¹ - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
810500.9071Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.202539798649
812610.9071Antiallergic drugs drive the alteration of microbial community and antibiotic resistome in surface waters: A metagenomic perspective. Antiallergic drugs (AADs) are emerging contaminants of global concern due to their environmental persistence and potential ecological impacts. This study investigated the effects of seven AADs (chlorpheniramine, diphenhydramine, cetirizine, loratadine, desloratadine, sodium cromoglicate and calcium gluconate) at environmentally relevant concentrations on antibiotic resistome and bacterial community structures in water using microcosm experiments and metagenomic sequencing. The results showed that AADs increased the abundance of antibiotic-resistant bacteria (ARB) by 1.24- to 7.78-fold. Community structure shifts indicated that chlorpheniramine, diphenhydramine, and cetirizine promoted Actinobacteria (e.g., Aurantimicrobium), while the other four AADs favored Proteobacteria (e.g., Limnohabitans). AADs also significantly altered the relative abundance of antibiotic resistance genes (ARGs), with Actinobacteria and Proteobacteria identified as key ARB components and potential hosts of ARGs (e.g., evgS, mtrA, RanA). Host analysis showed ARGs were primarily carried by Actinobacteria (e.g., Aurantimicrobium) under chlorpheniramine, diphenhydramine, and cetirizine exposure, but by Proteobacteria (e.g., Limnohabitans) under the other four AADs. Furthermore, AADs facilitated the horizontal transfer of ARGs (e.g., evgS) within microbial communities, contributing to antibiotic resistance dissemination. This study highlights the ecological risks of AADs in promoting antibiotic resistance spread and provides new insights into their impact on microbial communities and resistome dynamics in aquatic environments.202540570627
811020.9068Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). The impacts of two ecological earthworms on the removal of chlortetracycline (CTC, 0.5 and 15 mg kg(-1)) and antibiotic resistance genes (ARGs) in soil were explored through the soil column experiments. The findings showed that earthworm could significantly accelerate the degradation of CTC and its metabolites (ECTC) in soil (P < 0.05), with epigeic Eisenia fetida promoting degradation rapidly and endogeic Metaphire guillelmi exhibiting a slightly better elimination effect. Earthworms alleviated the abundances of tetR, tetD, tetPB, tetG, tetA, sul1, TnpA, ttgB and intI1 in soil, with the total relative abundances of ARGs decreasing by 35.0-44.2% in earthworm treatments at the 28th day of cultivation. High throughput sequencing results displayed that the structure of soil bacteria community was modified apparently with earthworm added, and some possible CTC degraders, Aeromonas, Flavobacterium and Luteolibacter, were promoted by two kinds of earthworms. Redundancy analysis demonstrated that the reduction of CTC residues, Actinobacteria, Acidobacteria and Gemmatimonadetes owing to earthworm stimulation was responsible for the removal of ARGs and intI1 in soil. Additionally, intI1 declined obviously in earthworm treatments, which could weaken the risk of horizontal transmission of ARGs. Therefore, earthworm could restore the CTC-contaminated soil via enhancing the removal of CTC, its metabolites and ARGs.202133798888
811330.9062Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1.201728797965
794340.9049Effects of microplastics on dissipation of oxytetracycline and its relevant resistance genes in soil without and with Serratia marcescens: Comparison between biodegradable and conventional microplastics. The biodegradable (polybutylene adipate terephthalate: PBAT) and conventional (polyethylene: PE) microplastics (MPs) at 0.5 %, 1 %, and 2 % dosages (w/w) were added into soils with and without Serratia marcescens ZY01 (ZY01, a tet-host strain) to understand their different effects on the dissipation of oxytetracycline (OTC) and tet. The results showed that the dosages of PBAT MP exhibited different inhibition degrees of OTC biodegradation in soils regardless of ZY01, while the dosages of PE MP did not change the enhancement degree of OTC biodegradation in soils without ZY01. These differences were due to the higher adsorption capacity of OTC on PBAT MP and the stronger toxicity of PBAT MP to microorganisms. Besides soil organic matter, pH and total phosphorus were important factors regulating specific tet-host bacteria in soils with MPs (e.g., the nitrogen-cycling bacteria Steroidobacter and Nitrospira) and MPs + ZY01 (e.g., the phosphorus-cycling bacteria Saccharimonadales and Haliangium), respectively. Regardless of ZY01, a stronger selective harboring of tet-host bacteria in PE MP treatments than PBAT MP treatments was observed at the MP dosage of 1 % (w/w), while the opposite trend was true at the MP dosages of 0.5 % and 2 % (w/w). Some specific genera belonging to Actinobacteriota strongly associated with the class 1 integron-integrase gene (intI1), playing a critical role in the horizontal gene transfer of tet in soils especially for the co-existence of MPs and ZY01. This study will be helpful for understanding on how biodegradable and conventional MPs as hotspots affect the environmental behavior of antibiotics and ARGs in soil.202439500253
805850.9046Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. It is currently still difficult to decrease the high contents of antibiotics and their corresponding antibiotic resistance genes (ARGs) in sludge vermicompost. To decrease the environmental risk of vermicompost as a bio-fertilizer, this study investigated the feasibility of biochar addition to decrease the levels of antibiotics and ARGs during vermicomposting of dewatered sludge. To achieve this, 1.25% and 5% of corncob and rice husk biochars, respectively, were added to sludge, which was then vermicomposted by Eisenia fetida for 60 days. The sludge blended with corncob biochar showed increased decomposition and humification of organic matter. Higher biochar concentration promoted both the number and diversity of bacteria, and differed dominant genera. The level of antibiotics significantly decreased as a result of biochar addition (P < 0.05), and tetracycline was completely removed. Relative to the control without addition of biochars, ermF and tetX genes significantly decreased with corncob biochar treatment (P < 0.05). Rice husk biochar (5%) could effectively decrease sul-1 and sul-2 genes in vermicompost (P < 0.05). However, the abundance of the intI-1 gene increased with biochar concentration. This study suggests that biochar addition can lessen the antibiotic and ARG pollution in sludge vermicompost, depending on the type and concentration of biochars.202032388093
699360.9043Invisible threat: Marine suspended particles mediate delayed decay of antibiotic resistome in coastal effluents. Suspended particles are recognized as hotspots of antibiotic resistance genes (ARGs) in coastal waters. However, the dynamics of ARGs associated with suspended particles during sewage discharge into coastal environments remain poorly understood. This study simulated sewage influx into coastal waters using microcosms to investigate the decay dynamics of particle-associated (PA) and free-living (FL) ARGs. Results showed that four ARGs, including two sulfonamide resistance genes (sul1 and sul2) and two tetracycline resistance genes (tetB and tetG), exhibited significantly lower decay rates in the PA fraction than in the FL fraction. Specifically, bacterial decay (k = 0.96 day⁻¹) and horizontal gene transfer decay (k = 0.62 day⁻¹) were both slower in the PA fraction compared to the FL fraction (1.56 day⁻¹ and 1.98 day⁻¹, respectively). These results indicated that suspended particles slow down the decay of ARGs. Microbial community analysis revealed approximately 80 % similarity between sewage and seawater at day 0, but a marked increase in unique bacterial genera and unknown-source taxa was observed at day 15. These results suggest that sewage discharge rapidly alters the composition of native seawater communities. Furthermore, suspended particles harbored higher abundances of unknown-source bacteria and displayed stronger bacterial community interactions than the surrounding water. These findings advance our understanding of ARG persistence and microbial community dynamics, offering critical insights for understanding ARGs dissemination from wastewater discharge.202540373395
812770.9040Microbial Multitrophic Communities Drive the Variation of Antibiotic Resistome in the Gut of Soil Woodlice (Crustacea: Isopoda). Multitrophic communities inhabit in soil faunal gut, including bacteria, fungi, and protists, which have been considered a hidden reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of research focusing on the relationships between ARGs and multitrophic communities in the gut of soil faunas. Here, we studied the contribution of multitrophic communities to variations of ARGs in the soil woodlouse gut. The results revealed diverse and abundant ARGs in the woodlouse gut. Network analysis further exhibited strong connections between key ecological module members and ARGs, suggesting that multitrophic communities in the keystone ecological cluster may play a pivotal role in the variation of ARGs in the woodlouse gut. Moreover, long-term application of sewage sludge significantly altered the woodlice gut resistome and interkingdom communities. The variation portioning analysis indicated that the fungal community has a greater contribution to variations of ARGs than bacterial and protistan communities in the woodlice gut after long-term application of sewage sludge. Together, our results showed that changes in gut microbiota associated with agricultural practices (e.g., sewage sludge application) can largely alter the gut interkingdom network in ecologically relevant soil animals, with implications for antibiotic resistance, which advances our understanding of the microecological drivers of ARGs in terrestrial ecosystem.202235876241
794080.9038Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms.202133387747
809890.9036Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. This study used a metagenomic approach to investigate the effects of earthworms on ARGs and HPB during the vermicomposting of dewatered sludge. Results showed that 139 types of ARGs were found in sludge vermicompost, affiliated to 30 classes. Compared with the control, the total abundance of ARGs in sludge vermicompost decreased by 41.5%. Moreover, the types and sequences of plasmids and integrons were also decreased by vermicomposting. Proteobacteria and Actinobacteria were the most dominant hosts of ARGs in sludge vermicompost. In addition, earthworms reduced the total HPB abundance and modified their diversity, thus leading to higher abundance of Enterobacteriaceae in sludge vermicompost. However, the sludge vermicompost was still ARG and HPB enriched, indicating a remaining environmental risk for agricultural purpose. The observed change of microbial community and the reduction of mobile genetic elements caused by earthworm activity are the main reasons for the alleviation of ARG pollution during vermicomposting.202031787516
8112100.9035Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency.201626970692
8109110.9035The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating.202235063626
6937120.9035Differential responses of bacterial and archaeal communities to biodegradable and non-biodegradable microplastics in river. Microplastics are widespread environmental pollutants that pose risks to ecosystems, yet their effects on bacterial and archaeal communities in aquatic ecosystems remain understudied. In this study, we performed a 14-day microcosm experiment combined with metagenomic sequencing to compare bacterial and archaeal responses to a biodegradable microplastic (polylactic acid, PLA) and a non-biodegradable microplastic (polyvinyl chloride, PVC). Microplastics selectively enriched distinct microbial assemblages, with Pseudomonadota and Euryarchaeota identified as the dominant bacterial and archaeal phyla, accounting for 67.83 % and 15.95 %, respectively. Archaeal community in surrounding water were more sensitive to colonization time than bacterial community. Compared to the surrounding water, the plastisphere displayed simpler and more loosely connected microbial networks. Notably, co-occurrence networks of both bacteria and archaea in the PVC plastisphere were predominantly shaped by symbiotic interactions. Both bacteria and archaea carried diverse antibiotic resistance genes (ARGs), but PLS-PM indicated that bacteria were the primary drivers of ARG dissemination (path coefficient = 0.952). While the PVC plastisphere showed higher ARG abundance than the PLA plastisphere, elevated intI1 expression in the PLA plastisphere suggests a potentially greater risk of ARG dissemination associated with PLA microplastics. These findings reveal the distinct effects of PLA and PVC microplastics on microbial communities and highlight the role of microplastics in ARG dissemination, emphasizing their ecological risks in aquatic ecosystems.202540712359
7950130.9034Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.202438569335
7942140.9033Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. The environmental risks of microplastics (MPs) have raised an increasing concern. However, the effects of MPs in anaerobic digestion (AD) systems of waste activated sludge (WAS), especially on the fate of antibiotic resistance genes (ARGs), have not been clearly understood. Herein, the variation and interaction of digestion performance, microbial communities and ARGs during AD process of WAS in the presence of polyethylene (PE) MPs with two sizes, PE MPs-180μm and PE MPs-1mm, were investigated. The results showed that the presence of PE MPs, especially PE MPs-1mm, led to the increased hydrolysis of soluble polysaccharides and proteins and the accumulation of volatile fatty acids. The methane production decreased by 6.1% and 13.8% in the presence of PE MPs-180μm and PE MPs-1mm, respectively. Together with this process, hydrolytic bacteria and acidogens were enriched, and methanogens participating in acetoclastic methanogenesis were reduced. Meanwhile, ARGs were enriched obviously by the presence of PE MPs, the abundances of which in PE MPs-180μm and PE MPs-1mm groups were 1.2-3.0 times and 1.5-4.0 times higher than that in the control by the end of AD. That was associated with different co-occurrence patterns between ARGs and bacterial taxa and the enrichment of ARG-hosting bacteria caused by the presence of PE MPs. Together these results suggested the adverse effects of PE MPs on performance and ARGs removal during AD process of WAS through inducing the changes of microbial populations.202235944782
8123150.9032The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil.202437907163
8065160.9031Synergistic enhancement effect of straw-earthworms in the reduction of sulfamethoxazole and antibiotic resistance genes. Soil antibiotic pollution is a global concern. It has been confirmed that straw or earthworm can enhance microbial degradation of antibiotics in soil. However, in the C/N transformation processes of soil ecosystems, straw and earthworms are closely interconnected. Whether their interaction can further enhance microbial degradation of antibiotic pollution and the underlying mechanisms remain to be explored. This study conducted a 90 days co-incubation experiment with four treatments: straw + earthworms + sulfamethoxazole (RS-EW-SMX), straw + SMX (RS-SMX), earthworms + SMX (EW-SMX), and SMX alone (SMX). Residual SMX, its degradation intermediates, and microbial communities were monitored at multiple timepoints. Results indicated an exponential decline in SMX degradation rates across treatments. By day 90, SMX was nearly completely degraded in all treatment groups. However, the combined effect of straw and earthworms significantly enhanced the degradation efficiency of SMX. During the rapid degradation phase, SMX in above four treatments decreased from 20.0 mg kg(-1) to 0.93, 1.88, 5.26 and 7.02 mg kg(-1), respectively at day 10. Furthermore, the RS-EW-SMX treatment promoted SMX transformation into low-molecular-weight intermediates and increased the relative abundance of SMX-degrading bacteria by 1.35, 2.01, and 2.17-fold compared to RS-SMX, EW-SMX, and SMX, respectively. SMX degradation efficiency exhibited a strong positive linear correlation with the relative abundance of degrading bacteria across all treatments (R(2) = 0.961). Concurrently, analysis revealed that straw presence facilitated the targeted enrichment of SMX-degrading bacteria within the earthworm gut, concomitant with a reduction in associated antibiotic resistance genes (ARGs). This synergistic interaction between straw and earthworms, mediated through the gut microbiome and carbon utilization, constitutes a primary mechanism underpinning the accelerated SMX degradation observed. These findings reveal a novel macrofauna-plant residues interaction mechanism for improved in situ antibiotic bioremediation, providing practical solutions for soil pollution mitigation.202540914087
7898170.9031Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis.201931442759
8101180.9031Enhanced removal of antibiotic resistance genes and mobile genetic elements during swine manure composting inoculated with mature compost. Livestock manure is a major source of antibiotic resistance genes (ARGs) that enter the environment. This study assessed the effects of inoculation with mature compost (MC) on the fates of ARGs and the bacterial community during swine manure composting. The results showed that MC prolonged the thermophilic period and promoted the decomposition of organic matter, which was due to the rapid growth and reproduction of thermophilic bacteria (Bacillus, Thermobifida, and Thermobacillus). MC significantly reduced the relative abundances of ARGs (1.02 logs) and mobile genetic elements (MGEs) (1.70 logs) after composting, especially sulfanilamide resistance genes. The total ARGs removal rate was 1.11 times higher in MC than the control. Redundancy analysis and structural equation modeling showed that horizontal gene transfer mediated by MGEs (ISCR1 and intI1) was the main direct factor related to the changes in ARGs during composting, whereas the C/N ratio and pH were the two most important indirect factors. Network analysis showed that members of Firmicutes comprising Romboutsia, Clostridisensu_stricto_1, and Terrisporobacter were the main bacterial hosts of ARGs and MGEs. MC reduced the risk of ARGs transmission by decreasing the abundances of bacterial hosts. Thus, MC is a promising strategy for reducing the proliferation risk of ARGs.202133858100
8111190.9030Effect of alkaline-thermal pretreatment on biodegradable plastics degradation and dissemination of antibiotic resistance genes in co-compost system. Biodegradable plastics (BDPs) are an eco-friendly alternative to traditional plastics in organic waste, but their microbial degradation and impact on antibiotic resistance genes (ARGs) transmission during co-composting remain poorly understood. This study examines how alkaline-thermal pretreatment enhances BDPs degradation and influences the fate of ARGs and mobile genetic elements (MGEs) in co-composting. Pretreatment with 0.1 mol/L NaOH at 100℃ for 40 minutes increased the surface roughness and hydrophilicity of BDPs while reducing their molecular weight and thermal stability. Incorporating pretreated BDPs film (8 g/kg-TS) into the compost reduced the molecular weight of the BDPs by 59.70 % during the maturation stage, facilitating compost heating and prolonging the thermophilic stage. However, incomplete degradation of BDPs releases numerous smaller-sized microplastics, which can act as carriers for microorganisms, facilitating the dissemination of ARGs across environments and posing significant ecological and public health risks. Metagenomic analysis revealed that pretreatment enriched plastic-degrading bacteria, such as Thermobifida fusca, on BDPs surfaces and accelerated microbial plastic degradation during the thermophilic stage, but also increased ARGs abundance. Although pretreatment significantly reduced MGEs abundance (tnpA, IS19), the risk of ARGs dissemination remained. Three plastic-degrading bacteria (Pigmentiphaga sp002188465, Bacillus clausii, and Bacillus altitudinis) were identified as ARGs hosts, underscoring the need to address the risk of horizontal gene transfer of ARGs associated with pretreatment in organic waste management.202539970645