1999 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
299500.9860Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique.200111722546
306310.9858Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12.1976779633
11020.9851Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit.200212417742
303830.9850Biotinylated probes for epidemiological studies of drug resistance in Salmonella krefeld. A gene probe for ampicillin resistance and one for sulphonamide resistance were prepared to study the origin and the relation of multiple drug resistances in Salmonella krefeld. The resistance genes were cloned into the pACYC184 vector of Escherichia coli from a common plasmid of S. krefeld that encoded for resistance to ampicillin, chloramphenicol, kanamycin, streptomycin, sulphonamide and tetracycline resistance. Restriction map analysis and deletion analysis of a recombinant plasmid (pACSS1) showed that the gene determining ampicillin resistance was located on a 1.34 and 1.12 kb PstI fragment, and that the gene for sulphonamide resistance was located on a 0.85 kb PstI fragment. These fragments were used as probes. Their specificity was tested by colony hybridization with various bacterial species, including sensitive and resistance S. krefeld isolates. Further study indicated that the ampicillin resistance gene probe reacted with the gene for TEM-1 beta-lactamase and that the gene probe for sulphonamide resistance reacted with the gene for type II dihydropteroate synthase. The two probes were sufficiently specific to allow study of the epidemiology of resistance in S. krefeld and other enteric bacteria.19902190970
303740.9848Faecal Escherichia coli mediating transferable multi-antibiotic resistance and undesirable extra-chromosomal genes. A conjugative R-plasmid PE004, Inc F11, conferring resistance to ampicillin, tetracycline, streptomycin, kanamycin and trimethoprim was obtained from an E. coli serotype 026 isolate from the stool of a child with acute diarrhoea. The R-plasmid PE004 also co-transfers an enteropathogenicity antigen without the production of enterotoxins or manifestation of invasiveness. It is not yet known whether this transferable antigen mediates enterocyte damage with consequent diarrhoea. The R-plasmid was of molecular weight 2.4 megadaltons (3.7 kilobase) with a transfer frequency of 6 x 10(-4) cfu/ml E. coli J53-1. The uncontrolled mediation with antibiotics in cases of acute diarrhoea could select gut bacteria not only possessing R-plasmids conferring resistance to several antibiotics but with associated undesirable extrachromosomal genes.19862435237
305350.9847Expression in Escherichia coli of cryptic tetracycline resistance genes from bacteroides R plasmids. The putative clindamycin resistance region of the Bacteroides fragilis R plasmid pBF4 was cloned in the vector R300B in Escherichia coli. This 3.8-kb EcoRI D fragment from pBF4 expressed noninducible tetracycline resistance in E. coli under aerobic but not anaerobic growth conditions. The fragment does not express tetracycline resistance in Bacteroides, a strict anaerobe. The separate tetracycline resistance transfer system in the Bacteroides host strain V479-1 has no homology to the cryptic determinant on pBF4. In addition, this aerobic tetracycline resistance determinant is not homologous to the three major plasmid mediated tetracycline resistance regions found in facultative gram-negative bacteria, represented by R100, RK2, and pBR322. A similar cryptic tetracycline resistance fragment was cloned from pCP1, a separate clindamycin resistance plasmid from Bacteroides that shares homology with the EcoRI D fragment of pBF4. This study identifies cryptic drug resistance determinants in Bacteroides that are expressed when inserted into an aerobically growing organism.19846379711
362860.9846Antibiotic resistance patterns of gram-negative bacteria isolated from environmental sources. A total of 2,445 gram-negative bacteria belonging to fecal coliform, Pseudomonas, Moraxella, Acinetobacter, and Flavobacterium-Cytophaga groups were isolated from the rivers and bay of Tillamook, Oregon, and their resistances to chloramphenicol (25 microgram/ml), streptomycin (10 microgram/ml), ampicillin (10 microgram/ml), tetracycline (25 microgram/ml), chlortetracycline (25 microgram/ml), oxytetracycline (25 microgram/ml), neomycin (50 microgram/ml), nitrofurazone (12.5 microgram/ml), nalidixic acid (25 microgram/ml), kanamycin (25 microgram/ml), and penicillin G (10 IU/ml) were determined. Among fecal coliforms the bay isolates showed greater resistance to antibiotics than those from tributaries or surface runoff. No such well-defined difference was found among other bacterial groups. The antibiotic resistance patterns of gram-negative bacteria from different sources correlated well, perhaps indicating their common origin. The antibiotic resistance patterns of gram-negative bacteria of different general also correlated well, perhaps indicating that bacteria which share a common environment also share a common mode for developing antibiotic resistance.1978727777
595270.9846Apramycin and gentamicin resistance in Escherichia coli and salmonellas isolated from farm animals. Since the aminoglycoside antibiotic apramycin was licensed for veterinary use in 1980, all isolates of Escherichia coli and salmonellas received at the Central Veterinary Laboratory have been monitored for resistance to apramycin and the related antibiotic gentamicin. During the period 1982-4, the incidence of resistance in E. coli to apramycin increased from 0.6% in 1982 to 2.6% in 1984. In salmonellas the incidence of resistance to apramycin increased from 0.1% in 1982 to 1.4% in 1984. Resistance to both apramycin and gentamicin was detected in six different salmonella serotypes, although an isolate of Salmonella thompson from poultry was resistant to gentamicin but not apramycin. Most of the cultures were isolated from pigs, although the incidence of apramycin resistance in S. typhimurium (DT 204C) from calves has shown a recent dramatic increase. All the isolates with one exception produced the enzyme aminoglycoside 3-N-acetyltransferase IV (ACC(3)IV). The resistance was transferable by conjugation in most of the strains examined, and the plasmids specifying the resistance have been found to belong to a number of different incompatibility groups. Plasmids from three E. coli strains were compatible with all the reference plasmids and belonged to a previously undescribed group which was investigated further. It is suggested that bacteria from humans should be examined for resistance to apramycin and gentamicin to determine the possibility of the antibiotic-resistance bacteria, and their genes, spreading from animals to humans.19863540112
586180.9846Distribution of genes conferring combined resistance to tetracycline and minocycline among group B streptococcal isolates from humans and various animals. Forty-nine tetracycline and minocycline resistant streptococci of serological group B isolated from humans, cattle, pigs and nutrias were investigated for the presence of genes conferring this combined resistance. Southern blot hybridization of EcoRI-digested chromosomal DNA of the bacteria revealed for 39 of the cultures a hybridization signal with tet(M), for four of the cultures a hybridization signal with tet(O) and for none of the cultures a hybridization signal with the tet(Q) gene probe. The restriction endonuclease digested and blotted DNA of six tetracycline and minocycline resistant group B streptococci did not hybridize with any of the available gene probes. The tet(M) gene probes recognized complementary sequences of EcoRI fragments of approximately 10.5 kb and 21.5 kb, the tet(O) gene probe hybridized with fragments of approximately 19 kb. The hybridization of the tet(M) gene probe in two different patterns appeared to be related to the origin of the cultures.19947727901
82690.9845Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States.19957695291
3551100.9845Plasmid incidence in bacteria from deep subsurface sediments. Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu, Cr, and Hg for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of beta-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.198816347789
3562110.9844Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. This study examined the potential of bacteria from river epilithon to mobilize a recombinant catabolic plasmid, pD10, encoding 3-chlorobenzoate degradation and kanamycin resistance. Fifty-four mobilizing plasmids were exogenously isolated by triparental matings between strains of Pseudomonas putida and epilithic bacteria from the River Taff (South Wales, United Kingdom). Frequencies for mobilization ranged from 1.7 x 10(-8) to 4.5 x 10(-3) per recipient at 20 degrees C. The sizes of the mobilizing plasmids isolated ranged from 40 kb to over 200 kb, and 19 of 54 were found to encode mercury resistance. Plasmid-encoded resistance to tetracycline and streptomycin was also found but not resistance to UV light or various heavy metals. Eight plasmids of epilithic bacteria, analyzed by comparing restriction fragmentation patterns, showed significant differences between those isolated from different independent matings. Optimal temperatures for mobilization of pD10 were between 15 and 25 degrees C. Four mercury resistance plasmids were found to be broad host range, transferring mercury resistance and mobilizing pD10 readily to representative species of beta- and gamma-purple bacteria. In general, frequencies of pD10 mobilization by plasmids of epilithic bacteria were 2 to 3 orders of magnitude lower than conjugal transfer frequencies. Thus, there is a high potential for exchange of recombinant genes introduced into the epilithon by mobilization between a variety of bacterial species.19921599248
3631120.9844Antibiotic resistance in Escherichia coli of the normal intestinal flora of swine. Twelve hundred enterobacterial Escherichia coli isolates of porcine origin were screened phenotypically for antibiotic resistance. The bacteria were isolated from 10 herds of swine with different histories of exposure to antimicrobial agents for therapeutic purposes. The bacterial isolates were part of the normal bacterial flora of the intestines of the animals because they were isolated from healthy individuals. The strains were tested for phenotypic antibiotic resistance against sulfonamides, trimethoprim, streptomycin, ampicillin, neomycin, chloramphenicol, and tetracycline. Resistance against streptomycin was found to be most common, followed by resistance against sulfonamides and tetracycline. The highest number of resistant bacteria was found in herds where the use of antimicrobial agents was considered to be high. A selection of multiresistant bacterial isolates were further genetically characterized by hybridization with probes specific for the antibiotic resistance genes; sulI, sulII, dfrI, dfrIIb, dfrIX, and the class A, B, C, and D tetracycline resistance determinants. A PCR was developed and used for detection of the strA-strB gene pair encoding streptomycin resistance in gram-negative bacteria. The strA-strB gene pair was the most frequent resistance determinant in the isolates examined. This study indicates that nonpathogenic E. coli from swine may represent a considerable reservoir of antibiotic resistance genes that might be transferable to pathogens.19989988047
3619130.9843Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Samples of effluent and soil were collected from a reed bed system used to remediate liquid waste from a wool finishing mill with a high use of quaternary ammonium compounds (QACs) and were compared with samples of agricultural soils. Resistance quotients of aerobic gram-negative and gram-positive bacteria to ditallowdimethylammomium chloride (DTDMAC) and cetyltrimethylammonium bromide (CTAB) were established by plating onto nutrient agar containing 5 microg/ml or 50 microg/ml DTDMAC or CTAB. Approximately 500 isolates were obtained and screened for the presence of the intI1 (class 1 integrase), qacE (multidrug efflux), and qacE Delta1 (attenuated qacE) genes. QAC resistance was higher in isolates from reed bed samples, and class 1 integron incidence was significantly higher for populations that were preexposed to QACs. This is the first study to demonstrate that QAC selection in the natural environment has the potential to coselect for antibiotic resistance, as class 1 integrons are well-established vectors for cassette genes encoding antibiotic resistance.200515855499
359140.9843Construction of shuttle cloning vectors for Bacteroides fragilis and use in assaying foreign tetracycline resistance gene expression. Shuttle vectors capable of replication in both Escherichia coli and Bacteroides fragilis have been developed. Conjugal transfer of these plasmids from E. coli to B. fragilis is facilitated by inclusion of the origin of transfer of the IncP plasmid RK2. The vectors pDK1 and pDK2 provide unique sites for cloning selectable markers in Bacteroides. pOA10 is a cosmid vector containing the replication region of pCP1 necessary for maintenance in Bacteroides. pDK3, pDK4.1, and pDK4.2 contain the Bacteroides clindamycin resistance gene allowing selection and maintenance in B. fragilis of plasmids containing inserted DNA fragments. pDK3 was used to test the expression in B. fragilis of five foreign tetracycline resistance (TcR) genes. The tetA, -B, and -C markers from facultative gram-negative bacteria, as well as a TcR determinant from Clostridium perfringens, did not express TcR in B. fragilis. The tetM gene, originally described in streptococci, encoded a small but reproducible increase of TcR in Bacteroides. These studies demonstrate the utility of shuttle vectors for introducing cloned genes into Bacteroides and underscore the differences in gene expression in these anaerobes.19883071818
1381150.9843Differences in antimicrobial resistance-related genes of Trueperella pyogenes between isolates detected from cattle and pigs. We investigated antimicrobial resistance-related genes in 109 isolates of Trueperella pyogenes that were isolated in cattle and pigs. All 89 tetracycline-resistant T. pyogenes isolates carried the resistance gene harbored either tetW, tetM, tetA(33), tetK, or tetL. The ermX or ermB were detected in 18 of 23 erythromycin-resistant isolates. Streptomycin-resistant aadA1, aadA9, aadA11, aadA24, strA, or strB were detected in 25 of 83 isolates. There were significant differences in the percentages of tetA(33), ermB, aadA1, aadA9, aadA11, or aadA24 carriage between cattle and pig isolates. In addition, the Class 1 gene cassette was detected only in 17 cattle isolates. This suggests that T. pyogenes isolates acquire resistance gene in each environment of cattle and pigs, and that the transmission of the bacteria between cattle and pigs is limited.202439293943
418160.9843Plasmid-mediated mechanisms of resistance to aminoglycoside-aminocyclitol antibiotics and to chloramphenicol in group D streptococci. Genes conferring resistance to aminoglycoside-aminocyclitol antibiotics in three group D streptococcal strains, Streptococcus faecalis JH1 and JH6 and S. faecium JH7, and to chloramphenicol in JH6 are carried by plasmids that can transfer to other S. faecalis cells. The aminoglycoside resistance is mediated by constitutively synthesized phosphotransferase enzymes that have substrate profiles very similar to those of aminoglycoside phosphotransferases found in gram-negative bacteria. Phosphorylation probably occurs at the aminoglycoside 3'-hydroxyl group. Plasmid-borne streptomycin resistance is due to production of the enzyme streptomycin adenylyltransferase, which, as in staphylococci and in contrast to that detected in gram-negative bacteria, is less effective against spectinomycin as substrate. Resistance to chloramphenicol is by enzymatic acetylation. The chloramphenicol acetyltransferase is inducible and bears a close resemblance to the type D chloramphenicol acetyltransferase variant from staphylococci.197896732
5394170.9843Antibiotic susceptibility of bacteria isolated from pasteurized milk and characterization of macrolide-lincosamide-streptogramin resistance genes. The presence of antibiotic-resistant bacteria in pasteurized milk was detected by plating 18 milk samples on selective media containing beta-lactams, macrolides, or a glycopeptide. Most samples contained gram-positive bacteria that grew on agar plates containing oxacillin, erythromycin, and/or spiramycin. The disk-diffusion method confirmed resistance to erythromycin and/or spiramycin in 86 and 65% of the coryneform bacteria and Micrococcaceae tested, respectively. PCR and sequence analysis revealed the presence of an ermC gene in 2 of the 25 Micrococcaceae strains investigated for their resistance to erythromycin and/or spiramycin. None of the 14 corynebacteria strains resistant to erythromycin and/or spiramycin harbored the erm(X) gene. No gene transfer could be demonstrated between the two erm(C) staphylococcal isolates and recipient strains of Enterococcus faecalis JH2-2 or Staphylococcus aureus 80CR5.200515726980
3050180.9843The type VII dihydrofolate reductase: a novel plasmid-encoded trimethoprim-resistant enzyme from gram-negative bacteria isolated in Britain. Plasmid pUN835 was identified in an Escherichia coli strain isolated from an outbreak of porcine diarrhoea on a farm near Nottingham, UK. The trimethoprim resistance gene did not hybridize with any of the gene probes derived from known plasmid-encoded trimethoprim resistance genes. The trimethoprim resistance gene of pUN835 was shown to encode the production of a dihydrofolate reductase which confers high-level resistance on its host. This enzyme was smaller than most plasmid-encoded dihydrofolate reductases (molecular mass = 11,500) and was labile to heat. It had relatively low affinity for the substrate dihydrofolate (Km = 20 microM) and it was resistant to competitive inhibition by trimethoprim (Ki = 7.0 microM). We classify this novel enzyme as type VII.19892676936
816190.9843High-Level Nickel Resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Two new nickel-resistant strains of Alcaligenes species were selected from a large number (about 400) of strains isolated from ecosystems polluted by heavy metals and were studied on the physiological and molecular level. Alcaligenes xylosoxydans 31A is a heterotrophic bacterium, and Alcaligenes eutrophus KTO2 is an autotrophic aerobic hydrogen-oxidizing bacterium. Both strains carry-among other plasmids-a megaplasmid determining resistance to 20 to 50 mM NiCl(2) and 20 mM CoCl(2) (when growing in defined Tris-buffered media). Megaplasmids pTOM8, pTOM9 from strain 31A, and pGOE2 from strain KTO2 confer nickel resistance to the same degree to transconjugants of all strains of A. eutrophus tested but were not transferred to Escherichia coli. However, DNA fragments carrying the nickel resistance genes, cloned into broad-hostrange vector pVDZ'2, confer resistance to A. eutrophus derivatives as well as E. coli. The DNA fragments of both bacteria, TBA8, TBA9, and GBA (14.5-kb BamHI fragments), appear to be identical. They share equal size, restriction maps, and strong DNA homology but are largely different from fragment HKI of nickel-cobalt resistance plasmid pMOL28 of A. eutrophus CH34.199116348590