# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9953 | 0 | 1.0000 | Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. Antibiotic-resistant Gram-positive bacteria are responsible for morbidity and mortality in healthcare environments. Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pneumoniae can all exhibit clinically relevant multidrug resistance phenotypes due to acquired resistance genes on mobile genetic elements. It is possible that clinically relevant multidrug-resistant Clostridium difficile strains will appear in the future, as the organism is adept at acquiring mobile genetic elements (plasmids and transposons). Conjugative transposons of the Tn916/Tn1545 family, which carry major antibiotic resistance determinants, are transmissible between these different bacteria by a conjugative mechanism during which the elements are excised by a staggered cut from donor cells, converted to a circular form, transferred by cell-cell contact and inserted into recipient cells by a site-specific recombinase. The ability of these conjugative transposons to acquire additional, clinically relevant antibiotic resistance genes importantly contributes to the emergence of multidrug resistance. | 2011 | 21658082 |
| 9954 | 1 | 0.9998 | Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria. An increasing resistance to vancomycin among clinically relevant enterococci, such as Enterococcus faecalis and Enterococcus faecium is a cause of a great concern, as it seriously limits treatment options. The vanB operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn1549-type transposons or, more rarely, in ICEEfaV583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn1549-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn1549-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of vanB determinants among hospital E. faecalis and E. faecium. This review focuses on diversity of genetic elements harbouring vanB determinants in hospital-associated strains of E. faecium and E. faecalis, the mechanisms beyond vanB spread in populations of these bacteria, and provides an overview of the vanB-MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of vanB genes. | 2021 | 33472048 |
| 4134 | 2 | 0.9998 | Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes. In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes. | 2014 | 26104453 |
| 9952 | 3 | 0.9998 | Detection and Quantification of Conjugative Transfer of Mobile Genetic Elements Carrying Antibiotic Resistance Genes. Multidrug resistance, due to acquired antimicrobial resistance genes, is increasingly reported in the zoonotic pathogen Streptococcus suis. Most of these resistance genes are carried by chromosomal Mobile Genetic Elements (MGEs), in particular, Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs). ICEs and IMEs frequently form tandems or nested composite elements, which make their identification difficult. To evaluate their mobility, it is necessary to (i) select the suitable donor-recipient pairs for mating assays, (ii) do PCR excision tests to confirm that the genetic element is able to excise from the chromosome as a circular intermediate, and (iii) evaluate the transfer of the genetic element by conjugation by doing mating assays. In addition to a dissemination of resistance genes between S. suis strains, MGEs can lead to a spreading of resistance genes in the environment and toward pathogenic bacteria. This propagation had to be considered in a One Health perspective. | 2024 | 38884912 |
| 9907 | 4 | 0.9998 | Mobile Genetic Elements Associated with Antimicrobial Resistance. Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens. | 2018 | 30068738 |
| 4133 | 5 | 0.9998 | Importance of integrons in the diffusion of resistance. Horizontal transfer of resistance genes is a successful mechanism for the transmission and dissemination of multiple drug resistance among bacterial pathogens. The impact of horizontally transmitted genetic determinants in the evolution of resistance is particularly evident when resistance genes are physically associated in clusters and transferred en bloc to the recipient cell. Recent advances in the molecular characterisation of antibiotic resistance mechanisms have highlighted the existence of genetic structures. called integrons, involved in the acquisition of resistance genes. These DNA elements have frequently been reported in multi-drug resistant strains isolated from animals and humans, and are located either on the bacterial chromosome or on broad-host-range plasmids. The role of integrons in the development of multiple resistance relies on their unique capacity to cluster and express drug resistance genes. Moreover, the spread of resistance genes among different replicons and their exchange between plasmid and bacterial chromosome are facilitated by the integration of integrons into transposable elements. The association of a highly efficient gene capture and expression system, together with the capacity for vertical and horizontal transmission of resistance genes represents a powerful weapon used by bacteria to combat the assault of antibiotics. | 2001 | 11432416 |
| 4132 | 6 | 0.9998 | Mobilization of transposons : rationale and techniques for detection. The ability to share genetic information with other bacteria represents one of the most important adaptive mechanisms available to bacteria pathogenic for humans. The exchange of many different types of genetic information appears to occur frequently and exchange of determinants responsible for antimicrobial resistance is the best studied, since the movements of resistance determinants are easy to follow and the clinical importance of resistance dissemination is so great. The most common vehicles by which bacteria exchange resistance determinants are plasmids and transposons. | 2001 | 21374427 |
| 4165 | 7 | 0.9997 | A modular master on the move: the Tn916 family of mobile genetic elements. The Tn916 family is a group of mobile genetic elements that are widespread among many commensal and pathogenic bacteria. These elements are found primarily, but not exclusively, in the Firmicutes. They are integrated into the bacterial genome and are capable of conjugative transfer to a new host and, often, intracellular transposition to a different genomic site - hence their name: 'conjugative transposons', or 'integrative conjugative elements'. An increasing variety of Tn916 relatives are being reported from different bacteria, harbouring genes coding for resistance to various antibiotics and the potential to encode other functions, such as lantibiotic immunity. This family of mobile genetic elements has an extraordinary ability to acquire accessory genes, making them important vectors in the dissemination of various traits among environmental, commensal and clinical bacteria. These elements are also responsible for genome rearrangements, providing considerable raw material on which natural selection can act. Therefore, the study of this family of mobile genetic elements is essential for a better understanding and control of the current rise of antibiotic resistance among pathogenic bacteria. | 2009 | 19464182 |
| 9830 | 8 | 0.9997 | Mechanisms of Conjugative Transfer and Type IV Secretion-Mediated Effector Transport in Gram-Positive Bacteria. Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens. | 2017 | 29536357 |
| 9948 | 9 | 0.9997 | Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria. | 2022 | 35989417 |
| 9883 | 10 | 0.9997 | Plasmids in Gram negatives: molecular typing of resistance plasmids. A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread. | 2011 | 21992746 |
| 9898 | 11 | 0.9997 | Fitness Cost Evolution of Natural Plasmids of Staphylococcus aureus. Plasmids have largely contributed to the spread of antimicrobial resistance genes among Staphylococcus strains. Knowledge about the fitness cost that plasmids confer on clinical staphylococcal isolates and the coevolutionary dynamics that drive plasmid maintenance is still scarce. In this study, we aimed to analyze the initial fitness cost of plasmids in the bacterial pathogen Staphylococcus aureus and the plasmid-host adaptations that occur over time. For that, we first designed a CRISPR (clustered regularly interspaced palindromic repeats)-based tool that enables the removal of native S. aureus plasmids and then transferred three different plasmids isolated from clinical S. aureus strains to the same-background clinical cured strain. One of the plasmids, pUR2940, obtained from a livestock-associated methicillin-resistant S. aureus (LA-MRSA) ST398 strain, imposed a significant fitness cost on both its native and the new host. Experimental evolution in a nonselective medium resulted in a high rate pUR2940 loss and selected for clones with an alleviated fitness cost in which compensatory adaptation occurred via deletion of a 12.8-kb plasmid fragment, contained between two ISSau10 insertion sequences and harboring several antimicrobial resistance genes. Overall, our results describe the relevance of plasmid-borne insertion sequences in plasmid rearrangement and maintenance and suggest the potential benefits of reducing the use of antibiotics both in animal and clinical settings for the loss of clinical multidrug resistance plasmids.IMPORTANCE Plasmids are major agents in the spread of antibiotic resistance genes among bacteria. How plasmids and their hosts coevolve to reduce the fitness cost associated with plasmid carriage when bacteria grow in an antibiotic-free environment is not well understood. Here, we investigated the cost and the genetic adaptations that occur during evolution in the absence of antibiotics when the bacterial pathogen Staphylococcus aureus acquires a new plasmid. Our results show the occurrence, at the end of evolution, of plasmid rearrangements mediated by insertion sequences that lead to the loss of antimicrobial resistance genes from the plasmid and an alleviated fitness cost. Our results thus highlight the probable benefits of reducing the use of antibiotics in management programs for the selection of S. aureus clones carrying plasmids that no longer confer resistance. | 2021 | 33622733 |
| 9829 | 12 | 0.9997 | Promiscuous transfer of drug resistance in gram-negative bacteria. Bacterial conjugation is a major mechanism for the spread of antibiotic-resistance genes in pathogenic organisms. In gram-negative bacteria, broad-host-range drug-resistance plasmids mediate genetic exchange between many unrelated species. The mechanism of conjugation encoded by the broad-host-range IncP plasmid RK2 has been studied in detail. The location and sequence of the transfer origin of RK2 has been determined. Several barriers limit plasmid transfer between unrelated bacteria: interactions at the cell surface may prevent effective mating contact, restriction systems may degrade foreign DNA, or the plasmid may not replicate in the new host. RK2 has evolved specific mechanisms by which it overcomes these barriers; this plasmid can mediate the transfer of resistance to most gram-negative bacteria. | 1984 | 6143782 |
| 4424 | 13 | 0.9997 | Gene transfer, gentamicin resistance and enterococci. Enterococci are versatile pathogens by virtue of their ability to exhibit low-level intrinsic resistance to clinically useful antibiotics and their tolerance to adverse environmental conditions. In the last 20 years these pathogens have become progressively more difficult to treat because of their aptitude for acquiring antibiotic-resistance genes. Of increasing concern is the rapid dissemination of the AAC6'-APH2" bi-functional aminoglycoside modifying enzyme. This enzyme confers high-level resistance to gentamicin and all other related aminoglycosides with the exception of streptomycin. The gene conferring this phenotype has been associated with both narrow and broad host range plasmids, and has recently been found on conjugative transposons. The nature of these conjugative elements raises the possibility of the resistance gene spreading to other pathogenic bacteria. | 1997 | 9261754 |
| 3834 | 14 | 0.9997 | What antimicrobial resistance has taught us about horizontal gene transfer. Horizontal gene transfer (HGT) has been responsible for the dissemination of numerous antimicrobial-resistance determinants throughout diverse bacterial species. The rapid and broad dissemination of resistance determinants by HGT, and subsequent selection for resistance imposed by the use of antimicrobials, threatens to undermine the usefulness of antimicrobials. However, vigilant surveillance of the emerging antimicrobial resistance in clinical settings and subsequent studies of resistant isolates create a powerful system for studying HGT and detecting rare events. Two of the most closely monitored phenotypes are resistance to beta-lactams and resistance to fluoroquinolones. Studies of resistance to these antimicrobials have revealed that (1) transformation occurs between different species of bacteria including some recipient species that were not previously known to be competent for natural transformation; (2) transduction may be playing an important role in generating novel methicillin-resistant Staphylococcus aureus (MRSA) strains, although the details of transferring the SCCmec element are not yet fully understood; (3) Resistance genes are probably moving to plasmids from chromosomes more rapidly than in the past; and (4) Resistance genes are aggregating upon plasmids. The linkage of numerous resistance genes on individual plasmids may underlie the persistence of resistance to specific antimicrobials even when use of those antimicrobials is discontinued. Further studies of HGT and methods for controlling HGT may be necessary to maintain the usefulness of antimicrobials. | 2009 | 19271198 |
| 9828 | 15 | 0.9997 | Antibiotic resistance: genetic mechanisms and mobility. Based on the current knowledge, resistance genes seems mainly to originate in the organisms which produce antibiotics (Davies 1994). We lack considerably in the understanding of how these genes were transferred to pathogenic bacteria, and due to the enormous diversity of e.g. the soil flora, it is doubtful that we will ever obtain more that a faint picture of this. In Gram negative bacteria, more and more resistance genes are demonstrated to be located in integrons (e.g. beta-lactamase and streptomycin resistance genes in Salmonella Typhimurium DT104 (Sandvang et al. in press)). Integrons seem primarily to act as insertion sites for resistance genes. The origin of integrons as well as the resistance gene cassettes that are the other essential element of this system, is largely unknown (Hall & Collis 1995). Integrons can be located in the chromosome, in transposons, which have the ability to copy them themselves to other DNA molecules, or on plasmids. The emergence of resistant bacteria normally happens because of selection for a resistant clone of bacteria. Several mechanisms, however, exists by which the resistance genes can be transferred from one bacteria to another. Conjugation, mediated by plasmids or conjugative transposons, is currently the most well established of these mechanisms. Still, however, the selection pressure created by the use of antibiotics determines whether bacteria that have newly acquired a resistance gene expand to dominate in the population or remains a blink in history. | 1999 | 10783713 |
| 4417 | 16 | 0.9997 | Genetic mobility and distribution of tetracycline resistance determinants. Since 1953, tetracycline-resistant bacteria have been found increasingly in humans, animals, food and the environment. Tetracycline resistance is normally due to the acquisition of new genes and is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from its action. Gram-negative efflux genes are frequently associated with conjugative plasmids, whereas Gram-positive efflux genes are often found on small mobilizable plasmids or in the chromosome. The ribosomal protection genes are generally associated with conjugative transposons which have a preference for the chromosome. Recently, tetracycline resistance genes have been found in the genera Mycobacterium, Nocardia, Streptomyces and Treponema. The Tet M determinant codes for a ribosomal protection protein which can be found in Gram-positive, Gram-negative, cell-wall-free, aerobic, anaerobic, pathogenic, opportunistic and normal flora species. This promiscuous nature may be correlated with its location on a conjugative transposon and its ability to cross most biochemical and physical barriers found in bacteria. The Tet B efflux determinant is unlike other efflux gene products because it confers resistance to tetracycline, doxycycline and minocycline and has the widest host range of all Gram-negative efflux determinants. We have hypothesized that mobility and the environment of the bacteria may help influence the ultimate host range of specific tet genes. If we are to reverse the trend towards increasingly antibiotic-resistant pathogenic bacteria, we will need to change how antibiotics are used in both human and animal health as well as food production. | 1997 | 9189643 |
| 4143 | 17 | 0.9997 | Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Efflux mechanisms that account for resistance to a variety of antimicrobial agents are commonly found in a wide range of bacteria. Two major groups of efflux systems are known, specific exporters and transporters conferring multidrug resistance (MDR). The MDR systems are able to remove antimicrobials of different classes from the bacterial cell and occasionally play a role in the intrinsic resistance of some bacteria to certain antimicrobials. Their genes are commonly located on the bacterial chromosome. In contrast, the genes coding for specific efflux systems are often associated with mobile genetic elements which can easily be interchanged between bacteria. Specific efflux systems have mainly been identified with resistances to macrolides, lincosamides and/or streptogramins, tetracyclines, as well as chloramphenicol/florfenicol in Gram-positive and Gram-negative bacteria. In this review, we focus on the molecular biology of antimicrobial resistance mediated by specific efflux systems and highlight the association of the respective resistance genes with mobile genetic elements and their distribution across species and genus borders. | 2003 | 13678822 |
| 4172 | 18 | 0.9997 | Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. The oral and nasopharyngeal streptococci are a major part of the normal microbiota in humans. Most human associated streptococci are considered commensals, however, a small number of them are pathogenic, causing a wide range of diseases including oral infections such as dental caries and periodontitis and diseases at other body sites including sinusitis and endocarditis, and in the case of Streptococcus pneumoniae, meningitis. Both phenotypic and sequence based studies have shown that the human associated streptococci from the mouth and nasopharynx harbor a large number of antibiotic resistance genes and these are often located on mobile genetic elements (MGEs) known as conjugative transposons or integrative and conjugative elements of the Tn916/Tn1545 family. These MGEs are responsible for the spread of the resistance genes between streptococci and also between streptococci and other bacteria. In this review we describe the resistances conferred by, and the genetic variations between the many different Tn916-like elements found in recent studies of oral and nasopharyngeal streptococci and show that Tn916-like elements are important mediators of antibiotic resistance genes within this genus. We will also discuss the role of the oral environment and how this is conducive to the transfer of these elements and discuss the contribution of both transformation and conjugation on the transfer and evolution of these elements in different streptococci. | 2014 | 25368607 |
| 9951 | 19 | 0.9997 | Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Conjugative transposons are highly ubiquitous elements found throughout the bacterial world. Members of the Tn916-Tn1545 family carry the widely disseminated tetracycline-resistance determinant Tet M, as well as additional resistance genes. They have been found naturally in, or been introduced into, over 50 different species and 24 genera of bacteria. Recent investigations have led to insights into the molecular basis of movement of these interesting mobile elements. | 1995 | 7648031 |