# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 826 | 0 | 0.9752 | Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States. | 1995 | 7695291 |
| 3056 | 1 | 0.9730 | Spread of a newly found trimethoprim resistance gene, dhfrIX, among porcine isolates and human pathogens. A plasmid-borne gene mediating trimethoprim resistance, dhfrIX, newly found among porcine strains of Escherichia coli, was observed at a frequency of 11% among trimethoprim-resistant veterinary isolates. This rather high frequency of dhfrIX could be due to the extensive use of trimethoprim in veterinary practice in Sweden. After searching several hundred clinical isolates, one human E. coli strain was also found to harbor the dhfrIX gene. Thus, the dhfrIX gene seems to have spread from porcine bacteria to human pathogens. Furthermore, the occurrence of other genes coding for resistant dihydrofolate reductase enzymes (dhfrI, dhfrII, dhfrV, dhfrVII, and dhfrVIII) among the porcine isolates was investigated. In addition, association of dhfr genes with the integraselike open reading frames of transposons Tn7 and Tn21 was studied. In colony hybridization experiments, both dhfrI and dhfrII were found associated with these integrase genes. The most common combination was dhfrI and int-Tn7, indicating a high prevalence of Tn7. | 1992 | 1482138 |
| 415 | 2 | 0.9726 | Mobilization of plasmid-borne drug resistance determinants for transfer from Pseudomonas aeruginosa to Escherichia coli. RSU2, a plasmid transmissible between strains of P. aeruginosa but not to Escherichia coli can be mobilized by R751. Conjugatants receive a single plasmid composed of DNA from both R751 and RSU2 which has the compatibility properties of a member of group P (like R751). Study of this fusion plasmid suggests that the failure of RSU2 to transfer into enterobacteria is due to an inability to replicate in these bacteria. The fusion plasmid replicates using the genes of R751. | 1975 | 127114 |
| 3037 | 3 | 0.9724 | Faecal Escherichia coli mediating transferable multi-antibiotic resistance and undesirable extra-chromosomal genes. A conjugative R-plasmid PE004, Inc F11, conferring resistance to ampicillin, tetracycline, streptomycin, kanamycin and trimethoprim was obtained from an E. coli serotype 026 isolate from the stool of a child with acute diarrhoea. The R-plasmid PE004 also co-transfers an enteropathogenicity antigen without the production of enterotoxins or manifestation of invasiveness. It is not yet known whether this transferable antigen mediates enterocyte damage with consequent diarrhoea. The R-plasmid was of molecular weight 2.4 megadaltons (3.7 kilobase) with a transfer frequency of 6 x 10(-4) cfu/ml E. coli J53-1. The uncontrolled mediation with antibiotics in cases of acute diarrhoea could select gut bacteria not only possessing R-plasmids conferring resistance to several antibiotics but with associated undesirable extrachromosomal genes. | 1986 | 2435237 |
| 3045 | 4 | 0.9722 | Plasmid-borne sulfonamide resistance determinants studied by restriction enzyme analysis. The relationship between sulfonamide resistance genes carried on different plasmids was investigated by restriction enzyme analysis and DNA-DNA hybridization. The results showed that sulfonamide resistance mediated by different plasmids is determined by the production of at least two different types of drug-resistant dihydropteroate synthase. Plasmids pGS01, pGS02, and R22259, found in bacteria isolated from patients in Swedish hospitals, contained identical sulfonamide resistance genes, which were also identical to those of plasmids R1, R100, R6, and R388. These latter plasmids, which have been well studied in different laboratories, were originally from clinical isolates from different parts of the world. Two other clinically isolated plasmids, pGS04 and pGS05, were shown to contain sulfonamide resistance determinants of a completely different type. | 1983 | 6298179 |
| 2001 | 5 | 0.9721 | Identification of plasmids co-carrying cfr(D)/optrA and cfr(D2)/poxtA linezolid resistance genes in two Enterococcus avium isolates from swine brain. Oxazolidinones are critically important antibiotics to treat human infections caused by multidrug-resistant bacteria, therefore the occurrence of linezolid-resistant enterococci from food-producing animals poses a serious risk to human health. In this study, Enterococcus avium 38157 and 44917 strains, isolated from the brain of two unrelated piglets, were found to carry the linezolid resistance genes cfr(D)-optrA, and cfr(D2)-poxtA, respectively. Whole genome sequencing analysis of E. avium 38157 revealed that the genes were co-located on the 36.5-kb pEa_cfr(D)-optrA plasmid showing high identity with the pAT02-c of Enterococcus faecium AT02 from pet food. The optrA region, was 99% identical to the one of the pAv-optrA plasmid from a bovine Aerococcus viridans strain, whereas the cfr(D) genetic context was identical to that of the plasmid 2 of E. faecium 15-307.1. pEa_cfr(D)-optrA was not transferable to enterococcal recipients. In E. avium 44917 a cfr(D)-like gene, named cfr(D2), and the poxtA gene were co-located on the transferable 42.6-kb pEa-cfr(D2)-poxtA plasmid 97% identical to the Tn6349 transposon of the human MRSA AOUC-0915. The cfr(D2) genetic context, fully replaced the Tn6644 that in S. aureus AOUC-0915 harbor the cfr gene. In conclusion, this is, the best of our knowledge, the first report of the new cfr(D2) gene variant. The occurrence of plasmids co-carrying two linezolid resistance genes in enterococci from food-producing animals needs close surveillance to prevent their spread to human pathogens. | 2023 | 37116421 |
| 3047 | 6 | 0.9719 | Formaldehyde-resistance in Enterobacteriaceae and Pseudomonas aeruginosa: identification of resistance genes by DNA-hybridization. A 4.1. Kb large DNA fragment of a E. coli plasmid pVU 3695, on which the genes for formaldehyde-resistance are located, was used as a DNA probe to identify bacteria that carry this segment among formaldehyde-resistant bacteria. It was shown by Southern Blot-, Dot Blot-, and Colony Blot- Hybridization studies that the DNA of all formaldehyde-resistant E. coli, Serratia marcescens, Enterobacter cloacae, Citrobacter freundii and Klebsiella pneumoniae strains tested hybridize with the DNA probe from E. coli. In contrast the E. coli DNA probe does not hybridize with the DNA from formaldehyde-resistant Pseudomonas aeruginosa strains. | 1991 | 1909132 |
| 2003 | 7 | 0.9718 | Characterization of an Escherichia coli Isolate Coharboring the Virulence Gene astA and Tigecycline Resistance Gene tet(X4) from a Dead Piglet. tet(X4) is the critical resistance gene for tigecycline degradation that has been continually reported in recent years. In particular, pathogenic bacteria carrying tet(X4) are a severe threat to human health. However, information describing Escherichia coli coharboring tet(X4) with virulence genes is limited. Here, we isolated an E. coli strain coharboring tet(X4) and the heat-stable toxin gene astA from a dead piglet. The strain named 812A1-131 belongs to ST10. The genome was sequenced using the Nanopore and Illumina platforms. The virulence genes astA and tet(X4) are located on the chromosome and in the IncHI1-type plasmid p812A1-tetX4-193K, respectively. The plasmid could be conjugatively transferred to recipient E. coli J53 with high frequency. In vivo experiments showed that strain 812A1-131 is pathogenic to Galleria mellonella and could colonize the intestines of mice. In summary, pathogenic E. coli could receive a plasmid harboring the tet(X4) gene, which can increase the difficulty of treatment. The prevalence and transmission mechanisms of pathogenic bacteria coharboring the tet(X4) gene need more attention. | 2023 | 37513750 |
| 5230 | 8 | 0.9718 | Characterization of Fosfomycin and Nitrofurantoin Resistance Mechanisms in Escherichia coli Isolated in Clinical Urine Samples. Fosfomycin and nitrofurantoin are antibiotics of choice to orally treat non-complicated urinary tract infections (UTIs) of community origin because they remain active against bacteria resistant to other antibiotics. However, epidemiologic surveillance studies have detected a reduced susceptibility to these drugs. The objective of this study was to determine possible mechanisms of resistance to these antibiotics in clinical isolates of fosfomycin- and/or nitrofurantoin-resistant UTI-producing Escherichia coli. We amplified and sequenced murA, glpT, uhpT, uhpA, ptsI, cyaA, nfsA, nfsB, and ribE genes, and screened plasmid-borne fosfomycin-resistance genes fosA3, fosA4, fosA5, fosA6, and fosC2 and nitrofurantoin-resistance genes oqxA and oqxB by polymerase chain reaction. Among 29 isolates studied, 22 were resistant to fosfomycin due to deletion of uhpT and/or uhpA genes, and 2 also possessed the fosA3 gene. Some modifications detected in sequences of NfsA (His11Tyr, Ser33Arg, Gln67Leu, Cys80Arg, Gly126Arg, Gly154Glu, Arg203Cys), NfsB (Gln44His, Phe84Ser, Arg107Cys, Gly192Ser, Arg207His), and RibE (Pro55His), and the production of truncated NfsA (Gln67 and Gln147) and NfsB (Glu54), were associated with nitrofurantoin resistance in 15/29 isolates; however, the presence of oqxAB plasmid genes was not detected in any isolate. Resistance to fosfomycin was associated with the absence of transporter UhpT expression and/or the presence of antibiotic-modifying enzymes encoded by fosA3 plasmid-mediated gene. Resistance to nitrofurantoin was associated with modifications of NfsA, NfsB, and RibE proteins. The emergence and spread of these resistance mechanisms, including transferable resistance, could compromise the future usefulness of fosfomycin and nitrofurantoin against UTIs. Furthermore, knowledge of the genetic mechanisms underlying resistance may lead to rapid DNA-based testing for resistance. | 2020 | 32847131 |
| 5952 | 9 | 0.9718 | Apramycin and gentamicin resistance in Escherichia coli and salmonellas isolated from farm animals. Since the aminoglycoside antibiotic apramycin was licensed for veterinary use in 1980, all isolates of Escherichia coli and salmonellas received at the Central Veterinary Laboratory have been monitored for resistance to apramycin and the related antibiotic gentamicin. During the period 1982-4, the incidence of resistance in E. coli to apramycin increased from 0.6% in 1982 to 2.6% in 1984. In salmonellas the incidence of resistance to apramycin increased from 0.1% in 1982 to 1.4% in 1984. Resistance to both apramycin and gentamicin was detected in six different salmonella serotypes, although an isolate of Salmonella thompson from poultry was resistant to gentamicin but not apramycin. Most of the cultures were isolated from pigs, although the incidence of apramycin resistance in S. typhimurium (DT 204C) from calves has shown a recent dramatic increase. All the isolates with one exception produced the enzyme aminoglycoside 3-N-acetyltransferase IV (ACC(3)IV). The resistance was transferable by conjugation in most of the strains examined, and the plasmids specifying the resistance have been found to belong to a number of different incompatibility groups. Plasmids from three E. coli strains were compatible with all the reference plasmids and belonged to a previously undescribed group which was investigated further. It is suggested that bacteria from humans should be examined for resistance to apramycin and gentamicin to determine the possibility of the antibiotic-resistance bacteria, and their genes, spreading from animals to humans. | 1986 | 3540112 |
| 346 | 10 | 0.9717 | Horizontal transfer of CS1 pilin genes of enterotoxigenic Escherichia coli. CS1 is one of a limited number of serologically distinct pili found in enterotoxigenic Escherichia coli (ETEC) strains associated with disease in people. The genes for the CS1 pilus are on a large plasmid, pCoo. We show that pCoo is not self-transmissible, although our sequence determination for part of pCoo shows regions almost identical to those in the conjugative drug resistance plasmid R64. When we introduced R64 into a strain containing pCoo, we found that pCoo was transferred to a recipient strain in mating. Most of the transconjugant pCoo plasmids result from recombination with R64, leading to acquisition of functional copies of all of the R64 transfer genes. Temporary coresidence of the drug resistance plasmid R64 with pCoo leads to a permanent change in pCoo so that it is now self-transmissible. We conclude that when R64-like plasmids are transmitted to an ETEC strain containing pCoo, their recombination may allow for spread of the pCoo plasmid to other enteric bacteria. | 2004 | 15126486 |
| 3039 | 11 | 0.9717 | Distinct recent lineages of the strA- strB streptomycin-resistance genes in clinical and environmental bacteria. We report the linkage of the strA-strB streptomycin-resistance genes with Class 1 integron sequences on pSTR1, a 75-kb multiple antibiotic-resistance plasmid from Shigella flexneri. strA-strB had previously been detected only within Tn 5393, a Tn 3-family transposon, and on small nonconjugative broad-host-range plasmids such as RSF1010. The geographic range of Tn 5393 was also extended to Pseudomonas spp. isolated from apple trees in New Zealand and soil in the USA. Comparative sequence analyses indicated that strA-strB from Tn 5393 and nonconjugative plasmids constitute distinct recent lineages with strA-strB from pSTR1 intermediate between the other two. The carriage of strA-strB within an integron, a transposon, and on broad-host-range plasmids has facilitated the world-wide dissemination of this determinant among at least 21 bacterial genera. | 2002 | 12029529 |
| 1722 | 12 | 0.9717 | Genomic Characteristics and Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Strains Carried by Wild Birds. This study aimed to explore the relationship between wild birds and the transmission of multidrug-resistant strains. Klebsiella pneumoniae was isolated from fresh feces of captured wild birds and assessed by the broth microdilution method and comparative genomics. Four Klebsiella pneumoniae isolates showed different resistance phenotypes; S90-2 and S141 were both resistant to ampicillin, cefuroxime, and cefazolin, while M911-1 and S130-1 were sensitive to most of the 14 antibiotics tested. S90-2 belongs to sequence type 629 (ST629), and its genome includes 30 resistance genes, including bla(CTX-M-14) and bla(SHV-11), while its plasmid pS90-2.3 (IncR) carries qacEdelta1, sul1, and aph(3')-Ib. S141 belongs to ST1662, and its genome includes a total of 27 resistance genes, including bla(SHV-217). M911-1 is a new ST, carrying bla(SHV-1) and fosA6, and its plasmid pM911-1.1 (novel) carries qnrS1, bla(LAP-2), and tet(A). S130-1 belongs to ST3753, carrying bla(SHV-11) and fosA6, and its plasmid pS130-1 [IncFIB(K)] carries only one resistance gene, tet(A). pM911-1.1 and pS90-2.3 do not have conjugative transfer ability, but their resistance gene fragments are derived from multiple homologous Enterobacteriaceae strain chromosomes or plasmids, and the formation of resistance gene fragments (multidrug resistance region) involves interactions between multiple mobile element genes, resulting in a complex and diverse resistance plasmid structure. The homologous plasmids related to pM911-1.1 and pS90-2.3 were mainly from isolated human-infecting bacteria in China, namely, K. pneumoniae and Escherichia coli. The multidrug-resistant K. pneumoniae isolates carried by wild birds in this study had drug resistance phenotypes conferred primarily by multidrug resistance plasmids that were closely related to human-infecting bacteria. IMPORTANCE Little is known about the pathogenic microorganisms carried by wild animals. This study found that the multidrug resistance phenotype of Klebsiella pneumoniae isolates carried by wild birds was mainly attributed to multidrug resistance plasmids, and these multidrug resistance plasmids from wild birds were closely related to human-infecting bacteria. Wild bird habitats overlap to a great extent with human and livestock habitats, which further increases the potential for horizontal transfer of multidrug-resistant bacteria among humans, animals, and the environment. Therefore, wild birds, as potential transmission hosts of multidrug-resistant bacteria, should be given attention and monitored. | 2023 | 36840587 |
| 3058 | 13 | 0.9717 | pMEX01, a 70kb plasmid isolated from Escherichia coli that confers resistance to multiple β-lactam antibiotics. Multidrug-resistant microorganisms are of great concern to public health. Genetic mobile elements, such as plasmids, are among the most relevant mechanisms by which bacteria achieve this resistance. We obtained an Escherichia coli strain CM6, isolated from cattle presenting severe diarrheic symptoms in the State of Querétaro, Mexico. It was found to contain a 70kb plasmid (pMEX01) with a high similarity to the pHK01-like plasmids that were previously identified and described in Hong Kong. Analysis of the pMEX01 sequence revealed the presence of a bla(CTX-M-14) gene, which is responsible for conferring resistance to multiple β-lactam antibiotics. Several genes putatively involved in the conjugative transfer were also identified on the plasmid. The strain CM6 is of high epidemiological concern because it not only displays resistance to multiple β-lactam antibiotics but also to other kinds of antibiotics. | 2018 | 29449172 |
| 3049 | 14 | 0.9717 | Characterisation of plasmids purified from Acetobacter pasteurianus 2374. Four cryptic plasmids pAP1, pAP2, pAP3, and pAP4 with their replication regions AP were isolated from Gram-negative bacteria Acetobacter pasteurianus 2374 and characterised by sequence analyses. All plasmids were carrying the kanamycin resistance gene. Three of four plasmids pAP2, pAP3, and pAP4 encode an enzyme that confers ampicillin resistance to host cells. Moreover, the tetracycline resistance gene was identified only in pAP2 plasmid. All plasmids are capable to coexist with each other in Acetobacter cells. On the other hand, the coexistence of more than one plasmid is excluded in Escherichia coli. The nucleotide sequence of replication regions showed significant homology. The nucleotide and protein sequence analyses of resistance genes of all plasmids were compared with transposons Tn3, Tn10, and Tn903 which revealed significant differences in the primary structure, however no functional changes of gene were obtained. | 2003 | 14511653 |
| 5451 | 15 | 0.9716 | Two novel phages, Klebsiella phage GADU21 and Escherichia phage GADU22, from the urine samples of patients with urinary tract infection. Phages are found in a wide variety of places where bacteria exist including body fluids. The aim of the present study was to isolate phages from the urine samples of patients with urinary tract infection. The 10 urine samples were cultured to isolate bacteria and also used as phage sources against the isolated bacteria. From 10 urine samples with positive cultures, 3 phages were isolated (33%) and two of them were further studied. The Klebsiella phage GADU21 and Escherichia phage GADU22 phages infected Klebsiella pneumonia and Escherichia coli, respectively. Among the tested 14 species for host range analysis, the Klebsiella phage GADU21 was able to infect two species which are Klebsiella pneumonia and Proteus mirabilis, and Escherichia phage GADU22 was able to infect four species which are Shigella flexneri, Shigella sonnei and Escherichia coli. Among different isolates of the indicator bacteria for each phage, GADU21 infected half of the tested 20 Klebsiella pneumonia isolates while GADU22 infected 85% of the tested 20 E. coli isolates. The genome sizes and GC ratios were 75,968 bp and 44.4%, and 168,023 bp and 35.3% for GADU21 and GADU22, respectively. GADU21 and GADU22 were both lytic and had no antibiotic resistance and virulence genes. GADU21 was homologue with Klebsiella phage vB_KpP_FBKp27 but only 88% of the genome was covered by this phage. The non-covered parts of the GADU21 genome included genes for tail-fiber-proteins and HNH-endonuclease. GADU22 had 94.8% homology with Escherichia phage vB_Eco_OMNI12 and had genes for immunity proteins. Phylogenetic analysis showed GADU21 and GADU22 were members of Schitoviridae family and Efbeekayvirus genus and Straboviridae family and Tevenvirinae genus, respectively. VIRIDIC analysis classified these phages in new species clusters. Our study demonstrated the possibility to use infected body fluids as phage sources to isolate novel phages. GADU21 is the first reported Klebsiella phage isolated from human body fluid. The absence of virulence and antibiotic resistance genes in their genomes makes the phages a potential therapeutic tool against infections. | 2024 | 38238612 |
| 3550 | 16 | 0.9716 | Conjugative transmission of antibiotic-resistance from stream water Escherichia coli as related to number of sulfamethoxazole but not class 1 and 2 integrase genes. A conjugation assay was used to determine the effects of phenotypic resistance to one to up to 5 antibiotics, sampling site of origin, presence or absence of class 1 and/or class 2 integrase (intI) genes (intI1 and intI2), and the number of sulfamethoxazole resistance (sul) and trimethoprim resistance (dfr) genes on the transfer frequencies of plasmids from environmental, antibiotic-resistant Escherichia coli. Of 51 sulfamethoxazole and trimethoprim-resistant E. coli isolates conferring at least one mob gene (mob(P51), mob(F11), mob(F12), mob(Q11), mob(Q12) , or mob(Qu) ), 38 produced transconjugants with an overall mean frequency of 1.60 × 10(-3) transconjugants/ donors (T/D) or 5.89 × 10(-3) transconjugants/recipients (T/R). The presence or absence of intI1 and intI2 and the presence or absence of different targeted dfr genes (dfrA1, dfrA8, dfrA12, dfrA14, dfrA17, and/or dfrB3) were not statistically related to plasmid transfer frequencies as determined by ANOVA (P ≥ 0.05). However, E. coli isolates recovered 2 km downstream of wastewater treatment plant effluent input, and those possessing resistance to 3 antibiotics had significantly greater plasmid transfer frequency than their counterparts when calculated as T/D (ANOVA followed by Fisher's least significant difference means comparison, P < 0.05). Greater plasmid transfer frequency calculated as T/D was also measured for E. coli possessing 3 compared to a single sul gene. The in-vitro frequency suggests that horizontal gene transfer of conjugative mediated-antibiotic (sul) resistance genes may be significant among resistant, stream bacteria. | 2016 | 28090382 |
| 2911 | 17 | 0.9716 | Trimethoprim resistance in commensal bacteria isolated from farm animals. Trimethoprim resistance was examined in faecal bacteria obtained from chickens, sheep, cattle and pigs. The incidence of trimethoprim resistance in porcine strains was 17% (157/922) and, whereas 15.8% (146/922) of these bacteria were highly resistant, only 4% (37/922) of the isolates possessed trimethoprim resistance plasmids. Highly resistant porcine strains were obtained from 44% of the pig farms (41/93) but transferable trimethoprim resistance was found in isolates from 11% (10/93) of the farms. There was an association between the carriage of trimethoprim resistance plasmids and certain farms. Most of the resistance plasmids were not identical with those found in human clinical bacteria but one porcine plasmid was the same as the most ubiquitous trimethoprim resistance plasmid in Edinburgh. | 1987 | 3556440 |
| 3044 | 18 | 0.9716 | RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. The nucleotide sequence of the type II sulfonamide resistance dihydropteroate synthase (sulII) gene was determined. The molecular weight determined by maxicells was 30,000, and the predicted molecular weight for the polypeptide was 28,469. Comparison with the sulI gene encoded by Tn21 showed 57% DNA similarity. The sulII-encoded polypeptide has 138 of 271 amino acids in common with the polypeptide encoded by sulI. The sulII gene is located on various IncQ (broad-host-range) plasmids and other small nonconjugative resistance plasmids. Detailed restriction maps were constructed to compare the different plasmids in which sulII is found. The large conjugative plasmid pGS05 and the IncQ plasmid RSF1010 contained identical nucleotide sequences for the sulII gene. This type of sulfonamide resistance is very frequently found among gram-negative bacteria because of its efficient spread to various plasmids. | 1988 | 3075438 |
| 3055 | 19 | 0.9715 | Tn1545: a conjugative shuttle transposon. Tn1545, from Streptococcus pneumoniae BM4200, confers resistance to kanamycin (aphA-3), erythromycin (ermAM) and tetracycline (tetM). The 25.3 kb element is self-transferable to various Gram-positive bacterial genera where it transposes. Tn1545 was cloned in its entirety in the recombination deficient Escherichia coli HB101 where it was unstable. The three resistance genes aphA-3, ermAM and tetM were expressed but were not transferable to other E. coli cells. Tn1545 transposed from the hybrid plasmid to multiple sites of the chromosome of its new host. The element re-transposed, at a frequency of 5 X 10(-9), from the chromosome to various sites of a conjugative plasmid where it could be lost by apparently clean excision. The element transformed and transposed to the chromosome of Bacillus subtilis. The properties of the conjugative shuttle transposon Tn1545 may account for the recent emergence of genes from Gram-positive bacteria in Gram-negative organisms. | 1987 | 3035335 |