A bifunctional dihydrofolate synthetase--folylpolyglutamate synthetase in Plasmodium falciparum identified by functional complementation in yeast and bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
999101.0000A bifunctional dihydrofolate synthetase--folylpolyglutamate synthetase in Plasmodium falciparum identified by functional complementation in yeast and bacteria. Folate metabolism in the human malaria parasite Plasmodium falciparum is an essential activity for cell growth and replication, and the target of an important class of therapeutic agents in widespread use. However, resistance to antifolate drugs is a major health problem in the developing world. To date, only two activities in this complex pathway have been targeted by antimalarials. To more fully understand the mechanisms of antifolate resistance and to identify promising targets for new chemotherapies, we have cloned genes encoding as yet uncharacterised enzymes in this pathway. By means of complementation experiments using 1-carbon metabolism mutants of both Escherichia coli and Saccharomyces cerevisiae, we demonstrate here that one of these parasite genes encodes both dihydrofolate synthetase (DHFS) and folylpolyglutamate synthetase (FPGS) activities, which catalyse the synthesis and polyglutamation of folate derivatives, respectively. The malaria parasite is the first known example of a eukaryote encoding both DHFS and FPGS activities in a single gene. DNA sequencing of this gene in antifolate-resistant strains of P. falciparum, as well as drug-inhibition assays performed on yeast and bacteria expressing PfDHFS--FPGS, indicate that current antifolate regimes do not target this enzyme. As PfDHFS--FPGS harbours two activities critical to folate metabolism, one of which has no human counterpart, this gene product offers a novel chemotherapeutic target with the potential to deliver a powerful blockage to parasite growth.200111223131
23010.9980Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes. Drug resistance in gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential target to develop such novel antibiotics. Two putative MetAP genes were identified in A. baumannii genome, but whether they actually function as MetAP enzymes was not known. Therefore, we established an efficient E. coli expression system for their production as soluble and metal-free proteins for biochemical characterization. We demonstrated that both could carry out the metal-dependent catalysis and could be activated by divalent metal ions with the order Fe(II) ≈ Ni(II) > Co(II) > Mn(II) for both. By using a set of metalloform-selective inhibitors discovered on other MetAP enzymes, potency and metalloform selectivity on the A. baumannii MetAP proteins were observed. The similarity of their catalysis and inhibition to other MetAP enzymes confirmed that both may function as competent MetAP enzymes in A. baumannii and either or both may serve as the potential drug target.201121524572
22920.9979Molecular basis underlying Mycobacterium tuberculosis D-cycloserine resistance. Is there a role for ubiquinone and menaquinone metabolic pathways? INTRODUCTION: Tuberculosis remains a formidable threat to global public health. Multidrug-resistant tuberculosis presents increasing burden on the control strategy. D-Cycloserine (DCS) is an effective second-line drug against Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis. Though less potent than isoniazid (INH) and streptomycin, DCS is crucial for antibiotic-resistant tuberculosis. One advantage of DCS is that less drug-resistant M. tuberculosis is reported in comparison with first-line antituberculosis drugs such as INH and rifampin. AREAS COVERED: In this review, we summarise our current knowledge of DCS, and review the drug target and low-level resistance of DCS in M. tuberculosis. We summarise the metabolism of D-alanine (D-Ala) and peptidoglycan biosynthesis in bacteria. We first compared the amino acid similarity of Mycobacterium alanine racemase and D-Ala:D-alanine ligase and quite unexpectedly found that the two enzymes are highly conserved among Mycobacterium. EXPERT OPINION: We summarise the drug targets of DCS and possible mechanisms underlying its low-level resistance for the first time. One significant finding is that ubiquinone and menaquinone metabolism-related genes are novel genes underlying DCS resistance in Escherichia coli and with homologues in M. tuberculosis. Further understanding of DCS targets and basis for its low-level resistance might inspire us to improve the use of DCS or find better drug targets.201424773568
56930.9978DNA mismatch repair and cancer. Mutations in DNA mismatch repair (MMR) genes have been associated with hereditary nonpolyposis colorectal cancer. Studies in bacteria, yeast and mammals suggest that the basic components of the MMR system are evolutionarily conserved, but studies in eukaryotes also imply novel functions for MMR proteins. Recent results suggest that mutations in MMR genes lead to tumorigenesis in mice, but DNA replication errors appear to be insufficient to initiate intestinal tumorigenesis in this model system. Additionally, MMR-deficient cell lines display a mutator phenotype and resistance to several cytotoxic agents, including compounds widely used in cancer chemotherapy.19989640530
76540.9977Yeast ATP-binding cassette transporters: cellular cleaning pumps. Numerous ATP-binding cassette (ABC) proteins have been implicated in multidrug resistance, and some are also intimately connected to genetic diseases. For example, mammalian ABC proteins such as P-glycoproteins or multidrug resistance-associated proteins are associated with multidrug resistance phenomena (MDR), thus hampering anticancer therapy. Likewise, homologues in bacteria, fungi, or parasites are tightly associated with multidrug and antibiotic resistance. Several orthologues of mammalian MDR genes operate in the unicellular eukaryote Saccharomyces cerevisiae. Their functions have been linked to stress response, cellular detoxification, and drug resistance. This chapter discusses those yeast ABC transporters implicated in pleiotropic drug resistance and cellular detoxification. We describe strategies for their overexpression, biochemical purification, functional analysis, and a reconstitution in phospholipid vesicles, all of which are instrumental to better understanding their mechanisms of action and perhaps their physiological function.200516399365
70850.9977Saturated alanine scanning mutagenesis of the pneumococcus competence stimulating peptide identifies analogs that inhibit genetic transformation. Antibiotic resistance is a major challenge to modern medicine. Intraspecies and interspecies dissemination of antibiotic resistance genes among bacteria can occur through horizontal gene transfer. Competence-mediated gene transfer has been reported to contribute to the spread of antibiotic resistance genes in Streptococcus pneumoniae. Induction of the competence regulon is mediated by a 17-amino acid peptide pheromone called the competence stimulating peptide (CSP). Thus, synthetic analogs that competitively inhibit CSPs may reduce horizontal gene transfer. We performed saturated alanine scanning mutagenesis and other amino acid substitutions on CSP1 to screen for analogs that disable genetic transformation in S. pneumoniae. Substitution of the glutamate residue at the first position created analogs that could competitively inhibit CSP1-mediated competence development in a concentration-dependent manner. Additional substitutions of the negatively-charged glutamate residue with amino acids of different charge, acidity and hydrophobicity, as well as enantiomeric D-glutamate, generated analogs that efficiently outcompeted CSP1, suggesting the importance of negative charge and enantiomericity of the first glutamate residue for the function of CSP1. Collectively, these results indicate that glutamate residue at the first position is important for the ability of CSP1 to induce ComD, but is dispensable for the peptide to bind the receptor. Furthermore, these results demonstrate the potential applicability of competitive CSP analogs to control horizontal transfer of antibiotic resistance genes in S. pneumoniae.201223028586
941960.9977Genes required for mycobacterial growth defined by high density mutagenesis. Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.200312657046
935770.9976The bifunctional enzymes of antibiotic resistance. The evolutionary union of two genes--each encoding proteins of complementary enzymatic activity--into a single gene so as to allow the coordinated expression of these activities as a fusion polypeptide, is an increasingly recognized biological occurrence. The result of this genetic union is the bifunctional enzyme. This fusion of separate catalytic activities into a single protein, whose gene is regulated by a single promoter, is seen especially where the coordinated expression of the separate activities is highly desirable. Increasingly, a circumstance driving the evolution of the bifunctional enzyme in bacteria is the resistance response of bacteria to antibiotic chemotherapy. We summarize the knowledge on bifunctional antibiotic-resistance enzymes, as possible harbingers of clinically significant resistance mechanisms of the future.200919615931
29180.9976Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. A key mechanism of bacterial resistance to macrolide antibiotics is the dimethylation of a nucleotide in the large ribosomal subunit by erythromycin resistance methyltransferases. The majority of erm genes are expressed only when the antibiotic is present and the erythromycin resistance methyltransferase activity is critical for the survival of bacteria. Although these genes were among the first discovered inducible resistance genes, the molecular basis for their inducibility has remained unknown. Here we show that erythromycin resistance methyltransferase expression reduces cell fitness. Modification of the nucleotide in the ribosomal tunnel skews the cellular proteome by deregulating the expression of a set of proteins. We further demonstrate that aberrant translation of specific proteins results from abnormal interactions of the nascent peptide with the erythromycin resistance methyltransferase-modified ribosomal tunnel. Our findings provide a plausible explanation why erm genes have evolved to be inducible and underscore the importance of nascent peptide recognition by the ribosome for generating a balanced cellular proteome.201323749080
890190.9976Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. The spread of drug-resistant bacteria represents one of the most significant medical problems of our time. Bacterial fitness loss associated with drug resistance can be counteracted by acquisition of secondary mutations, thereby enhancing the virulence of such bacteria. Antibiotic rifampicin (Rif) targets cellular RNA polymerase (RNAP). It is potent broad spectrum drug used for treatment of bacterial infections. We have investigated the compensatory mechanism of the secondary mutations alleviating Rif resistance (Rifr) on biochemical, structural and fitness indices. We find that substitutions in RNAP genes compensating for the growth defect caused by βQ513P and βT563P Rifr mutations significantly enhanced bacterial relative growth rate. By assaying RNAP purified from these strains, we show that compensatory mutations directly stimulated basal transcriptional machinery (2-9-fold) significantly improving promoter clearance step of the transcription pathway as well as elongation rate. Molecular modeling suggests that compensatory mutations affect transcript retention, substrate loading, and nucleotidyl transfer catalysis. Strikingly, one of the identified compensatory substitutions represents mutation conferring rifampicin resistance on its own. This finding reveals an evolutionary process that creates more virulent species by simultaneously improving the fitness and augmenting bacterial drug resistance.202235639764
564100.9976Mycobacterium tuberculosis possesses an unusual tmRNA rescue system. Trans-translation is a key process in bacteria which recycles stalled ribosomes and tags incomplete nascent proteins for degradation. This ensures the availability of ribosomes for protein synthesis and prevents the accumulation of dysfunctional proteins. The tmRNA, ssrA, is responsible for both recovering stalled ribosomes and encodes the degradation tag; ssrA associates and functions with accessory proteins such as SmpB. Although ssrA and smpB are ubiquitous in bacteria, they are not essential for the viability of many species. The Mycobacterium tuberculosis genome has homologues of both ssrA and smpB. We demonstrated that ssrA is essential in M. tuberculosis, since the chromosomal copy of the gene could only be deleted in the presence of a functional copy integrated elsewhere. However, we were able to delete the proteolytic tagging function by constructing strains carrying a mutant allele (ssrADD). This demonstrates that ribosome rescue by ssrA is the essential function in M. tuberculosis, SmpB was not required for aerobic growth, since we were able to construct a deletion strain. However, the smpBΔ strain was more sensitive to antibiotics targeting the ribosome. Strains with deletion of smpB or mutations in ssrA did not show increased sensitivity (or resistance) to pyrazinamide suggesting that this antibiotic does not directly target these components of the tmRNA tagging system.201424145139
4439110.9976beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. The beta-lactams are by far the most widely used and efficacious of all antibiotics. Over the past few decades, however, widespread resistance has evolved among most common pathogens. Streptococcus pneumoniae has become a paradigm for understanding the evolution of resistance mechanisms, the simplest of which, by far, is the production of beta-lactamases. As these enzymes are frequently plasmid encoded, resistance can readily be transmitted between bacteria. Despite the fact that pneumococci are naturally transformable organisms, no beta-lactamase-producing strain has yet been described. A much more complex resistance mechanism has evolved in S. pneumoniae that is mediated by a sophisticated restructuring of the targets of the beta-lactams, the penicillin-binding proteins (PBPs); however, this may not be the whole story. Recently, a third level of resistance mechanisms has been identified in laboratory mutants, wherein non-PBP genes are mutated and resistance development is accompanied by deficiency in genetic transformation. Two such non-PBP genes have been described: a putative glycosyltransferase, CpoA, and a histidine protein kinase, CiaH. We propose that these non-PBP genes are involved in the biosynthesis of cell wall components at a step prior to the biosynthetic functions of PBPs, and that the mutations selected during beta-lactam treatment counteract the effects caused by the inhibition of penicillin-binding proteins.199910447877
562120.9975Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.202439039256
9335130.9975A biological role for prokaryotic ClC chloride channels. An unexpected finding emerging from large-scale genome analyses is that prokaryotes express ion channels belonging to molecular families long studied in neurons. Bacteria and archaea are now known to carry genes for potassium channels of the voltage-gated, inward rectifier and calcium-activated classes, ClC-type chloride channels, an ionotropic glutamate receptor and a sodium channel. For two potassium channels and a chloride channel, these homologues have provided a means to direct structure determination. And yet the purposes of these ion channels in bacteria are unknown. Strong conservation of functionally important sequences from bacteria to vertebrates, and of structure itself, suggests that prokaryotes use ion channels in roles more adaptive than providing high-quality protein to structural biologists. Here we show that Escherichia coli uses chloride channels of the widespread ClC family in the extreme acid resistance response. We propose that the channels function as an electrical shunt for an outwardly directed virtual proton pump that is linked to amino acid decarboxylation.200212384697
8904140.9975Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. The emergence of drug-resistant bacteria poses a serious threat to human health. Bacteria often acquire resistance from a mutation of chromosomal genes during therapy. We have recently shown that the evolution of resistance to ciprofloxacin in vivo and in vitro requires the induction of a mutation that is mediated by the cleavage of the SOS repressor LexA and the associated derepression of three specialized DNA polymerases (polymerase II [Pol II], Pol IV, and Pol V). These results led us to suggest that it may be possible to design drugs to inhibit these proteins and that such drugs might be coadministered with antibiotics to prevent mutation and the evolution of resistance. For the approach to be feasible, there must not be any mechanisms through which bacteria can induce mutations and acquire antibiotic resistance that are independent of LexA and its repressed polymerases. Perhaps the most commonly cited mechanism to elevate bacterial mutation rates is the inactivation of methyl-directed mismatch repair (MMR). However, it is unclear whether this represents a LexA-independent mechanism or if the mutations that arise in MMR-deficient hypermutator strains are also dependent on LexA cleavage and polymerase derepression. In this work, we show that LexA cleavage and polymerase derepression are required for the evolution of clinically significant resistance in MMR-defective Escherichia coli. Thus, drugs that inhibit the proteins responsible for induced mutations are expected to efficiently prevent the evolution of resistance, even in MMR-deficient hypermutator strains.200616377689
763150.9975Inducing conformational preference of the membrane protein transporter EmrE through conservative mutations. Transporters from bacteria to humans contain inverted repeat domains thought to arise evolutionarily from the fusion of smaller membrane protein genes. Association between these domains forms the functional unit that enables transporters to adopt distinct conformations necessary for function. The small multidrug resistance (SMR) family provides an ideal system to explore the role of mutations in altering conformational preference since transporters from this family consist of antiparallel dimers that resemble the inverted repeats present in larger transporters. Here, we show using NMR spectroscopy how a single conservative mutation introduced into an SMR dimer is sufficient to change the resting conformation and function in bacteria. These results underscore the dynamic energy landscape for transporters and demonstrate how conservative mutations can influence structure and function.201931637997
764160.9975Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Pleiotropic drug resistance (PDR) is a well-described phenomenon occurring in fungi. PDR shares several similarities with processes in bacteria and higher eukaryotes. In mammalian cells, multidrug resistance (MDR) develops from an initial single drug resistance, eventually leading to a broad cross-resistance to many structurally and functionally unrelated compounds. Notably, a number of membrane-embedded energy-consuming ATP-binding cassette (ABC) transporters have been implicated in the development of PDR/MDR phenotypes. The yeast Saccharomyces cerevisiae genome harbors some 30 genes encoding ABC proteins, several of which mediate PDR. Therefore, yeast served as an important model organism to study the functions of evolutionary conserved ABC genes, including those mediating clinical antifungal resistance in fungal pathogens. Moreover, yeast cells lacking endogenous ABC pumps are hypersensitive to many antifungal drugs, making them suitable for functional studies and cloning of ABC transporters from fungal pathogens such as Candida albicans. This review discusses drug resistance phenomena mediated by ABC transporters in the model system S. cerevisiae and certain fungal pathogens.200616611035
9339170.9975A functional genomics approach to identify and characterize oxidation resistance genes. In order to develop a more complete understanding of the genes required for resistance to oxidative DNA damage, we devised methods to identify genes that can prevent or repair oxidative DNA damage. These methods use the oxidative mutator phenotype of a repair deficient E. coli strain to measure the antimutator effect resulting from the expression of human cDNAs. The method can be adapted to characterize the function, and to determine the active site domains, of putative antimutator genes. Since bacteria do not contain subcellular compartments, genes that function in mitochondria, the cytoplasm, or the nucleus can be identified. Methods to determine the localization of genes in their normal host organism are also described.200819082958
298180.9975Molecular analysis of antibiotic tolerance in pneumococci. Widespread pneumococcal resistance and the emergence of tolerance underscores the need to develop new antimicrobials. Uncovering the mechanisms of autolysin activation could yield not only new antibacterial targets but also ways to eradicate a pool of bacteria facilitating the spread of resistance. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, those important in the clinical arena thus far are in a single gene cluster, vex/pep27/vncS/vncR. Mutations within this signal transduction system represent at least one mechanism, which explains tolerance to both penicillin and vancomycin. Since mutations in this locus do not result in tolerance to penicillin alone, there must be other, yet unknown, mutations which account for tolerance to a single antibiotic. In the case of pneumococci, there exist two more autolysins other than LytA suggesting our understanding of how bacteria die is currently only at the beginning.200212195738
8896190.9975Nonoptimal Gene Expression Creates Latent Potential for Antibiotic Resistance. Bacteria regulate genes to survive antibiotic stress, but regulation can be far from perfect. When regulation is not optimal, mutations that change gene expression can contribute to antibiotic resistance. It is not systematically understood to what extent natural gene regulation is or is not optimal for distinct antibiotics, and how changes in expression of specific genes quantitatively affect antibiotic resistance. Here we discover a simple quantitative relation between fitness, gene expression, and antibiotic potency, which rationalizes our observation that a multitude of genes and even innate antibiotic defense mechanisms have expression that is critically nonoptimal under antibiotic treatment. First, we developed a pooled-strain drug-diffusion assay and screened Escherichia coli overexpression and knockout libraries, finding that resistance to a range of 31 antibiotics could result from changing expression of a large and functionally diverse set of genes, in a primarily but not exclusively drug-specific manner. Second, by synthetically controlling the expression of single-drug and multidrug resistance genes, we observed that their fitness-expression functions changed dramatically under antibiotic treatment in accordance with a log-sensitivity relation. Thus, because many genes are nonoptimally expressed under antibiotic treatment, many regulatory mutations can contribute to resistance by altering expression and by activating latent defenses.201830169679