# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9955 | 0 | 1.0000 | The Bacterial Genomic Context of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases Highlights an Emerging Threat to Public Health. Type B dihydrofolate reductase (dfrb) genes were identified following the introduction of trimethoprim in the 1960s. Although they intrinsically confer resistance to trimethoprim (TMP) that is orders of magnitude greater than through other mechanisms, the distribution and prevalence of these short (237 bp) genes is unknown. Indeed, this knowledge has been hampered by systematic biases in search methodologies. Here, we investigate the genomic context of dfrbs to gain information on their current distribution in bacterial genomes. Upon searching publicly available databases, we identified 61 sequences containing dfrbs within an analyzable genomic context. The majority (70%) of those sequences also harbor virulence genes and 97% of the dfrbs are found near a mobile genetic element, representing a potential risk for antibiotic resistance genes. We further identified and confirmed the TMP-resistant phenotype of two new members of the family, dfrb10 and dfrb11. Dfrbs are found both in Betaproteobacteria and Gammaproteobacteria, a majority (59%) being in Pseudomonas aeruginosa. Previously labelled as strictly plasmid-borne, we found 69% of dfrbs in the chromosome of pathogenic bacteria. Our results demonstrate that the intrinsically TMP-resistant dfrbs are a potential emerging threat to public health and justify closer surveillance of these genes. | 2021 | 33924456 |
| 9878 | 1 | 0.9994 | Two novel trimethoprim resistance genes, dfra50 and dfra51, identified in phage-plasmids. Phage-plasmids carry a significant burden of clinically relevant antibiotic resistance genes (ARGs). Intriguingly, the majority of these ARGs are found within plasmids with phage features, with a single exception residing in a phage genome with plasmid features. Therefore, we speculate that phage genomes with plasmid features, whose sequences are highly homologous to bacterial plasmids, may carry novel ARGs. We subsequently identified 46 such phage genomes by employing Hidden Markov models (HMMs) based on plasmid-specific protein profiles andbasic local alignment search tool (BLASTn) searches against the National Center for Biotechnology Information (NCBI) RefSeq Plasmid Database. Among them, six phages harbored seven ARGs identified through a lenient-threshold search strategy, of which only two had been previously reported. The remaining five ARGs were categorized as novel ARGs since their encoded proteins differed from known ARGs. Notably, half of the phages carried trimethoprim-resistant dfrA-like genes. Functional studies characterized these genes and demonstrated that the expression of two of these dfrA genes (dfrA50 and dfrA51) can confer resistance to trimethoprim in Escherichia coli. Through genome analysis, we found that these phages with plasmid features likely contributed to the natural dissemination of these dfrA genes, as evidenced by their widespread presence in plasmids across various pathogenic bacteria. These findings underscore the importance of identifying and monitoring ARGs encoded by phage genomes with plasmid features that also function as plasmids in bacteria, aiming to proactively address the antibiotic resistance challenges posed by these phage-mediated dissemination events. | 2025 | 40503927 |
| 9949 | 2 | 0.9994 | Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. The emergence of the multiresistance gene cfr in staphylococci is of global concern. In addition to conferring resistance to phenicols, lincosamides, pleuromutilins, streptogramin A antibiotics and selected 16-membered macrolides, the cfr gene also confers resistance to the oxazolidinone linezolid. Linezolid is a last-resort antimicrobial agent for the treatment of serious infections in humans caused by resistant Gram-positive bacteria. The cfr gene is often located on plasmids and several cfr-carrying plasmids have been described, which differ in their structure, their size and the presence of additional resistance genes. These plasmids are important vehicles that promote the spread of the cfr gene not only among bacteria of the same species, but also among those of different species and genera. Moreover, the cfr gene has been identified in close proximity to different insertion sequences, which most probably also play an important role in its dissemination. This review summarizes current knowledge on the genetic environment of the multiresistance gene cfr with particular reference to mobile genetic elements and co-located resistance genes that may support its emergence. | 2013 | 23543608 |
| 5481 | 3 | 0.9994 | Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid-the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration-and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance. | 2020 | 33102417 |
| 5746 | 4 | 0.9994 | Identification of a Novel Plasmid-Borne Gentamicin Resistance Gene in Nontyphoidal Salmonella Isolated from Retail Turkey. The spread of antibiotic-resistant bacteria presents a global health challenge. Efficient surveillance of bacteria harboring antibiotic resistance genes (ARGs) is a critical aspect to controlling the spread. Increased access to microbial genomic data from many diverse populations informs this surveillance but only when functional ARGs are identifiable within the data set. Current, homology-based approaches are effective at identifying the majority of ARGs within given clinical and nonclinical data sets for several pathogens, yet there are still some whose identities remain elusive. By coupling phenotypic profiling with genotypic data, these unknown ARGs can be identified to strengthen homology-based searches. To prove the efficacy and feasibility of this approach, a published data set from the U.S. National Antimicrobial Resistance Monitoring System (NARMS), for which the phenotypic and genotypic data of 640 Salmonella isolates are available, was subjected to this analysis. Six isolates recovered from the NARMS retail meat program between 2011 and 2013 were identified previously as phenotypically resistant to gentamicin but contained no known gentamicin resistance gene. Using the phenotypic and genotypic data, a comparative genomics approach was employed to identify the gene responsible for the observed resistance in all six of the isolates. This gene, grdA, is harbored on a 9,016-bp plasmid that is transferrable to Escherichia coli, confers gentamicin resistance to E. coli, and has never before been reported to confer gentamicin resistance. Bioinformatic analysis of the encoded protein suggests an ATP binding motif. This work demonstrates the advantages associated with coupling genomics technologies with phenotypic data for novel ARG identification. | 2020 | 32816720 |
| 4522 | 5 | 0.9993 | Involvement of aph(3')-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments. Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination. We screened the GenBank database for mosaic gene formation in homologs of the aph(3')-IIa (nptII) gene. APH(3')-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria. The retrieved GenBank sequences were grouped in three datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program (RDP4), and the Genetic Algorithm for Recombination Detection (GARD). From a total of 89 homologous sequences, 83% showed 99-100% sequence identity with aph(3')-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3')-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3')-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants. | 2015 | 26042098 |
| 4658 | 6 | 0.9993 | Class 1 integrons potentially predating the association with tn402-like transposition genes are present in a sediment microbial community. Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era." | 2006 | 16885440 |
| 3930 | 7 | 0.9993 | Class 1 integron in staphylococci. As a major concern in public health, methicillin-resistant staphylococci (MRS) still remains one of the most prevalent pathogens that cause nosocomial infections throughout the world and has been recently labeled as a "super bug" in antibiotic resistance. Thus, surveillance and investigation on antibiotic resistance mechanisms involved in clinical MRS strains may raise urgent necessity and utmost significance. As a novel antibiotic resistance mechanism, class 1 integron has been identified as a primary source of antimicrobial resistance genes in Gram-negative organisms. However, most available studies on integrons had been limited within Gram-negative microbes, little is known for clinical Gram-positive bacteria. Based on series studies of systematic integrons investigation in hundreds of staphylococci strains during 2001-2006, this review concentrated on the latest development of class 1 integron in MRS isolates, including summary of prevalence and occurrence of class 1 integron, analysis of correlation between integron and antibiotic resistance, further demonstration of the role integrons play as antibiotic determinants, as well as origin and evolution of integron-associated gene cassettes during this study period. | 2011 | 21258866 |
| 4464 | 8 | 0.9993 | Class 1 integrons, gene cassettes, mobility, and epidemiology. Integrons are genetic elements that, although unable to move themselves, contain gene cassettes that can be mobilized to other integrons or to secondary sites in the bacterial genome. The majority of approximately 60 known gene cassettes encode resistance to antibiotics. Recently, a number of gene cassettes encoding extended-spectrum beta-lactamases or carbapenemases have been described. Up to at least five cassettes may be present in an integron, which leads to multiresistance. Frequently, more than one integron is observed within the same bacterial cell. Integrons are widespread in their species distribution. Although integrons are normally reported from Enterobacteriaceae and other gram-negative bacteria, an integron has been described in Corynebacterium glutamicum, a gram-positive species. The gene cassette in this integron showed even higher expression when compared to the expression in Escherichia coli. Integrons have been reported from all continents and are found frequently. The widespread occurrence of integrons is thought to be due to their association with transposon plasmids, conjugative plasmids, or both. Integrons form an important source for the spread of antibiotic resistance, at least in gram-negative bacteria but also potentially in gram-positive bacteria. The aim of this review is to describe the versatility of integrons, especially their mobility and their ability to collect resistance genes. | 1999 | 10614949 |
| 5745 | 9 | 0.9993 | F Plasmids Are the Major Carriers of Antibiotic Resistance Genes in Human-Associated Commensal Escherichia coli. The evolution and propagation of antibiotic resistance by bacterial pathogens are significant threats to global public health. Contemporary DNA sequencing tools were applied here to gain insight into carriage of antibiotic resistance genes in Escherichia coli, a ubiquitous commensal bacterium in the gut microbiome in humans and many animals, and a common pathogen. Draft genome sequences generated for a collection of 101 E. coli strains isolated from healthy undergraduate students showed that horizontally acquired antibiotic resistance genes accounted for most resistance phenotypes, the primary exception being resistance to quinolones due to chromosomal mutations. A subset of 29 diverse isolates carrying acquired resistance genes and 21 control isolates lacking such genes were further subjected to long-read DNA sequencing to enable complete or nearly complete genome assembly. Acquired resistance genes primarily resided on F plasmids (101/153 [67%]), with smaller numbers on chromosomes (30/153 [20%]), IncI complex plasmids (15/153 [10%]), and small mobilizable plasmids (5/153 [3%]). Nearly all resistance genes were found in the context of known transposable elements. Very few structurally conserved plasmids with antibiotic resistance genes were identified, with the exception of an ∼90-kb F plasmid in sequence type 1193 (ST1193) isolates that appears to serve as a platform for resistance genes and may have virulence-related functions as well. Carriage of antibiotic resistance genes on transposable elements and mobile plasmids in commensal E. coli renders the resistome highly dynamic.IMPORTANCE Rising antibiotic resistance in human-associated bacterial pathogens is a serious threat to our ability to treat many infectious diseases. It is critical to understand how acquired resistance genes move in and through bacteria associated with humans, particularly for species such as Escherichia coli that are very common in the human gut but can also be dangerous pathogens. This work combined two distinct DNA sequencing approaches to allow us to explore the genomes of E. coli from college students to show that the antibiotic resistance genes these bacteria have acquired are usually carried on a specific type of plasmid that is naturally transferrable to other E. coli, and likely to other related bacteria. | 2020 | 32759337 |
| 4671 | 10 | 0.9993 | Detection by metagenomic functional analysis and improvement by experimental evolution of β-lactams resistance genes present in oil contaminated soils. The spread of antibiotic resistance genes has become a global health concern identified by the World Health Organization as one of the greatest threats to health. Many of antimicrobial resistance determinants found in bacterial pathogens originate from environmental bacteria, so identifying the genes that confer resistance to antibiotics in different habitats is mandatory to better understand resistance mechanisms. Soil is one of the most diverse environments considered reservoir of antimicrobial resistance genes. The aim of this work is to study the presence of genes that provide resistance to antibiotics used in clinical settings in two oil contaminated soils by metagenomic functional analysis. Using fosmid vectors that efficiently transcribe metagenomic DNA, we have selected 12 fosmids coding for two class A β-lactamases, two subclass B1 and two subclass B3 metallo-β-lactamases, one class D β-lactamase and three efflux pumps that confer resistance to cefexime, ceftriaxone, meropenem and/or imipenem. In some of them, detection of the resistance required heterologous expression from the fosmid promoter. Although initially, these environmental genes only provide resistance to low concentrations of antibiotics, we have obtained, by experimental evolution, fosmid derivatives containing β-lactamase ORFs with a single base substitution, which substantially increase their β-lactamase activity and resistance level. None of the mutations affect β-lactamase coding sequences and are all located upstream of them. These results demonstrate the presence of enzymes that confer resistance to relevant β-lactams in these soils and their capacity to rapidly adapt to provide higher resistance levels. | 2022 | 35768448 |
| 9948 | 11 | 0.9993 | Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria. | 2022 | 35989417 |
| 5004 | 12 | 0.9993 | Dissemination and prevalence of plasmid-mediated high-level tigecycline resistance gene tet (X4). With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) continue to rise, and antibiotic resistance genes (ARGs) are regarded as emerging environmental pollutants. The new tetracycline-class antibiotic, tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. Plasmid-mediated horizontal transfer enables the sharing of genetic information among different bacteria. The tigecycline resistance gene tet(X) threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often detected upstream and downstream of the tet(X) gene, which may play a crucial driving role in the transmission of the tet(X) gene. Since the first discovery of the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China in 2019, the tet(X) genes, especially tet(X4), have been reported within various reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, cattle, aquatic animals, agricultural field, meat, and humans. Further, our current researches also mentioned viruses as novel environmental reservoirs of antibiotic resistance, which will probably become a focus of studying the transmission of ARGs. Overall, this article mainly aims to discuss the current status of plasmid-mediated transmission of different tet(X) genes, in particular tet(X4), as environmental pollutants, which will risk to public health for the "One Health" concept. | 2022 | 36246244 |
| 4948 | 13 | 0.9993 | Yersinia pestis antibiotic resistance: a systematic review. Yersinia pestis, the cause of plague and a potential biological weapon, has always been a threatening pathogen. Some strains of Y. pestis have varying degrees of antibiotic resistance. Thus, this systematic review was conducted to alert clinicians to this pathogen's potential antimicrobial resistance. A review of the literature was conducted for experimental reports and systematic reviews on the topics of plague, Y. pestis, and antibiotic resistance. From 1995 to 2021, 7 Y. pestis isolates with 4 antibiotic resistance mechanisms were reported. In Y. pestis 17/95, 16/95, and 2180H, resistance was mediated by transferable plasmids. Each plasmid contained resistance genes encoded within specific transposons. Strain 17/95 presented multiple drug resistance, since plasmid 1202 contained 10 resistance determinants. Strains 16/95 and 2180H showed single antibiotic resistance because both additional plasmids in these strains carried only 1 antimicrobial determinant. Strains 12/87, S19960127, 56/13, and 59/13 exhibited streptomycin resistance due to an rpsl gene mutation, a novel mechanism that was discovered recently. Y. pestis can acquire antibiotic resistance in nature not only via conjugative transfer of antimicrobial-resistant plasmids from other bacteria, but also by gene point mutations. Global surveillance should be strengthened to identify antibiotic-resistant Y. pestis strains by whole-genome sequencing and drug susceptibility testing. | 2022 | 35255676 |
| 4473 | 14 | 0.9993 | The genetics of bacterial trimethoprim resistance in tropical areas. Resistance to trimethoprim in Gram-negative bacteria is largely manifested by two trimethoprim resistant dihydrofolate reductases (types I and II) encoded by genes originally located on resistance plasmids. Although trimethoprim resistance increased markedly after the clinical introduction of trimethoprim in the West, its spread has slowed and, in Edinburgh at least, has actually been declining. This reduction has been accompanied by the migration of a transposon, encoding the type I plasmid resistance gene, into the bacterial chromosome. In tropical areas, the incidence of trimethoprim resistance is very much higher. In Tanzania, it has spilled over into other bacteria outside the Enterobacteriaceae, but it was in India where the major problem existed. The majority (64%) of the Indian Enterobacteriaceae studied were resistant to the drug and most of the resistance genes were located on very large plasmids which also conferred resistance to many other antibacterial drugs. Some Indian plasmids carried a new trimethoprim resistance gene which is not detectable by conventional sensitivity tests and may be spreading unnoticed elsewhere. The proportion of trimethoprim resistance has been related to the volume of antibacterial drugs used. | 1987 | 3318025 |
| 9966 | 15 | 0.9993 | The A to Z of A/C plasmids. Plasmids belonging to incompatibility groups A and C (now A/C) were among the earliest to be associated with antibiotic resistance in Gram-negative bacteria. A/C plasmids are large, conjugative plasmids with a broad host range. The prevalence of A/C plasmids in collections of clinical isolates has revealed their importance in the dissemination of extended-spectrum β-lactamases and carbapenemases. They also mobilize SGI1-type resistance islands. Revived interest in the family has yielded many complete A/C plasmid sequences, revealing that RA1, designated A/C1, is different from the remainder, designated A/C2. There are two distinct A/C2 lineages. Backbones of 128-130 kb include over 120 genes or ORFs encoding proteins of at least 100 amino acids, but very few have been characterized. Genes potentially required for replication, stability and transfer have been identified, but only the replication system of RA1 and the regulation of transfer have been studied. There is enormous variety in the antibiotic resistance genes carried by A/C2 plasmids but they are usually clustered in larger regions at various locations in the backbone. The ARI-A and ARI-B resistance islands are always at a specific location but have variable content. ARI-A is only found in type 1 A/C2 plasmids, which disseminate blaCMY-2 and blaNDM-1 genes, whereas ARI-B, carrying the sul2 gene, is found in both type 1 and type 2. This review summarizes current knowledge of A/C plasmids, and highlights areas of research to be considered in the future. | 2015 | 25910948 |
| 4966 | 16 | 0.9993 | Whole Genome Analysis of 335 New Bacterial Species from Human Microbiota Reveals a Huge Reservoir of Transferable Antibiotic Resistance Determinants. BACKGROUND: The emergence and diffusion of strains of pathogenic bacteria resistant to antibiotics constitutes a real public health challenge. Antibiotic resistance genes (ARGs) can be carried by both pathogenic and non-pathogenic bacteria, including commensal bacteria from the human microbiota, which require special monitoring in the fight against antimicrobial resistance. METHODS: We analyzed the proteomes of 335 new bacterial species from human microbiota to estimate its whole range of ARGs using the BLAST program against ARGs reference databases. RESULTS: We found 278 bacteria that harbor a total of 883 potential ARGs with the following distribution: 264 macrolides-lincosamides-streptogramin, 195 aminoglycosides, 156 tetracyclines, 58 β-lactamases, 58 fosfomycin, 51 glycopeptides, 36 nitroimidazoles, 33 phenicols and 32 rifamycin. Furthermore, evolutionary analyses revealed the potential horizontal transfer with pathogenic bacteria involving mobile genetic elements such as transposase and plasmid. We identified many ARGs that may represent new variants in fosfomycin and β-lactams resistance. CONCLUSION: These findings show that new bacterial species from human microbiota should be considered as an important reservoir of ARGs that can be transferred to pathogenic bacteria. In vitro analyses of their phenotypic potential are required to improve our understanding of the functional role of this bacterial community in the development of antibiotic resistance. | 2022 | 35216256 |
| 4545 | 17 | 0.9993 | Beta-lactamases in lactic acid bacteria: Dual role in antimicrobial resistance spread and environmental detoxification of antibiotic residues. Lactic acid bacteria (LAB) are widely used in food production and as probiotics. However, their potential role in the spreading of antimicrobial resistance (AMR) remains underexplored. A major AMR mechanism is the production of beta-lactamases, which is well-documented in most pathogenic bacteria; the diversity and functionality of these enzymes in LAB are less understood. Here, we explored the genomic diversity of beta-lactamase genes in LAB in a broad range of publicly available LAB genomes. Our findings revealed the presence of two distinct types of beta-lactamase genes in LAB: ampC-type beta-lactamases (class C), likely developed within LAB lineages, and bla(TEM)-type (class A), potentially acquired via HGT. Phylogenetic and structural analysis revealed similarities between LAB-derived ampC genes and clinically relevant class C beta-lactamases, while bla(TEM)-type genes were identified to be often flanked by mobility-related genetic elements, indicating a potential for horizontal gene transfer (HGT). Molecular docking studies further showed that LAB beta-lactamases may hydrolyze a broad spectrum of beta-lactam antibiotics, particularly aminopenicillins and cephalosporins. These findings will contribute to the broader field of AMR research, highlighting the importance of monitoring beta-lactamase production by LAB and its implications for food safety, bioremediation of beta-lactam antibiotic residues in wastewater and agro-industrial effluents. | 2025 | 40651383 |
| 9889 | 18 | 0.9993 | Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria. Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects in silico. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve in situ to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages. | 2021 | 32781088 |
| 9886 | 19 | 0.9993 | Development of an antimicrobial resistance plasmid transfer gene database for enteric bacteria. Introduction: Type IV secretion systems (T4SSs) are integral parts of the conjugation process in enteric bacteria. These secretion systems are encoded within the transfer (tra) regions of plasmids, including those that harbor antimicrobial resistance (AMR) genes. The conjugal transfer of resistance plasmids can lead to the dissemination of AMR among bacterial populations. Methods: To facilitate the analyses of the conjugation-associated genes, transfer related genes associated with key groups of AMR plasmids were identified, extracted from GenBank and used to generate a plasmid transfer gene dataset that is part of the Virulence and Plasmid Transfer Factor Database at FDA, serving as the foundation for computational tools for the comparison of the conjugal transfer genes. To assess the genetic feature of the transfer gene database, genes/proteins of the same name (e.g., traI/TraI) or predicted function (VirD4 ATPase homologs) were compared across the different plasmid types to assess sequence diversity. Two analyses tools, the Plasmid Transfer Factor Profile Assessment and Plasmid Transfer Factor Comparison tools, were developed to evaluate the transfer genes located on plasmids and to facilitate the comparison of plasmids from multiple sequence files. To assess the database and associated tools, plasmid, and whole genome sequencing (WGS) data were extracted from GenBank and previous WGS experiments in our lab and assessed using the analysis tools. Results: Overall, the plasmid transfer database and associated tools proved to be very useful for evaluating the different plasmid types, their association with T4SSs, and increased our understanding how conjugative plasmids contribute to the dissemination of AMR genes. | 2023 | 38033626 |