSION: We observed a significant prevalence of multidrug-resistant Klebsiella pneumoniae strains among neonates. Moreover, ESBL-resistance genes were widespread, with the blaSHV gene showing a correlation with increased neonatal mortality. These findings emphasize the urgent need for enhanced infection prevention measures, robust antimicrobial resistance surveillance, innovative treatment strategies, antibiotic stewardship initiatives, further research into resistance transfer mechanisms as well as hierarchical predictors of neonatal mortality. CLINICAL TRIAL NUMBER: Not applicable. | 2024 | 39695444 |
| 2102 | 15 | 0.9843 | Phenotypic and genotypic landscape of antibiotic resistance through One Health approach in Sri Lanka: A systematic review. OBJECTIVES: Antibiotic resistance (ABR) constitutes a significant burden to economies in developing countries. In the 'One-Health' concept, ABR in human, animals, and environment is interconnected. The aim of this study was to critically appraise literature on ABR in all three domains in One Health, within the Sri Lankan geographical context. METHODS: The protocol was registered with PROSPERO and followed PRISMA 2020 guidelines. A comprehensive electronic literature search was conducted in PubMed, Scopus, Web of Science databases and grey literature via Google Scholar. Out of 298 abstracts, 37 articles were selected following screening. A risk of bias assessment was conducted using Joanna Briggs Institute tools. Following blinded data extraction, descriptive data analysis and narrative synthesis were performed. RESULTS: This review included studies published between 2016-2023. Of the included studies, 17 (45.9%) reported data on samples obtained from humans, 9 (24.3%) from animals, and 6 (16.2%) from environmental sources, two studies (5.4%) from humans and animals, one study on animal and environment; whereas two studies including all three domains. ABR of 32 different bacteria (Gram negative⸺17, Gram positive⸺14) was retrieved; E. coli was the most frequently studied bacteria followed by MRSA and ESBL. For E. coli, a median resistance over 50% was reported for sulfamethoxazole (88.8%), trimethoprim (79.1%), ampicillin (60%) and tetracycline (50.3%) with the highest resistance for erythromycin (98%). Of a total of 21 antibiotic-resistance genes in E. coli, the highest genotypic resistance was for tet-A (48.5%). CONCLUSIONS: A comprehensive description of ABR for a total of 32 bacteria, 62 antibiotics and 46 ABR genes is presented. This review discusses the contemporary ABR landscape in Sri Lanka through the One Health lens, highlighting key methodological and empirical research gaps. | 2025 | 39763328 |
| 2256 | 16 | 0.9843 | Bacterial Resistance in Hospital-Acquired Infections Acquired in the Intensive Care Unit: A Systematic Review. PURPOSE: In this review we present the status of the prevalence of bacteria resistant to antibiotics and the main antibiotic resistance genes that are reported in infections acquired in intensive care units (ICU) around the world. METHODS: A systematic review based on the PRISMA guide was carried out, from the Science Direct, Redalyc, Scopus, Hinari, Scielo, Dialnet, PLOS, ProQuest, Taylor, Lilacs and PubMed/Medline databases. Inclusion criteria of this review were original research study published in a scientific journal in a 10-year time span from 1 January 2017 and 30 April 2022. RESULTS: A total of 1686 studies were identified, but only 114 studies were considered eligible for inclusion. Klebsiella pneumoniae and Escherichia coli resistant to carbapenems and producers of extended-spectrum β-lactamases (ESBL) are the most frequently isolated pathogens in ICUs in Asia, Africa and Latin America. The blaOXA and blaCTX were antibiotic resistance genes (ARG) most commonly reported in different geographic regions (in 30 and 28 studies, respectively). Moreover, multidrug-resistant (MDR) strains were reported in higher frequency in hospital-acquired infections. Reports of MDR strains vary between continents, with the majority of publications being in Asia and between countries, with Egypt and Iran being highlighted. There is a predominance of few bacterial clones with MDR phenotype, for example, clonal complex 5 Methicillin-Resistant Staphylococcus aureus (CC5-MRSA) circulates frequently in hospitals in the United States, clone ST23-K. pneumoniae is reported in India and Iran, and clone ST260 carbapenemase-producing P. aeruginosa in the United States and Estonia. CONCLUSION: Our systematic review reveals that ESBL- and carbapenemase-producing K. pneumoniae and E. coli are the most problematic bacteria that are reported, mainly in tertiary hospitals in Asia, Africa, and Latin America. We have also found propagation of dominant clones with a high degree of MDR, becoming a problem due to its high capacity to cause morbidity, mortality and additional hospital costs. | 2023 | 37384803 |
| 2098 | 17 | 0.9842 | Continuity of carbapenem resistance determinants in carioca river and Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil, after decade. Antimicrobial resistance is a major global issue in the 21st century, extending beyond hospitals to various ecosystems and organisms, including animals, soil, and bodies of water, thus becoming a One Health concern. This study investigates resistant Gram-negative bacteria and their antimicrobial resistance genes in water samples from the Carioca River (CR) and Rodrigo de Freitas Lagoon (RFL) in Rio de Janeiro, Brazil. The samples were collected from different locations, and bacteria were identified using Matrix-Assisted Laser Desorption/Ionization Time of Flight technology. Antimicrobial susceptibility was evaluated using the agar disk diffusion method and minimum inhibitory concentration testing. The presence of resistance determinants was investigated through conventional Polymerase Chain Reaction. Among the 101 Gram-negative isolates, 45% (46/101) were non-susceptible to carbapenems, with resistance genes found, including bla(KPC) (41%; 19/46), bla(GES) (26%; 12/46), bla(NDM) (6%; 3/46), bla(CTX−M) (6%; 3/46) and bla(VIM) (2%; 1/46). The intl1 was detected in 32% (15/46) of the bacterial isolates. When comparing the current study to a 2013 investigation, the consistent presence of bla(KPC) was observed at CR collection points. Additionally, bla(KPC) was detected in RFL. This highlights the persistent presence of bla(KPC) in the investigated environments, posing a threat to human, animal and environmental health. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1038/s41598-025-21876-9. | 2025 | 41168283 |
| 2523 | 18 | 0.9842 | Antibiotic resistance and virulence of bacteria in spices: a systematic review. BACKGROUND: Spices, widely valued for their flavor, color, and antioxidant properties, are increasingly used in culinary and food industries. Despite their benefits, spices may act as carriers for antibiotic-resistant and potentially pathogenic bacteria, posing a threat to food safety and public health. METHODS: This systematic review followed the PRISMA 2020 guidelines. A comprehensive search of six databases (Web of Science, PubMed, Scopus, Cochrane Library, Google Scholar, and Embase) was conducted for English-language articles from inception to 2023, focusing on bacterial contamination, antibiotic resistance, and virulence in spices. Inclusion was limited to peer-reviewed articles, and methodological quality was assessed using the JBI checklist. RESULTS: Of the 3,458 initially identified articles, 16 met the inclusion criteria. Most studies originated from Asia (n = 5) and the Americas (n = 4). Bacteria commonly isolated from spices included Bacillus cereus, Escherichia coli, Salmonella spp., and Staphylococcus aureus. High resistance levels were observed against ampicillin (83.3%) and penicillin (82.1%), while most isolates were susceptible to polymyxin B and cephalothin. Resistance genes such as bla, tetK, and ermB were frequently detected, along with virulence genes like nheA, hblC, cytK, and tpeL. CONCLUSION: Spices may serve as reservoirs for multidrug-resistant and virulent bacteria. Improved handling, processing, and decontamination practices are essential to mitigate foodborne risks and curb the spread of antimicrobial resistance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42522-025-00172-6. | 2025 | 41088443 |
| 1428 | 19 | 0.9841 | Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI. | 2018 | 29936619 |