ΜM - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
749000.9885Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Phorate is a systemic, broad-spectrum organophosphorus insecticide. Although it is commonly used worldwide, phorate, like other pesticides, not only causes environmental pollution but also poses serious threats to human and animal health. Herein, we measured the blood glucose concentrations of high-fat-diet-fed mice exposed to various concentrations of phorate (0, 0.005, 0.05, or 0.5 mg/kg); we also assessed the blood glucose concentrations of high-fat-diet-fed mice exposed to phorate; we also assessed the distribution characteristics of the resistance genes in the intestinal microbiota of these mice. We found that 0.005 and 0.5 mg/kg of phorate induced obvious hyperglycaemia in the high-fat-diet-fed mice. Exposure to phorate markedly reduced the abundance of Akkermansia muciniphila in the mouse intestine. The resistance genes vanRG, tetW/N/W, acrD, and evgS were significantly upregulated in the test group compared with the control group. Efflux pumping was the primary mechanism of drug resistance in the Firmicutes, Proteobacteria, Bacteroidetes, Verrucomicrobia, Synergistetes, Spirochaetes, and Actinobacteria found in the mouse intestine. Our findings indicate that changes in the abundance of the intestinal microbiota are closely related to the presence of antibiotic-resistant bacteria in the intestinal tract and the metabolic health of the host.202236358236
713710.9884The exposure risks associated with pathogens and antibiotic resistance genes in bioaerosol from municipal landfill and surrounding area. Pathogenic microbes with antibiotic resistance can thrive on municipal solid waste as nutrients and be aerosolized and transported to vicinities during waste disposal processes. However, the characterization of pathogenic bioaerosols and assessment of their exposure risks are lacking. Herein, particle size, concentration, activity, antibiotic resistance, and pathogenicity of airborne microorganisms were assessed in different sectors of a typical landfill. Results showed that active sector in downwind direction has the highest bioaerosol level (1234 CFU/m(3)), while residential area has the highest activity (14.82 mg/L). Botanical deodorizer from mist cannon can effectively remove bioaerosol. Most bioaerosols can be inhaled into respiratory system till bronchi with sizes ranging from 2.1-3.3 and 3.3-4.7 µm. Pathogenic bacteria (Bacilli, Bacillus, and Burkholderia-Paraburkholderia) and allergenic fungi (Aspergillus, Cladosporium, and Curvularia) prevailed in landfill. Although high abundance of microbial volatile organic compounds (mVOCs) producing bioaerosols were detected, these mVOCs contributed little to odor issues in landfill. Notably, surrounding areas have higher levels of antibiotic-resistance genes (ARGs) than inner landfill with tetC, acrB, acrF, mdtF, and bacA as dominant ones. Most ARGs were significantly correlated with bacterial community, while environmental parameters mainly influenced fungal prevalence. These findings can assist in reducing and preventing respiratory allergy or infection risks in occupational environments relating to waste management.202336804245
853020.9881Intrinsic chlorine resistance of bacteria modulated by glutaminyl-tRNA biosynthesis in drinking water supply systems. The existence of chlorine-resistant bacteria (CRB) in drinking water supply systems (DWSSs) results in significant challenges to the biological security of drinking water. However, little is known about the intrinsic chlorine-resistant molecular metabolic mechanism of bacteria in DWSSs. This research explored the microbial interactions and the key metabolic pathways that modulate the chlorine resistance of bacteria in full-scale chloraminated DWSSs. The dominant CRB, including Bdellovibrio, Bradyrhizobium, Peredibacter, Sphingomonas, and Hydrogenophaga, strongly interacted with each other to maintain basic metabolism. A total of 4.21% of the bacterial metabolic pathways were key and specific to chlorine-resistant bacteria. Glutaminyl-tRNA biosynthesis was the dominant metabolic pathway of CRB in the target DWSSs. After chloramine disinfection, the relative abundance of glutamate-tRNA ligase (GlnRS) and the related orthologous genes increased by 10.11% and 14.58%, respectively. The inactivation rate of the GlnRS overexpression strain (81.40%) was lower than that of the wild-type strain (90.11%) after exposure to chloramine. Meanwhile, the growth rate of the GlnRS overexpression strain was higher than that of the wild-type strain. Glutaminyl-tRNA biosynthesis can enhance chlorine resistance in DWSSs.202236084827
872530.9881CuO nanoparticles facilitate soybean suppression of Fusarium root rot by regulating antioxidant enzymes, isoflavone genes, and rhizosphere microbiome. BACKGROUND: Fusarium root rot is a widespread soil-borne disease severely impacting soybean yield and quality. Compared to traditional fertilizers' biological and environmental toxicity, CuO nanoparticles (NPs) hold promise for disease control in a low dose and high efficiency manner. METHODS: We conducted both greenhouse and field experiments, employing enzymatic assays, elemental analysis, qRT-PCR, and microbial sequencing (16S rRNA, ITS) to explore the potential of CuO NPs for sustainable controlling Fusarium-induced soybean disease. RESULTS: Greenhouse experiments showed that foliar spraying of CuO NPs (10, 100, and 500 mg L(-1)) promoted soybean growth more effectively than EDTA-CuNa(2) at the same dose, though 500 CuO NPs caused mild phytotoxicity. CuO NPs effectively controlled root rot, while EDTA-CuNa(2) worsened the disease severity by 0.85-34.04 %. CuO NPs exhibited more substantial antimicrobial effects, inhibiting F. oxysporum mycelial growth and spore germination by 5.04-17.55 % and 10.24-14.41 %, respectively. 100 mg L(-1) CuO NPs was the optimal concentration for balancing soybean growth and disease resistance. Additionally, CuO NPs boosted antioxidant enzyme activity (CAT, POD, and SOD) in leaves and roots, aiding in ROS clearance during pathogen invasion. Compared to the pathogen control, 100 mg L(-1) CuO NPs upregulated the relative expression of seven isoflavone-related genes (Gm4CL, GmCHS8, GmCHR, GmCHI1a, GmIFS1, GmUGT1, and GmMYB176) by 1.18-4.51 fold, thereby enhancing soybean disease resistance in place of progesterone-receptor (PR) genes. Field trials revealed that CuO NPs' high leaf-to-root translocation modulated soybean rhizosphere microecology. Compared to the pathogen control, 100 mg L(-1) CuO NPs increased nitrogen-fixing bacteria (Rhizobium, Azospirillum, Azotobacter) and restored disease-resistant bacteria (Pseudomonas, Burkholderia) and fungi (Trichoderma, Penicillium) to healthy levels. Furthermore, 100 mg L(-1) CuO NPs increased beneficial bacteria (Pedosphaeraceae, Xanthobacteraceae, SCI84, etc.) and fungi (Trichoderma, Curvularia, Hypocreales, etc.), which negatively correlated with F. oxysporum, while recruiting functional microbes to enhance soybean yield. CONCLUSION: 100 mg L(-1) CuO NPs effectively promoting soybean growth and providing strong resistance against root rot disease by improving antioxidant enzyme activity, regulating the relative expression of isoflavone-related genes, increasing beneficial bacteria and fungi and restoring disease-resistant. Our findings suggest that CuO NPs offer an environmentally sustainable strategy for managing soybean disease, with great potential for green production.202540096759
873740.9880Role of Biosynthetic Gene Cluster BGC3 in the Cariogenic Virulence of Streptococcus mutans. OBJECTIVE: To investigate the role of the biosynthetic gene cluster BGC3 of Streptococcus mutans (S. mutans) in the process of dental caries. METHODS: BGC3 and ∆BGC3 S. mutans strains were constructed and their growth curves were evaluated. Acid production capacity was assessed by evaluating pH reduction levels over identical culture periods. The survival of bacteria in phosphate citrate buffer solution (pH 3.0) was quantified. The expression levels of virulence genes (atpF, gtfC, gtfD, spaP, vicR and ftf) were analysed using the qPCR. Co-culture experiments were conducted to evaluate bacterial adaptability. Bacterial viability was determined by microscopical examination of live/dead staining. RESULTS: Deletion of BGC3 did not significantly impact S. mutans growth or acid production in biofilms. The ∆BGC3 strain exhibited enhanced acid resistance and higher expression levels of virulence genes compared to the wild type. In addition, ∆BGC3 exhibited superior bacterial viability in the co-culture system. CONCLUSION: BGC3 affected the acid resistance and expression of caries-related genes in S. mutans. The BGC3 knockout strain exhibited a more robust survival capability than the wild-type strain.202540162656
54250.9879Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Yersinia enterocolitica is a pathogen endowed with two adhesins, Inv and YadA, and with the Ysc type III secretion system, which allows extracellular adherent bacteria to inject Yop effectors into the cytosol of animal target cells. We tested the influence of all of these virulence determinants on opsonic and nonopsonic phagocytosis by PU5-1.8 and J774 mouse macrophages, as well as by human polymorphonuclear leukocytes (PMNs). The adhesins contributed to phagocytosis in the absence of opsonins but not in the presence of opsonins. In agreement with previous results, YadA counteracted opsonization. In every instance, the Ysc-Yop system conferred a significant level of resistance to phagocytosis. Nonopsonized single-mutant bacteria lacking either YopE, -H, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs. Opsonized bacteria were phagocytosed more than nonopsonized bacteria, and mutant bacteria lacking either YopH, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs than were wild-type (WT) bacteria. Opsonized mutants lacking only YopE were phagocytosed significantly more than were WT bacteria by PMNs but not by J774 cells. Thus, YopH, -T, and -O were involved in all of the phagocytic processes studied here but YopE did not play a clear role in guarding against opsonic phagocytosis by J774. Mutants lacking YopP and YopM were, in every instance, as resistant as WT bacteria. Overexpression of YopE, -H, -T, or -O alone did not confer resistance to phagocytosis, although it affected the cytoskeleton. These results show that YopH, YopT, YopO, and, in some instances, YopE act synergistically to increase the resistance of Y. enterocolitica to phagocytosis by macrophages and PMNs.200212117925
861460.9878Polystyrene nanoparticles induce biofilm formation in Pseudomonas aeruginosa. In recent years, micro/nanoplastics have garnered widespread attention due to their ecological risks. In this study, we investigated the effects of polystyrene nanoparticles (PS-NPs) of different sizes on the growth and biofilm formation of Pseudomonas aeruginosa PAO1. The results demonstrated that exposure to certain concentrations of PS-NPs significantly promoted bacterial biofilm formation. Meanwhile, we comprehensively revealed its mechanism whereby PS-NPs induced oxidative stress and altered bacterial membrane permeability by contacting or penetrating bacterial membranes. To counteract the stimulation by PS-NPs and reduce their toxicity, bacteria enhanced biofilm formation by upregulating the expression of biofilm-related genes, increasing EPS and virulence factors secretion, and enhancing bacterial motility through the participation of the quorum sensing (QS) system. Additionally, we also found that exposure to PS-NPs enhanced bacterial antibiotic resistance, posing a challenge to antimicrobial therapy. Our study reveals the toxic effects of nanoplastics and the defense mechanisms of bacteria, which has important implications for the risk assessment and management of environmental nanoplastics.202438442601
60870.9878Entamoeba histolytica Adaption to Auranofin: A Phenotypic and Multi-Omics Characterization. Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF.202134439488
873680.9877Effects of intracanal irrigant MTAD Combined with nisin at sub-minimum inhibitory concentration levels on Enterococcus faecalis growth and the expression of pathogenic genes. Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD.201424603760
601990.9877Effects of Lactobacillus pentosus combined with Arthrospira platensis on the growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. Litopenaeus vannamei is one of the most productive shrimp species in the world. However, shrimp farming is suffering from adverse environmental conditions and disease outbreaks. Typically, Lactobacillus pentosus and Arthrospira platensis are used as substitutes for some antibiotics. In the present study, we assessed the effects of dietary supplements along with living bacteria or cell-free extracts of L. pentosus combined with A. platensis on the growth performance, immune response, intestinal microbiota, and disease resistance of L. vannamei against Vibrio alginolyticus. Shrimp fed L. pentosus live bacteria combined with A. platensis showed the best growth performance and lowest feed conversion rate. The supplementation diet with L. pentosus live bacteria and A. platensis could significantly enhance the trypsin activity in shrimp after the feeding trial. Given the lowest feed conversion rate in shrimp fed L. pentosus live bacteria combined with A. platensis, we reasonably speculated that the decrease in feed conversion rate may be related to the increase in trypsin activity. In addition, dietary cell-free extracts of L. pentosus combined with A. platensis enhanced the expression of immune-related genes after the feeding trial or challenge test. Moreover, results of the bacterial challenge test indicated that the shrimp fed cell-free extracts of L. pentosus combined with A. platensis diet resulted in the highest survival rate, which suggested that cell-free extracts of L. pentosus and A. platensis could improve the disease resistance against V. alginolyticus by up-regulating the expressions of immune-related genes. Dietary L.pentosus or A. platensis, or their combination, reduced the abundance of harmful bacteria, including Proteobacteria in shrimp intestine, which suggested that L. pentosus and A. platensis could improve the growth performance and health of shrimp by regulating the structure of the intestinal microbiota. The findings of this study demonstrated that L. pentosus live bacteria and A. platensis exerted synergistic effects on the growth performance and digestion in shrimp, while cell-free extracts of L. pentosus and A. platensis showed synergistic effects on the immune response and disease resistance of shrimp against V. alginolyticus.202234883257
8947100.9876Response and Formation Mechanism of Highly Antibiotic-Resistant Dormant Subpopulations in Bioaerosol during Aerosolizing from Aquatic Environments. The characteristics and responses of bacteria aerosolized from aquatic to atmospheric environments are poorly understood. In this study, three antibiotic-resistant bacteria (cefotaxime (CTX)-resistant, polymyxin B (MCR)-resistant, and gentamycin (GEN)-resistant Escherichia coli DH5α) were used to explore microbial aerosolization responses and mechanisms. E. coli bioaerosols had improved resistance to aerosolizing stress through carrying antibiotic resistance genes, developing different phenotype distributions, including wild-type, small colony variant (SCV), and viable but nonculturable (VBNC) subpopulations. E. coli DH5α (CTX) bioaerosols showed the highest percentage of VBNCs (15.1%), while those E. coli DH5α (GEN) bioaerosols showed the highest percentage of SCVs (13.4%). A consistent variation of reduced growth and metabolic activity but increased ATP accumulation and ROS content was observed across SCVs of all strains. Notably, the SCVs of GEN-resistant E. coli exhibited the most pronounced ATP accumulation and a significant upregulation of protein synthesis genes. Collectively, oxidative stress responses were activated to defend against stress in E. coli bioaerosols and promoted the formation of dormant subpopulations (SCV and VBNC). However, a divergent mechanistic was observed: up-regulation of cell wall synthesis genes promoted VBNC formation, while up-regulation of protein synthesis genes promoted SCV formation. These findings highlight that antibiotic resistance in aquatic bacteria contributes to the formation of different dormant subpopulations in bioaerosols that pose different risks to ecosystems and human health.202541073078
8741110.9876Acclimation of electroactive biofilms under different operating conditions: comprehensive analysis from architecture, composition, and metabolic activity. Electroactive biofilms (EABs) have aroused wide concern in waste treatment due to their unique capability of extracellular electron transfer with solid materials. The combined effect of different operating conditions on the formation, microbial architecture, composition, and metabolic activity of EABs is still unknown. In this study, the impact of three different factors (anode electrode, substrate concentration, and resistance) on the acclimation and performance of EABs was investigated. The results showed that the shortest start-up time of 127.3 h and highest power density of 0.84 W m(-2) were obtained with carbon brush as electrode, low concentration of substrate (1.0 g L(-1)), and 1000 Ω external resistance (denoted as N1). The EABs under N1 condition also represented strongest redox capacity, lowest internal resistance, and close arrangement of bacteria. Moreover, the EABs cultured under different conditions both showed similar results, with direct electron transfer (DET) dominated from EABs to anode. Microbial community compositions indicated that EABs under N1 condition have lowest diversity and highest abundance of electroactive bacteria (46.68%). Higher substrate concentration (3.0 g L(-1)) promoted the proliferation of some other bacteria without electroactivity, which was adverse to EABs. The metabolic analysis showed the difference of genes related to electron transfer (cytochrome C and pili) and biofilm formation (xap) of EABs under different conditions, which further demonstrated the higher electroactivity of EABs under N1. These results provided a comprehensive understanding of the effect of different operating conditions on EABs including biofilm formation and electrochemical activity.202337749470
7976120.9876Insights into the effects of Zn exposure on the fate of tylosin resistance genes and dynamics of microbial community during co-composting with tylosin fermentation dregs and swine manure. Though heavy metals are widely reported to induce antibiotic resistance propagation, how antibiotic resistance changes in response to heavy metal abundances remains unclearly. In this study, the tylosin fermentation dregs (TFDs) and swine manure co-composting process amended with two exposure levels of heavy metal Zn were performed. Results showed that the bioavailable Zn contents decreased 2.6-fold averagely, and the removal percentage of total tylosin resistance genes was around 23.5% after the co-composting completed. Furthermore, the tylosin resistance genes and some generic bacteria may exhibited a hormetic-like dose-response with the high-dosage inhibition and low dosage stimulation induced by bioavailable Zn contents during the co-composting process, which represented a beneficial aspect of adaptive responses to harmful environmental stimuli. This study provided a comprehensive understanding and predicted risk assessment for the Zn-contaminate solid wastes deposal and suggested that low levels of Zn or other heavy metals should receive more attention for their potential to the induction of resistance bacteria and propagation of antibiotic resistance genes.202133210251
7889130.9875The interaction between extracellular polymeric substances and corrosion products in pipes shaped different bacterial communities and the effects of micropollutants. There are growing concerns over the effects of micropollutants on biofilms formation and antibiotic resistance gene (ARGs) transmission in drinking water distribution pipes. However, there was no reports about the influence of the interaction between extracellular polymeric substances (EPS) and corrosion products on biofilms formation. Our results indicated that the abundance of quorum sensing (QS)-related genes, polysaccharide and amino acids biosynthesis genes of EPS was 6747-8055 TPM, 2221-2619 TPM, and 1461-1535 TPM in biofilms of cast iron pipes, respectively, which were higher than that of stainless steel pipes. The two-dimensional correlation spectroscopy (2D-COS) analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) results indicated that polysaccharide of EPS was more easily adsorbed onto the corrosion products of cast iron pipes. Therefore, more human pathogenic bacteria (HPB) carrying ARGs were formed in biofilms of cast iron pipes. The amide I and amide II components and phosphate moieties of EPS were more susceptible to the corrosion products of stainless steel pipes. Thus, more bacteria genera carrying mobile genetic elements (MGE)-ARG were formed in biofilms of stainless steel pipes due to more abundance of QS-related genes, amino acids biosynthesis genes of EPS and the functional genes related to lipid metabolism. The enrichment of dimethyl phthalate (DMP), perfluorooctanoic acid (PFOA) and sulfadiazine (SUL) in corrosion products induced upregulation of QS and EPS-related genes, which promoted bacteria carrying different ARGs growth in biofilms, inducing more microbial risks.202337950951
8973140.9875Enhanced myco-synthesis of selenium and zinc oxide nanoparticles and evaluating their anticancer activities and role against antibiotic resistance genes in certain bacterial strains. BACKGROUND: In an array to check microbial resistance against generally used antibiotics, it is essential to create innovative and efficient antimicrobial agents. Therefore, nanoparticles (NPs) with their antimicrobial activities describe an effective solution. In this study, we synthesized Selenium nanoparticles (Se-NPs) and zinc oxide nanoparticles (ZnO-NPs) using Alternaria alternata fungus, then their characterization were evaluated using several techniques. RESULTS: We explored the potential of antimicrobial impact of Se-NPs and ZnO-NPs against negative and positive grams antibiotic resistance bacterial strains in combination with penicillin, Ceftriaxone and Cefipime. Moreover, antibiotic resistance gene expression was assessed after those treatments. The results demonstrated that Se-NPs and ZnO-NPs displayed antibacterial properties, while the expression of antibiotic resistance genes decreased when exposed to a combination of NPs and antibiotics. This suggests the presence of both synergistic and additive effects in these treatments. Furthermore, the cytotoxic effects of Se-NPs and ZnO-NPs were assessed, revealing their potent anticancer properties against MCF-7, A549, and HepG2 cancer cells and lower cytotoxic values for HFB-4 standard cell line. Ultimately, the production efficiency of both NPs was enhanced through gamma irradiation. CONCLUSIONS: According to the results, it seems that the green synthesis of Se-NPs and ZnO-NPs promotes environmental sustainability and cost-effective approach. This study provides insights into the development of new antibacterial and anticancer agents . The eco-friendly production of nanoparticles suggests also a sustainable approach to combating bacteria resistant to antibiotics.202541046259
8818150.9875Metatranscriptomic analysis of adaptive response of anammox bacteria Candidatus 'Kuenenia stuttgartiensis' to Zn(II) exposure. Zn(II) is frequently detected in biological nitrogen removal systems treating high-strength wastewater (e.g., landfill leachate), yet the cellular defense strategies of anammox bacteria against Zn(II) cytotoxicity is largely unknown. To uncover survival mechanisms under Zn(II) stress, responses of enriched anammox bacteria Candidatus 'Kuenenia stuttgartiensis' under exposure of various levels of Zn (II) were investigated through metatranscriptomic sequencing. Although increasing Zn(II) levels (50, 100 and 150 mg/L) resulted in decreasing anammox activities (86.1 ± 0.8%, 66.1 ± 1.4% and 43.9 ± 1.5% of the control, respectively), the viable cells in anammox sludge remained stable. Candidatus 'K. stuttgartiensis' possesses a complex network of regulatory systems to confer cells with the ability against Zn(II) toxicity, including functions related to substrate degradation, Zn(II) efflux, chelation, DNA repair, protein degradation, protein synthesis and signal transduction processes. Particularly, in order to maintain Zn(II) homeostasis, Candidatus 'K. stuttgartiensis' upregulated genes encoding RND efflux family (czcA, czcB, czcC, kustd1923 and kuste2279) for exporting Zn(II) actively. These heavy metal exporting genes could act as "sentinel genes" to detect the initial stage of Zn(II) inhibition on anammox bacteria, which might be beneficial to develop a diagnostic approach to predict the risk of operational failure when Zn(II) shock occurs.202031901527
7742160.9874The dissimilarity of antibiotic and quorum sensing inhibitor on activated sludge nitrification system: Microbial communities and antibiotic resistance genes. Effects of antibiotics (azithromycin, AZM, 1-40 mg/L) and quorum sensing inhibitor (QSI, 2(5H)-furanone, 1-40 mg/L) combined pollution with environmental concentration of copper on bacterial/archaeal community and antibiotic resistance genes (ARGs) in activated sludge system were explored. QSI inhibited nitrification more obviously than AZM. AZM and QSI were synergistic inhibitions on bacterial diversity, and AZM inhibited bacterial compositions more than QSI. While, QSI had more impacts on archaeal diversity/compositions. Less interactions among bacteria and archaea communities with Aquimonas as keystone genus. Functional differences in bacteria/archaea communities were little, and AZM had more effects on metabolism. AZM mainly affected nitrifying bacteria (Candidatus Nitrospira nitrificans and Nitrosomonas). Specific denitrifying bacteria were enriched by AZM (Brevundimonas, 1.76-31.69%) and QSI (Comamonas, 0.61-9.61%), respectively. AZM enriched ARGs more easily than QSI and they were antagonistic to proliferation of ARGs. Bacteria were main hosts of ARGs (macrolide-lincosamide-streptogramin B, other/efflux, etc.) and archaea (Methanosphaerula, Methanolobus) carried multiple ARGs.202235306131
8803170.9874Effects of chlorogenic acid-grafted-chitosan on biofilms, oxidative stress, quorum sensing and c-di-GMP in Pseudomonas fluorescens. This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms.202438852716
8870180.9874The adcA and lmb Genes Play an Important Role in Drug Resistance and Full Virulence of Streptococcus suis. Streptococcus suis is an recognized zoonotic pathogen of swine and severely threatens human health. Zinc is the second most abundant transition metal in biological systems. Here, we investigated the contribution of zinc to the drug resistance and pathogenesis of S. suis. We knocked out the genes of AdcACB and Lmb, two Zn-binding lipoproteins. Compared to the wild-type strain, we found that the survival rate of this double-mutant strain (ΔadcAΔlmb) was reduced in Zinc-limited medium, but not in Zinc-supplemented medium. Additionally, phenotypic experiments showed that the ΔadcAΔlmb strain displayed impaired adhesion to and invasion of cells, biofilm formation, and tolerance of cell envelope-targeting antibiotics. In a murine infection model, deletion of the adcA and lmb genes in S. suis resulted in a significant decrease in strain virulence, including survival rate, tissue bacterial load, inflammatory cytokine levels, and histopathological damage. These findings show that AdcA and Lmb are important for biofilm formation, drug resistance, and virulence in S. suis. IMPORTANCE Transition metals are important micronutrients for bacterial growth. Zn is necessary for the catalytic activity and structural integrity of various metalloproteins involved in bacterial pathogenic processes. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. Thus, pathogenic bacteria must acquire Zn during infection in order to successfully survive and multiply. The host uses nutritional immunity to limit the uptake of Zn by the invading bacteria. The bacterium uses a set of high-affinity Zn uptake systems to overcome this host metal restriction. Here, we identified two Zn uptake transporters in S. suis, AdcA and Lmb, by bioinformatics analysis and found that an adcA and lmb double-mutant strain could not grow in Zn-deficient medium and was more sensitive to cell envelope-targeting antibiotics. It is worth noting that the Zn uptake system is essential for biofilm formation, drug resistance, and virulence in S. suis. The Zn uptake system is expected to be a target for the development of novel antimicrobial therapies.202337212676
7914190.9874Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. Considering the inevitable release of antibiotics and nanoparticles (NPs) into the nitrogen containing wastewater, the combined impact of CuO NPs and sulfamethoxazole (SMX) antibiotic on partial nitrification (PN) process was investigated in four identical reactors. Results showed that the bioactivity of the aerobic ammonia-oxidizing bacteria (AOB) decreased by half after they were exposed to the combination of CuO NPs and SMX for short-term; however, there was no obvious variation in the bioactivity of AOB when they were exposed to either CuO NPs or SMX. During long-term exposure, the ammonia removal efficiency (ARE) of CuO NPs improved whereas that of SMX decreased, while the combination of CuO NPs and SMX significantly decreased ARE from 62.9% (in control) to 38.2% and had an unsatisfactory self-recovery performance. The combination of CuO NPs and SMX significantly changed the composition of microbial community, decreased the abundance of AOB, and significantly suppressed PN process. Reegarding the resistance genes, the CuO NPs-SMX combination did not improve the expression of copA, cusA, sul1 and sul2; however, it significantly induced the expression of sul3 and sulA.202032050397