Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
999001.0000Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Enterococcal species of bacteria are now acknowledged as leading causes of bacteraemia and other serious nosocomial infections. However, surprisingly little is known about the molecular mechanisms that promote the segregational stability of antibiotic resistance and other plasmids in these bacteria. Plasmid pRUM (24 873 bp) is a multidrug resistance plasmid identified in a clinical isolate of Enterococcus faecium. A novel proteic-based toxin-antitoxin cassette identified on pRUM was demonstrated to be a functional segregational stability module in both its native host and evolutionarily diverse bacterial species. Induced expression of the toxin protein (Txe) of this system resulted in growth inhibition in Escherichia coli. The toxic effect of Txe was alleviated by co-expression of the antitoxin protein, Axe. Homologues of the axe and txe genes are present in the genomes of a diversity of Eubacteria. These homologues (yefM-yoeB) present in the E. coli chromosome function as a toxin-antitoxin mechanism, although the Axe and YefM antitoxin components demonstrate specificity for their cognate toxin proteins in vivo. Axe-Txe is one of the first functional proteic toxin-antitoxin systems to be accurately described for Gram-positive bacteria.200312603745
443610.9983Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. A plasmid-borne transposon encodes enzymes and regulator proteins that confer resistance of enterococcal bacteria to the antibiotic vancomycin. Purification and characterization of individual proteins encoded by this operon has helped to elucidate the molecular basis of vancomycin resistance. This new understanding provides opportunities for intervention to reverse resistance.19968807824
23020.9982Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes. Drug resistance in gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential target to develop such novel antibiotics. Two putative MetAP genes were identified in A. baumannii genome, but whether they actually function as MetAP enzymes was not known. Therefore, we established an efficient E. coli expression system for their production as soluble and metal-free proteins for biochemical characterization. We demonstrated that both could carry out the metal-dependent catalysis and could be activated by divalent metal ions with the order Fe(II) ≈ Ni(II) > Co(II) > Mn(II) for both. By using a set of metalloform-selective inhibitors discovered on other MetAP enzymes, potency and metalloform selectivity on the A. baumannii MetAP proteins were observed. The similarity of their catalysis and inhibition to other MetAP enzymes confirmed that both may function as competent MetAP enzymes in A. baumannii and either or both may serve as the potential drug target.201121524572
978030.9982Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr -1, -1.5, -2, -3, -3.2 or -5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance.202134723787
22540.9981Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.Key Points• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.• Polymyxins have potential as a treatment for Gram-positive bacterial infection.202032157424
978250.9981Homodimeric Tobramycin Adjuvant Repurposes Novobiocin as an Effective Antibacterial Agent against Gram-Negative Bacteria. Low permeability across the outer membrane is a major reason why most antibiotics are ineffective against Gram-negative bacteria. Agents that permeabilize the outer membrane are typically toxic at their effective concentrations. Here, we report the development of a broad-spectrum homodimeric tobramycin adjuvant that is nontoxic and more potent than the gold standard permeabilizing agent, polymyxin B nonapeptide. In pilot studies, the adjuvant confers potent bactericidal activity on novobiocin against Gram-negative bacteria, including carbapenem-resistant and colistin-resistant strains bearing plasmid-borne mcr-1 genes. Resistance development to the combination was significantly reduced, relative to novobiocin alone, and there was no induction of cross-resistance to other antibiotics, including the gyrase-acting fluoroquinolones. Tobramycin homodimer may allow the use of lower doses of novobiocin, overcoming its twin problem of efficacy and toxicity.201931557020
443960.9981beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. The beta-lactams are by far the most widely used and efficacious of all antibiotics. Over the past few decades, however, widespread resistance has evolved among most common pathogens. Streptococcus pneumoniae has become a paradigm for understanding the evolution of resistance mechanisms, the simplest of which, by far, is the production of beta-lactamases. As these enzymes are frequently plasmid encoded, resistance can readily be transmitted between bacteria. Despite the fact that pneumococci are naturally transformable organisms, no beta-lactamase-producing strain has yet been described. A much more complex resistance mechanism has evolved in S. pneumoniae that is mediated by a sophisticated restructuring of the targets of the beta-lactams, the penicillin-binding proteins (PBPs); however, this may not be the whole story. Recently, a third level of resistance mechanisms has been identified in laboratory mutants, wherein non-PBP genes are mutated and resistance development is accompanied by deficiency in genetic transformation. Two such non-PBP genes have been described: a putative glycosyltransferase, CpoA, and a histidine protein kinase, CiaH. We propose that these non-PBP genes are involved in the biosynthesis of cell wall components at a step prior to the biosynthetic functions of PBPs, and that the mutations selected during beta-lactam treatment counteract the effects caused by the inhibition of penicillin-binding proteins.199910447877
39570.9981O-antigen protects gram-negative bacteria from histone killing. Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae.201323951089
978180.9981Antibacterial action of peptide F1 against colistin resistance E. coli SHP45 (mcr-1). The emergence of the plasmid-mediated colistin resistance mechanism (mcr-1) makes bacterial resistance to colistin increasingly serious. This mcr-1 mediated bacterial resistance to colicin is conferred primarily through modification of lipid A in lipopolysaccharides (LPS). In our previous research, antimicrobial peptide F1 was derived from Tibetan kefir and has been shown to effectively inhibit the growth of Gram-negative bacteria (E. coli), Gram-positive bacteria (Staphylococcus aureus), and other pathogenic bacteria. Based on this characteristic of antibacterial peptide F1, we speculated that it could inhibit the growth of the colicin-resistant E. coli SHP45 (mcr-1) and not easily produce drug resistance. Studies have shown that antimicrobial peptide F1 can destroy the liposome structure of the phospholipid bilayer by destroying the inner and outer membranes of bacteria, thereby significantly inhibiting the growth of E. coli SHP45 (mcr-1), but without depending on LPS. The results of this study confirmed our hypothesis, and we anticipate that antimicrobial peptide F1 will become a safe antibacterial agent that can assist in solving the problem of drug resistance caused by colistin.202033169751
70490.9981Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires L-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for L-Ara4N synthesis and transfer to the LPS. The absence of L-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that L-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.201222742453
6325100.9980Repressed multidrug resistance genes in Streptomyces lividans. Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes.200312937892
9778110.9980Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-β-lactamase, metallo-β-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.202438579010
222120.9980Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence.202032250173
9777130.9980Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Infections caused by multidrug-resistant (MDR) Gram-negative bacteria represent a major global health problem. Polymyxin antibiotics such as colistin have resurfaced as effective last-resort antimicrobials for use against MDR Gram-negative pathogens, including Acinetobacter baumannii. Here we show that A. baumannii can rapidly develop resistance to polymyxin antibiotics by complete loss of the initial binding target, the lipid A component of lipopolysaccharide (LPS), which has long been considered to be essential for the viability of Gram-negative bacteria. We characterized 13 independent colistin-resistant derivatives of A. baumannii type strain ATCC 19606 and showed that all contained mutations within one of the first three genes of the lipid A biosynthesis pathway: lpxA, lpxC, and lpxD. All of these mutations resulted in the complete loss of LPS production. Furthermore, we showed that loss of LPS occurs in a colistin-resistant clinical isolate of A. baumannii. This is the first report of a spontaneously occurring, lipopolysaccharide-deficient, Gram-negative bacterium.201020855724
6316140.9980A novel type of colistin resistance genes selected from random sequence space. Antibiotic resistance is a rapidly increasing medical problem that severely limits the success of antibiotic treatments, and the identification of resistance determinants is key for surveillance and control of resistance dissemination. Horizontal transfer is the dominant mechanism for spread of resistance genes between bacteria but little is known about the original emergence of resistance genes. Here, we examined experimentally if random sequences can generate novel antibiotic resistance determinants de novo. By utilizing highly diverse expression libraries encoding random sequences to select for open reading frames that confer resistance to the last-resort antibiotic colistin in Escherichia coli, six de novo colistin resistance conferring peptides (Dcr) were identified. The peptides act via direct interactions with the sensor kinase PmrB (also termed BasS in E. coli), causing an activation of the PmrAB two-component system (TCS), modification of the lipid A domain of lipopolysaccharide and subsequent colistin resistance. This kinase-activation was extended to other TCS by generation of chimeric sensor kinases. Our results demonstrate that peptides with novel activities mediated via specific peptide-protein interactions in the transmembrane domain of a sensory transducer can be selected de novo, suggesting that the origination of such peptides from non-coding regions is conceivable. In addition, we identified a novel class of resistance determinants for a key antibiotic that is used as a last resort treatment for several significant pathogens. The high-level resistance provided at low expression levels, absence of significant growth defects and the functionality of Dcr peptides across different genera suggest that this class of peptides could potentially evolve as bona fide resistance determinants in natura.202133411736
304150.9980Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel beta-lactam resistance mechanism. Members of two genera of Gram-negative bacteria, Serratia and Erwinia, produce a beta-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid. We have reported previously the cloning and sequencing of the genes responsible for production of this carbapenem in Erwinia carotovora. These genes are organized as an operon, carA--H, and are controlled by a LuxR-type transcriptional activator, encoded by the linked carR gene. We report in this paper the genetic dissection of this putative operon to determine the function of each of the genes. We demonstrate by mutational analysis that the products of the first five genes of the operon are involved in the synthesis of the carbapenem molecule. Three of these, carABC, are absolutely required. In addition, we provide evidence for the existence of a novel carbapenem resistance mechanism, encoded by the CarF and carG genes. Both products of these overlapping and potentially translationally coupled genes have functional, N-terminal signal peptides. Removal of these genes from the Erwinia chromosome results in a carbapenem-sensitive phenotype. We assume that these novel beta-lactam resistance genes have evolved in concert with the biosynthetic genes to ensure 'self-resistance' in the Erwinia carbapenem producer.19979402024
226160.9980Resistance mechanisms for Gram-negative bacteria-specific lipopeptides, turnercyclamycins, differ from that of colistin. Bacterial resistance to antibiotics is a crisis. Acinetobacter baumannii is among the CDC urgent threat pathogens in part for this reason. Lipopeptides known as turnercyclamycins are produced by symbiotic bacteria that normally live in marine mollusks, where they may be involved in shaping their symbiotic niche. Turnercyclamycins killed Gram-negative pathogens including drug-resistant Acinetobacter, but how do the mechanisms of resistance compare to other lipopeptide drugs? Here, we define resistance from a truncation of MlaA, a protein involved in regulating bacterial membrane phospholipids. Intriguingly, this resistance mechanism only affected one turnercyclamycin variant, which differed only in two atoms in the lipid tail of the compounds. We could not obtain significant resistance to the second turnercyclamycin variant, which was also effective in an infection model. This study reveals an unexpected subtlety in resistance to lipopeptide antibiotics, which may be useful in the design and development of antibiotics to combat drug resistance.202337882570
9357170.9980The bifunctional enzymes of antibiotic resistance. The evolutionary union of two genes--each encoding proteins of complementary enzymatic activity--into a single gene so as to allow the coordinated expression of these activities as a fusion polypeptide, is an increasingly recognized biological occurrence. The result of this genetic union is the bifunctional enzyme. This fusion of separate catalytic activities into a single protein, whose gene is regulated by a single promoter, is seen especially where the coordinated expression of the separate activities is highly desirable. Increasingly, a circumstance driving the evolution of the bifunctional enzyme in bacteria is the resistance response of bacteria to antibiotic chemotherapy. We summarize the knowledge on bifunctional antibiotic-resistance enzymes, as possible harbingers of clinically significant resistance mechanisms of the future.200919615931
207180.9980Synthesis of an amphiphilic vancomycin aglycone derivative inspired by polymyxins: overcoming glycopeptide resistance in Gram-positive and Gram-negative bacteria in synergy with teicoplanin in vitro. Gram-negative bacteria possess intrinsic resistance to glycopeptide antibiotics so these important antibacterial medications are only suitable for the treatment of Gram-positive bacterial infections. At the same time, polymyxins are peptide antibiotics, structurally related to glycopeptides, with remarkable activity against Gram-negative bacteria. With the aim of breaking the intrinsic resistance of Gram-negative bacteria against glycopeptides, a polycationic vancomycin aglycone derivative carrying an n-decanoyl side chain and five aminoethyl groups, which resembles the structure of polymyxins, was prepared. Although the compound by itself was not active against the Gram-negative bacteria tested, it synergized with teicoplanin against Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, and it was able to potentiate vancomycin against these Gram-negative strains. Moreover, it proved to be active against vancomycin- and teicoplanin-resistant Gram-positive bacteria.202236463278
4430190.9980βLactam Resistance Mediated by Changes in Penicillin-Binding Proteins. The widespread use, or perhaps overuse, of penicillin during the past 50 yr has driven the evolution of resistance to penicilling in numerous different species of bacteria.Typically, resistance has arisen as a result of the acquisition of β-lactamases that inactivate the antibiotic (see Chapter 25 . Alternatively, in some Gram-negative bacteria, resistance may have arisen by a reduction in the ability of the antibiotic to access its target. However, in a number of clinically important Gram-negative and Gram-positive bacteria, resistance has arisen by alteration of the targets for penicillin and other β-lactam antibiotics, namely, the penicillin-binding proteins (PBPs).199821390765