# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9957 | 0 | 1.0000 | Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Exogenously acquired 16S rRNA methyltransferase (16S-RMTase) genes responsible for a very high level of resistance against various aminoglycosides have been widely distributed among Enterobacteriaceae and glucose-nonfermentative microbes recovered from human and animal. The 16S-RMTases are classified into two subgroups, N7-G1405 16S-RMTases and N1-A1408 16S-RMTases, based on the mode of modification of 16S rRNA. Both MTases add the methyl group of S-adenosyl-L-methionine (SAM) to the specific nucleotides at the A-site of 16S rRNA, which interferes with aminoglycoside binding to the target. The genetic determinants responsible for 16S-RMTase production are often mediated by mobile genetic elements like transposons and further embedded into transferable plasmids or chromosome. This genetic apparatus may thus contribute to the rapid worldwide dissemination of the resistance mechanism among pathogenic microbes. More worrisome is the fact that 16S-RMTase genes are frequently associated with other antimicrobial resistance mechanisms such as NDM-1 metallo-β-lactamase and CTX-M-type ESBLs, and some highly pathogenic microbes including Salmonella spp. have already acquired these genes. Thus far, 16S-RMTases have been reported from at least 30 countries or regions. The worldwide dissemination of 16S-RMTases is becoming a serious global concern and this implies the necessity to continue investigations on the trend of 16S-RMTases to restrict their further worldwide dissemination. | 2012 | 22673098 |
| 9949 | 1 | 0.9995 | Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. The emergence of the multiresistance gene cfr in staphylococci is of global concern. In addition to conferring resistance to phenicols, lincosamides, pleuromutilins, streptogramin A antibiotics and selected 16-membered macrolides, the cfr gene also confers resistance to the oxazolidinone linezolid. Linezolid is a last-resort antimicrobial agent for the treatment of serious infections in humans caused by resistant Gram-positive bacteria. The cfr gene is often located on plasmids and several cfr-carrying plasmids have been described, which differ in their structure, their size and the presence of additional resistance genes. These plasmids are important vehicles that promote the spread of the cfr gene not only among bacteria of the same species, but also among those of different species and genera. Moreover, the cfr gene has been identified in close proximity to different insertion sequences, which most probably also play an important role in its dissemination. This review summarizes current knowledge on the genetic environment of the multiresistance gene cfr with particular reference to mobile genetic elements and co-located resistance genes that may support its emergence. | 2013 | 23543608 |
| 4925 | 2 | 0.9995 | Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. The global spread and diversification of multidrug-resistant Gram-negative (MRGN) bacteria poses major challenges to healthcare. In particular, carbapenem-resistant Klebsiella pneumoniae strains have been frequently identified in infections and hospital-wide outbreaks. The most frequently underlying resistance gene (bla(KPC)) has been spreading over the last decade in the health care setting. bla(KPC) seems to have rapidly diversified and has been found in various species and on different plasmid types. To review the progress and dynamics of this diversification, all currently available KPC plasmids in the NCBI database were analysed in this work. Plasmids were grouped into 257 different representative KPC plasmids, of which 79.4% could be clearly assigned to incompatibility (Inc) group or groups. In almost half of all representative plasmids, the KPC gene is located on Tn4401 variants, emphasizing the importance of this transposon type for the transmission of KPC genes to other plasmids. The transposons also seem to be responsible for the occurrence of altered or uncommon fused plasmid types probably due to incomplete transposition. Moreover, many KPC plasmids contain genes that encode proteins promoting recombinant processes and mutagenesis; in consequence accelerating the diversification of KPC genes and other colocalized resistance genes. | 2019 | 31375735 |
| 9885 | 3 | 0.9995 | The plasmidome associated with Gram-negative bloodstream infections: A large-scale observational study using complete plasmid assemblies. Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative 'backbone' of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes. | 2024 | 38383544 |
| 4842 | 4 | 0.9995 | Plasmid-borne AmpC beta-lactamases. Historically, it was thought that ampC genes encoding class C beta-lactamases were located solely on the chromosome but, within the last 12 years, an increasing number of ampC genes have been found on plasmids. These have mostly been acquired by ampC-deficient pathogenic bacteria, which consequently are supplied with new and additional resistance phenotypes. This review discusses the phylogenetic origin of the plasmid-encoded AmpC beta-lactamases, their occurrence, and mode of spread, as well as their hydrolytic properties. | 2002 | 12166675 |
| 4464 | 5 | 0.9995 | Class 1 integrons, gene cassettes, mobility, and epidemiology. Integrons are genetic elements that, although unable to move themselves, contain gene cassettes that can be mobilized to other integrons or to secondary sites in the bacterial genome. The majority of approximately 60 known gene cassettes encode resistance to antibiotics. Recently, a number of gene cassettes encoding extended-spectrum beta-lactamases or carbapenemases have been described. Up to at least five cassettes may be present in an integron, which leads to multiresistance. Frequently, more than one integron is observed within the same bacterial cell. Integrons are widespread in their species distribution. Although integrons are normally reported from Enterobacteriaceae and other gram-negative bacteria, an integron has been described in Corynebacterium glutamicum, a gram-positive species. The gene cassette in this integron showed even higher expression when compared to the expression in Escherichia coli. Integrons have been reported from all continents and are found frequently. The widespread occurrence of integrons is thought to be due to their association with transposon plasmids, conjugative plasmids, or both. Integrons form an important source for the spread of antibiotic resistance, at least in gram-negative bacteria but also potentially in gram-positive bacteria. The aim of this review is to describe the versatility of integrons, especially their mobility and their ability to collect resistance genes. | 1999 | 10614949 |
| 4965 | 6 | 0.9995 | Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the bla (OXA-493) and bla (OXA-576) genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the bla (OXA-493) gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria. | 2020 | 33042043 |
| 4482 | 7 | 0.9995 | Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria. Many β-lactamases have been described in various Gram-negative bacilli (Capnocytophaga, Prevotella, Fusobacterium, etc.) of the oral cavity, belonging to class A of the Ambler classification (CepA, CblA, CfxA, CSP-1 and TEM), class B (CfiA) or class D in Fusobacterium nucleatum (FUS-1). The minimum inhibitory concentrations of β-lactams are variable and this variation is often related to the presence of plasmids or other mobile genetic elements (MGEs) that modulate the expression of resistance genes. DNA persistence and bacterial promiscuity in oral biofilms also contribute to genetic transformation and conjugation in this particular microcosm. Overexpression of efflux pumps is facilitated because the encoding genes are located on MGEs, in some multidrug-resistant clinical isolates, similar to conjugative transposons harbouring genes encoding β-lactamases. All these facts lead us to consider the oral cavity as an important reservoir of β-lactam resistance genes and a privileged place for genetic exchange, especially in commensal strictly anaerobic Gram-negative bacilli. | 2015 | 25465519 |
| 9956 | 8 | 0.9994 | Phylogeny of Transferable Oxazolidinone Resistance Genes and Homologs. Oxazolidinone resistance, especially transmissible resistance, is a major public health concern, and the origin of this resistance mechanism is not yet resolved. This study aims to delve into the phylogenetic origin of the transmissible oxazolidinone resistance mechanisms conferring cross-resistance to other drugs of human and veterinary importance. The amino acid sequences of the five cfr ribosomal methylases and optrA and poxtA were used as queries in searches against 219,549 bacterial proteomes in the NCBI RefSeq database. Hits with >40% amino acid identity and >80% query coverage were aligned, and phylogenetic trees were reconstructed. All five cfr genes yielded highly similar trees, with rlmN housekeeping ribosomal methylases located basal to the sister groups of S-adenosyl-methionine-dependent methyltransferases from various Deltaproteobacteria and Actinomycetia, including antibiotic-producing Streptomyces species, and the monophyletic group of cfr genes. The basal branches of the latter contained paenibacilli and other soil bacteria; they then could be split into the clades [cfr(C):cfr(E)] and [[cfr:cfr(B)]:cfr(D)], always with different Bacillaceae in their stems. Lachnospiraceae were encountered in the basal branches of both optrA and poxtA trees. The ultimate origin of the cfr genes is the rlmN housekeeping ribosomal methylases, which evolved into a suicide-avoiding methylase in antibiotic producers; a soil organism (Lachnospiraceae, Paenibacilli) probably acted as a transfer organism into pathogenic bacteria. In the case of optrA, the porcine pathogenic Streptococcus suis was present in all branches, while the proteins closest to poxtA originated from Clostridia. | 2024 | 38666987 |
| 9950 | 9 | 0.9994 | Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes. | 2021 | 34076490 |
| 4845 | 10 | 0.9994 | The changing epidemiology of resistance. Antibiotic resistance is now a linked global problem. Dispersion of successful clones of multidrug resistant (MDR) bacteria is common, often via the movement of people. Local evolution of MDR bacteria is also important under the pressure of excessive antibiotic use, with horizontal gene transfer providing the means by which genes such as bla(CTX-M) spread amongst different bacterial species and strains. Beta-lactamase production is a common resistance mechanism in Gram-negative bacteria, and the rapid dissemination of novel genes reflects their evolution under the selective pressure of antibiotic usage. Many Enterobacteriaceae now carry broad-spectrum beta-lactamases such as CTX-M, with particular genotypes associated with different geographical regions. The spread of these enzymes has compromised the clinical utility of a number of beta-lactam classes and with the spread of genes such as bla(KPC), carbapenems may be increasingly compromised in the future. High-level fluoroquinolone resistance (mainly caused by gyrA mutations) has also been shown to be associated with CTX-M and CMY-type enzymes, commonly due to co-carriage on conjugative plasmids of the gene for the aminoglycoside-inactivating enzyme AAC-6(1)-Ib-cr and qnr genes (which confer low-level resistance), allowing the easy selection of gyrA mutants in the host strain. Resistance in Gram-positive bacteria is also widely distributed and increasing, with the emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA) blurring the distinction between hospital and community strains. Antibiotic use and environmental factors all have a role in the emergence and spread of resistance. This article reviews some of the new mechanisms and recent trends in the global spread of MDR bacteria. | 2009 | 19675017 |
| 4477 | 11 | 0.9994 | Mechanisms of antibiotic resistance and their dissemination of resistance genes in the hospital environment. The dissemination of resistance determinants among bacterial populations depends on ecological and epidemiological properties as well as additional factors: 1) the mechanism of resistance or its specificity toward a certain drug, and 2) the genetic basis in relation to the mobility of the genetic material and its survival in bacteria. From two resistance mechanisms directed toward old-fashioned drugs, namely sulfonamides (Su) and streptomycin (Sm), we can deduce that a resistance mechanism is encoded by a special sort of genetic material. Thus the linked SmSu resistance mediated by a sulfonamide-resistant dihydropteroatsynthetase II and the aminoglycoside phosphotransferase APH-(3") is always located on very small pBP1-like plasmids. Such plasmids survive without selective pressure of drugs in Enterobacteriaceae in the bowel flora of humans and animals. Both resistance determinants can be mediated by a transposon which codes for the production of a dihydropteroatsynthetase I in connection with an aminoglycoside adenylyltransferase AAD-(3"). These two mechanisms are genetically linked as well. The basic structure is a transposon designated Tn2411, which belongs to a whole family of transposons, all including the basic structure; however, their genetic exchange and substitution leads to structures coding for many different enzymatic characters: ANT-(2") (Gentamicin resistance), CAT (Chloramphenicol resistance), AAC-(6') (resistance to all modern aminoglycosides), TEM-1, OXA-1, OXA-2, or PSE (beta-lactam resistance). Resistance to the modern beta-lactamase-stable antibiotics is mediated by mutation in the regulatory genes of chromosomally-determined beta-lactamases. A spread of these resistance mechanisms can be avoided as long as the responsible genes are not located on sufficient structures like small plasmids or efficient transposons. | 1983 | 6558024 |
| 9954 | 12 | 0.9994 | Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria. An increasing resistance to vancomycin among clinically relevant enterococci, such as Enterococcus faecalis and Enterococcus faecium is a cause of a great concern, as it seriously limits treatment options. The vanB operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn1549-type transposons or, more rarely, in ICEEfaV583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn1549-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn1549-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of vanB determinants among hospital E. faecalis and E. faecium. This review focuses on diversity of genetic elements harbouring vanB determinants in hospital-associated strains of E. faecium and E. faecalis, the mechanisms beyond vanB spread in populations of these bacteria, and provides an overview of the vanB-MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of vanB genes. | 2021 | 33472048 |
| 4954 | 13 | 0.9994 | Integron class 1 reservoir among highly resistant gram-negative microorganisms recovered at a Dutch teaching hospital. Integrons play an important role in the dissemination of resistance genes among bacteria. Nearly 70% of highly resistant gram-negative bacteria isolated at a tertiary care hospital harbored an integron. Epidemiologic analysis suggests that horizontal gene transfer is an important mechanism of resistance spread and has a greater contribution than cross-transmission to levels of resistance in settings where highly resistant gram-negative bacteria are endemic. | 2009 | 19719415 |
| 4951 | 14 | 0.9994 | Aeromonas and mcr-3: A Critical Juncture for Transferable Polymyxin Resistance in Gram-Negative Bacteria. Polymyxin antibiotics B and colistin are considered drugs of last resort for the treatment of multi-drug and carbapenem-resistant Gram-negative bacteria. With the emergence and dissemination of multi-drug resistance, monitoring the use and resistance to polymyxins imparted by mobilised colistin resistance genes (mcr) is becoming increasingly important. The Aeromonas genus is widely disseminated throughout the environment and serves as a reservoir of mcr-3, posing a significant risk for the spread of resistance to polymyxins. Recent phylogenetic studies and the identification of insertion elements associated with mcr-3 support the notion that Aeromonas spp. may be the evolutionary origin of the resistance gene. Furthermore, mcr-3-related genes have been shown to impart resistance in naïve E. coli and can increase the polymyxin MIC by up to 64-fold (with an MIC of 64 mg/L) in members of Aeromonas spp. This review will describe the genetic background of the mcr gene, the epidemiology of mcr-positive isolates, and the relationship between intrinsic and transferable mcr resistance genes, focusing on mcr-3 and mcr-3-related genes. | 2024 | 39599474 |
| 5058 | 15 | 0.9994 | Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene. Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn(2+) and K(+)-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa), whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia). FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.IMPORTANCE There is a critical need to identify alternate approaches to treat infections caused by extensively drug-resistant (XDR) Gram-negative bacteria. Fosfomycin is an old antibiotic which is routinely used for the treatment of urinary tract infections, although there is substantial interest in expanding its use to systemic infections caused by XDR Gram-negative bacteria. In this study, we show that fosA genes, which encode dimeric Mn(2+)- and K(+)-dependent glutathione S-transferase, are widely distributed in the genomes of Gram-negative bacteria-particularly those belonging to the family Enterobacteriaceae-and confer fosfomycin resistance. This finding suggests that chromosomally located fosA genes represent a vast reservoir of fosfomycin resistance determinants that may be transferred to E. coli Furthermore, they suggest that inhibition of FosA activity may provide a viable strategy to potentiate the activity of fosfomycin against XDR Gram-negative bacteria. | 2017 | 28851843 |
| 9889 | 16 | 0.9994 | Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria. Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects in silico. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve in situ to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages. | 2021 | 32781088 |
| 9928 | 17 | 0.9994 | The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. The increase in Gram-negative broad-spectrum antibiotic resistance is worrisome, particularly as there are few, if any, ''pipeline'' antimicrobial agents possessing suitable activity against Pseudomonas spp. or Acinetobacter spp. The increase in resistance will be further enhanced by the acquisition of metallo-beta-lactamase (MBL) genes that can potentially confer broad-spectrum beta-lactam resistance. These genes encode enzymes that can hydrolyse all classes of beta-lactams and the activity of which cannot be neutralised by beta-lactamase inhibitors. MBL genes are often associated with aminoglycoside resistant genes and thus bacteria that possess MBL genes are often co-resistant to aminoglycosides, further compromising therapeutic regimes. Both types of genes can be found as gene cassettes carried by integrons that in turn are embedded within transposons providing a highly ambulatory genetic element. The dissemination of MBL genes is typified by the spread of blaVIM-2, believed to originate from a Portuguese patient in 1995, and is now present in over 20 counties. The increase in international travel is likely to be a contributory factor for the ascendancy of mobile MBL genes as much as the mobility among individual bacteria. Fitness, acquisition and host dependency are key areas that need to be addressed to enhance our understanding of how antibiotic resistance spreads. There is also a pressing need for new, and hopefully novel, compounds active against pan-resistant Gram-negative bacteria--a growing problem that needs to be addressed by both government and industry. | 2005 | 16209700 |
| 4930 | 18 | 0.9994 | Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, yielding new insights into the genetics underlying resistance. To date, most studies using WGS to study antimicrobial resistance have focused on gram-negative bacteria in the family Enterobacteriaceae, such as Salmonella spp. and Escherichia coli, which have well-defined resistance mechanisms. In contrast, relatively few studies have been performed on gram-positive organisms. We sequenced 197 strains of Enterococcus from various animal and food sources, including 100 Enterococcus faecium and 97 E. faecalis. From analyzing acquired resistance genes and known resistance-associated mutations, we found that resistance genotypes correlated with resistance phenotypes in 96.5% of cases for the 11 drugs investigated. Some resistances, such as those to tigecycline and daptomycin, could not be investigated due to a lack of knowledge of mechanisms underlying these phenotypes. This study showed the utility of WGS for predicting antimicrobial resistance based on genotype alone. | 2018 | 29617860 |
| 4953 | 19 | 0.9994 | MCR-5-Producing Colistin-Resistant Cupriavidus gilardii Strain from Well Water in Batna, Algeria. This paper presents the first description of the mcr-5.1 gene in a colistin-resistant Cupriavidus gilardii isolate from well water that supplies a maternity hospital in Algeria. The whole-genome sequence of this strain showed the presence of putative β-lactamase, aac(3)-IVa, and multidrug efflux pump-encoding genes, which could explain the observed multidrug resistance phenotype. Our findings are of great interest, as we highlight a potential contamination route for the spread of mcr genes. IMPORTANCE Colistin resistance mediated by mcr genes in Gram-negative bacteria has gained significant attention worldwide. This is due to the ability of these genes to be horizontally transferred between different bacterial genera and species. Aquatic environments have been suggested to play an important role in the emergence and spread of this resistance mechanism. Here, we describe the first report of an mcr-5-positive Cupriavidus gilardii aquatic isolate through its isolation from well water in Algeria. The significance of our study is in shedding the light on an important environmental reservoir of mcr genes. | 2021 | 34468167 |