# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9973 | 0 | 1.0000 | Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOB(F12)A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOB(F12)A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOB(F12)A group of conjugative plasmids. | 2018 | 30022749 |
| 4468 | 1 | 0.9998 | Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. In Gram-negative pathogens, multiple antibiotic resistance is common and many of the known resistance genes are contained in mobile gene cassettes. Cassettes can be integrated into or deleted from their receptor elements, the integrons, or infrequently may be integrated at other locations via site-specific recombination catalysed by an integron-encoded recombinase. As a consequence, arrays of several different antibiotic resistance genes can be created. Over 40 gene cassettes and three distinct classes of integrons have been identified to date. Cassette-associated genes conferring resistance to beta-lactams, aminoglycosides, trimethoprim, chloramphenicol, streptothricin and quaternary ammonium compounds used as antiseptics and disinfectants have been found. In addition, most members of the commonest family of integrons (class 1) include a sulfonamide resistance determinant in the backbone structure. Integrons are themselves translocatable, though most are defective transposon derivatives. Integron movement allows transfer of the cassette-associated resistance genes from one replicon to another or into another active transposon which facilitates spread of integrons that are transposition defective. Horizontal transfer of the resistance genes can be achieved when an integron containing one or more such genes is incorporated into a broad-host-range plasmid. Likewise, single cassettes integrated at secondary sites in a broad-host-range plasmid can also move across species boundaries. | 1997 | 9189642 |
| 9867 | 2 | 0.9998 | Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Mosaic plasmids, plasmids composed of genetic elements from distinct sources, are associated with the spread of antibiotic resistance genes. Transposons are considered the primary mechanism for mosaic plasmid formation, though other mechanisms have been observed in specific instances. The frequency with which mosaic plasmids have been described suggests they may play an important role in plasmid population dynamics. Our survey of the confirmed plasmid sequences available from complete and draft genomes in the RefSeq database shows that 46% of them fit a strict definition of mosaic. Mosaic plasmids are also not evenly distributed over the taxa represented in the database. Plasmids from some genera, including Piscirickettsia and Yersinia, are almost all mosaic, while plasmids from other genera, including Borrelia, are rarely mosaic. While some mosaic plasmids share identical regions with hundreds of others, the median mosaic plasmid only shares with 8 other plasmids. When considering only plasmids from finished genomes (51.6% of the total), mosaic plasmids have significantly higher proportions of transposase and antibiotic resistance genes. Conversely, only 56.6% of mosaic fragments (DNA fragments shared between mosaic plasmids) contain a recognizable transposase gene, and only 1.2% of mosaic fragments are flanked by inverted repeats. Mosaic fragments associated with the IS26 transposase gene are 3.8-fold more abundant than any other sequence shared between mosaic plasmids in the database, though this is at least partly due to overrepresentation of Enterobacteriaceae plasmids. Mosaic plasmids are a complicated trait of some plasmid populations, only partly explained by transposition. Though antibiotic resistance genes led to the identification of many mosaic plasmids, mosaic plasmids are a broad phenomenon encompassing many more traits than just antibiotic resistance. Further research will be required to determine the influence of ecology, host repair mechanisms, conjugation, and plasmid host range on the formation and influence of mosaic plasmids. AUTHOR SUMMARY: Plasmids are extrachromosomal genetic entities that are found in many prokaryotes. They serve as flexible storage for genes, and individual cells can make substantial changes to their characteristics by acquiring, losing, or modifying a plasmid. In some pathogenic bacteria, such as Escherichia coli, antibiotic resistance genes are known to spread primarily on plasmids. By analyzing a database of 8592 plasmid sequences we determined that many of these plasmids have exchanged genes with each other, becoming mosaics of genes from different sources. We next separated these plasmids into groups based on the organism they were isolated from and found that different groups had different fractions of mosaic plasmids. This result was unexpected and suggests that the mechanisms and selective pressures causing mosaic plasmids do not occur evenly over all species. It also suggests that plasmids may provide different levels of potential variation to different species. This work uncovers a previously unrecognized pattern in plasmids across prokaryotes, that could lead to new insights into the evolutionary role that plasmids play. | 2019 | 30797764 |
| 9965 | 3 | 0.9998 | The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans. | 2012 | 22326849 |
| 4465 | 4 | 0.9998 | Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. | 1991 | 1952855 |
| 9889 | 5 | 0.9998 | Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria. Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects in silico. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve in situ to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages. | 2021 | 32781088 |
| 9888 | 6 | 0.9998 | Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally. | 2018 | 30081066 |
| 9975 | 7 | 0.9998 | Detection of Horizontal Gene Transfer Mediated by Natural Conjugative Plasmids in E. coli. Conjugation represents one of the main mechanisms facilitating horizontal gene transfer in Gram-negative bacteria. This work describes methods for the study of the mobilization of naturally occurring conjugative plasmids, using two naturally-occurring plasmids as an example. These protocols rely on the differential presence of selectable markers in donor, recipient, and conjugative plasmid. Specifically, the methods described include 1) the identification of natural conjugative plasmids, 2) the quantification of conjugation rates in solid culture, and 3) the diagnostic detection of the antibiotic resistance genes and plasmid replicon types in transconjugant recipients by polymerase chain reaction (PCR). The protocols described here have been developed in the context of studying the evolutionary ecology of horizontal gene transfer, to screen for the presence of conjugative plasmids carrying antibiotic-resistance genes in bacteria found in the environment. The efficient transfer of conjugative plasmids observed in these experiments in culture highlights the biological relevance of conjugation as a mechanism promoting horizontal gene transfer in general and the spread of antibiotic resistance in particular. | 2023 | 37036197 |
| 9974 | 8 | 0.9998 | Role of Plasmids in Co-Selection of Antimicrobial Resistances Among Escherichia coli Isolated from Pigs. Co-selection is thought to occur when resistance genes are located on the same mobile genetic element. However, this mechanism is currently poorly understood. In this study, complete circular plasmids from swine-derived Escherichia coli were sequenced with short and long reads to confirm that resistance genes involved in co-resistance were co-transferred by the same plasmid. Conjugative transfer tests were performed, and multiple resistance genes were transmitted. The genes possessed by the donor, transconjugant, and plasmid of the donor were highly similar. In addition, the sequences of the plasmid of the donor and the plasmid of the transconjugant were almost identical. Resistance genes associated with statistically significant combinations of antimicrobial use and resistance were co-transmitted by the same plasmid. These results suggest that resistance genes may be involved in co-selection by their transfer between bacteria on the same plasmid. | 2023 | 37540099 |
| 4469 | 9 | 0.9998 | Integrons: an antibiotic resistance gene capture and expression system. Bacteria can transfer genetic information to provide themselves with protection against most antibiotics. The acquisition of resistance gene arrays involves genetic mobile elements like plasmids and transposons. Another class of genetic structures, termed integrons, have been described and contain one or more gene cassettes located at a specific site. Integrons are defined by an intl gene encoding an integrase, a recombination site attl and a strong promoter. At least six classes of integrons have been determined according to their intl gene. Classes 1, 2 and 3 are the most studied and are largely implicated in the dissemination of antibiotic resistance. A gene cassette includes an open reading frame and, at the 3'-end, a recombination site attC. Integration or excision of cassettes occur by a site-specific recombination mechanism catalyzed by the integrase. However, insertion can occur, albeit rarely, at non-specific sites leading to a stable situation for the cassette. Cassettes are transcribed from the common promoter located in the 5'-conserved segment and expression of distal genes is reduced by the presence of upstream cassettes. Most gene cassettes encode antibiotic resistant determinants but antiseptic resistant genes have also been described. Integrons seem to have a major role in the spread of multidrug resistance in gram-negative bacteria but integrons in gram-positive bacteria were described recently. Moreover, the finding of super-integrons with gene-cassettes coding for other determinants (biochemical functions, virulence factors) in Vibrio isolates dating from 1888 suggests the likely implication of this multicomponent cassette-integron system in bacterial genome evolution before the antibiotic era and to a greater extent than initially believed. | 2000 | 10987194 |
| 4466 | 10 | 0.9998 | Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Resistance of gram-negative organisms to antibiotics such as beta-lactams, aminoglycosides, trimethoprim and chloramphenicol is caused by many different acquired genes, and a substantial proportion of these are part of small mobile elements known as gene cassettes. A gene cassette consists of the gene and a downstream sequence, known as a 59-base element (59-be), that acts as a specific recombination site. Gene cassettes can move into or out of a specific receptor site (attl site) in a companion element called an integron, and integration or excision of the cassettes is catalysed by a site-specific recombinase (Intl) that is encoded by the integron. At present count there are 40 different cassette-associated resistance genes and three distinct classes of integron, each encoding a distinct Intl integrase. The same cassettes are found in all three classes of integron, indicating that cassettes can move freely between different integrons. Integrons belonging to class I often contain a further antibiotic resistance gene, sull, conferring resistance to sulphonamides. The sull gene is found in a conserved region (3'-CS) that is not present in all members of this class. Class I integrons of the sull type are most prevalent in clinical isolates and have been found in many different organisms. Even though most of them are defective transposon derivatives, having lost at least one of the transposition genes, they are none the less translocatable and consequently found in many different locations. The transposon Tn7 is the best known representative of class 2 integrons, and Tn7 and relatives are also found in many different species. | 1998 | 16904397 |
| 9886 | 11 | 0.9998 | Development of an antimicrobial resistance plasmid transfer gene database for enteric bacteria. Introduction: Type IV secretion systems (T4SSs) are integral parts of the conjugation process in enteric bacteria. These secretion systems are encoded within the transfer (tra) regions of plasmids, including those that harbor antimicrobial resistance (AMR) genes. The conjugal transfer of resistance plasmids can lead to the dissemination of AMR among bacterial populations. Methods: To facilitate the analyses of the conjugation-associated genes, transfer related genes associated with key groups of AMR plasmids were identified, extracted from GenBank and used to generate a plasmid transfer gene dataset that is part of the Virulence and Plasmid Transfer Factor Database at FDA, serving as the foundation for computational tools for the comparison of the conjugal transfer genes. To assess the genetic feature of the transfer gene database, genes/proteins of the same name (e.g., traI/TraI) or predicted function (VirD4 ATPase homologs) were compared across the different plasmid types to assess sequence diversity. Two analyses tools, the Plasmid Transfer Factor Profile Assessment and Plasmid Transfer Factor Comparison tools, were developed to evaluate the transfer genes located on plasmids and to facilitate the comparison of plasmids from multiple sequence files. To assess the database and associated tools, plasmid, and whole genome sequencing (WGS) data were extracted from GenBank and previous WGS experiments in our lab and assessed using the analysis tools. Results: Overall, the plasmid transfer database and associated tools proved to be very useful for evaluating the different plasmid types, their association with T4SSs, and increased our understanding how conjugative plasmids contribute to the dissemination of AMR genes. | 2023 | 38033626 |
| 4464 | 12 | 0.9998 | Class 1 integrons, gene cassettes, mobility, and epidemiology. Integrons are genetic elements that, although unable to move themselves, contain gene cassettes that can be mobilized to other integrons or to secondary sites in the bacterial genome. The majority of approximately 60 known gene cassettes encode resistance to antibiotics. Recently, a number of gene cassettes encoding extended-spectrum beta-lactamases or carbapenemases have been described. Up to at least five cassettes may be present in an integron, which leads to multiresistance. Frequently, more than one integron is observed within the same bacterial cell. Integrons are widespread in their species distribution. Although integrons are normally reported from Enterobacteriaceae and other gram-negative bacteria, an integron has been described in Corynebacterium glutamicum, a gram-positive species. The gene cassette in this integron showed even higher expression when compared to the expression in Escherichia coli. Integrons have been reported from all continents and are found frequently. The widespread occurrence of integrons is thought to be due to their association with transposon plasmids, conjugative plasmids, or both. Integrons form an important source for the spread of antibiotic resistance, at least in gram-negative bacteria but also potentially in gram-positive bacteria. The aim of this review is to describe the versatility of integrons, especially their mobility and their ability to collect resistance genes. | 1999 | 10614949 |
| 4660 | 13 | 0.9998 | Recovery of new integron classes from environmental DNA. Integrons are genetic elements known for their role in the acquisition and expression of genes conferring antibiotic resistance. Such acquisition is mediated by an integron-encoded integrase, which captures genes that are part of gene cassettes. To test whether integrons occur in environments with no known history of antibiotic exposure, PCR primers were designed to conserved regions of the integrase gene and the gene cassette recombination site. Amplicons generated from four environmental DNA samples contained features typical of the integrons found in antibiotic-resistant and pathogenic bacteria. The sequence diversity of the integrase genes in these clones was sufficient to classify them within three new classes of integron. Since they are derived from environments not associated with antibiotic use, integrons appear to be more prevalent in bacteria than previously observed. | 2001 | 11166996 |
| 9972 | 14 | 0.9998 | Extensive antimicrobial resistance mobilization via multicopy plasmid encapsidation mediated by temperate phages. OBJECTIVES: To investigate the relevance of multicopy plasmids in antimicrobial resistance and assess their mobilization mediated by phage particles. METHODS: Several databases with complete sequences of plasmids and annotated genes were analysed. The 16S methyltransferase gene armA conferring high-level aminoglycoside resistance was used as a marker in eight different plasmids, from different incompatibility groups, and with differing sizes and plasmid copy numbers. All plasmids were transformed into Escherichia coli bearing one of four different lysogenic phages. Upon induction, encapsidation of armA in phage particles was evaluated using qRT-PCR and Southern blotting. RESULTS: Multicopy plasmids carry a vast set of emerging clinically important antimicrobial resistance genes. However, 60% of these plasmids do not bear mobility (MOB) genes. When carried on these multicopy plasmids, mobilization of a marker gene armA into phage capsids was up to 10000 times more frequent than when it was encoded by a large plasmid with a low copy number. CONCLUSIONS: Multicopy plasmids and phages, two major mobile genetic elements (MGE) in bacteria, represent a novel high-efficiency transmission route of antimicrobial resistance genes that deserves further investigation. | 2020 | 32719862 |
| 4467 | 15 | 0.9998 | PCR mapping of integrons reveals several novel combinations of resistance genes. The integron is a new type of mobile element which has evolved by a site-specific recombinational mechanism. Integrons consist of two conserved segments of DNA separated by a variable region containing one or more genes integrated as cassettes. Oligonucleotide probes specific for the conserved segments have revealed that integrons are widespread in recently isolated clinical bacteria. Also, by using oligonucleotide probes for several antibiotic resistance genes, we have found novel combinations of resistance genes in these strains. By using PCR, we have determined the content and order of the resistance genes inserted between the conserved segments in the integrons of these clinical isolates. PCR mapping of integrons can be a useful epidemiological tool to study the evolution of multiresistance plasmids and transposons and dissemination of antibiotic resistance genes. | 1995 | 7695304 |
| 9847 | 16 | 0.9997 | Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements. | 2009 | 20041216 |
| 4658 | 17 | 0.9997 | Class 1 integrons potentially predating the association with tn402-like transposition genes are present in a sediment microbial community. Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era." | 2006 | 16885440 |
| 9952 | 18 | 0.9997 | Detection and Quantification of Conjugative Transfer of Mobile Genetic Elements Carrying Antibiotic Resistance Genes. Multidrug resistance, due to acquired antimicrobial resistance genes, is increasingly reported in the zoonotic pathogen Streptococcus suis. Most of these resistance genes are carried by chromosomal Mobile Genetic Elements (MGEs), in particular, Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs). ICEs and IMEs frequently form tandems or nested composite elements, which make their identification difficult. To evaluate their mobility, it is necessary to (i) select the suitable donor-recipient pairs for mating assays, (ii) do PCR excision tests to confirm that the genetic element is able to excise from the chromosome as a circular intermediate, and (iii) evaluate the transfer of the genetic element by conjugation by doing mating assays. In addition to a dissemination of resistance genes between S. suis strains, MGEs can lead to a spreading of resistance genes in the environment and toward pathogenic bacteria. This propagation had to be considered in a One Health perspective. | 2024 | 38884912 |
| 9966 | 19 | 0.9997 | The A to Z of A/C plasmids. Plasmids belonging to incompatibility groups A and C (now A/C) were among the earliest to be associated with antibiotic resistance in Gram-negative bacteria. A/C plasmids are large, conjugative plasmids with a broad host range. The prevalence of A/C plasmids in collections of clinical isolates has revealed their importance in the dissemination of extended-spectrum β-lactamases and carbapenemases. They also mobilize SGI1-type resistance islands. Revived interest in the family has yielded many complete A/C plasmid sequences, revealing that RA1, designated A/C1, is different from the remainder, designated A/C2. There are two distinct A/C2 lineages. Backbones of 128-130 kb include over 120 genes or ORFs encoding proteins of at least 100 amino acids, but very few have been characterized. Genes potentially required for replication, stability and transfer have been identified, but only the replication system of RA1 and the regulation of transfer have been studied. There is enormous variety in the antibiotic resistance genes carried by A/C2 plasmids but they are usually clustered in larger regions at various locations in the backbone. The ARI-A and ARI-B resistance islands are always at a specific location but have variable content. ARI-A is only found in type 1 A/C2 plasmids, which disseminate blaCMY-2 and blaNDM-1 genes, whereas ARI-B, carrying the sul2 gene, is found in both type 1 and type 2. This review summarizes current knowledge of A/C plasmids, and highlights areas of research to be considered in the future. | 2015 | 25910948 |