Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
995101.0000Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Conjugative transposons are highly ubiquitous elements found throughout the bacterial world. Members of the Tn916-Tn1545 family carry the widely disseminated tetracycline-resistance determinant Tet M, as well as additional resistance genes. They have been found naturally in, or been introduced into, over 50 different species and 24 genera of bacteria. Recent investigations have led to insights into the molecular basis of movement of these interesting mobile elements.19957648031
413410.9997Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes. In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.201426104453
995420.9997Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria. An increasing resistance to vancomycin among clinically relevant enterococci, such as Enterococcus faecalis and Enterococcus faecium is a cause of a great concern, as it seriously limits treatment options. The vanB operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn1549-type transposons or, more rarely, in ICEEfaV583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn1549-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn1549-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of vanB determinants among hospital E. faecalis and E. faecium. This review focuses on diversity of genetic elements harbouring vanB determinants in hospital-associated strains of E. faecium and E. faecalis, the mechanisms beyond vanB spread in populations of these bacteria, and provides an overview of the vanB-MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of vanB genes.202133472048
995330.9997Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. Antibiotic-resistant Gram-positive bacteria are responsible for morbidity and mortality in healthcare environments. Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pneumoniae can all exhibit clinically relevant multidrug resistance phenotypes due to acquired resistance genes on mobile genetic elements. It is possible that clinically relevant multidrug-resistant Clostridium difficile strains will appear in the future, as the organism is adept at acquiring mobile genetic elements (plasmids and transposons). Conjugative transposons of the Tn916/Tn1545 family, which carry major antibiotic resistance determinants, are transmissible between these different bacteria by a conjugative mechanism during which the elements are excised by a staggered cut from donor cells, converted to a circular form, transferred by cell-cell contact and inserted into recipient cells by a site-specific recombinase. The ability of these conjugative transposons to acquire additional, clinically relevant antibiotic resistance genes importantly contributes to the emergence of multidrug resistance.201121658082
417240.9997Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. The oral and nasopharyngeal streptococci are a major part of the normal microbiota in humans. Most human associated streptococci are considered commensals, however, a small number of them are pathogenic, causing a wide range of diseases including oral infections such as dental caries and periodontitis and diseases at other body sites including sinusitis and endocarditis, and in the case of Streptococcus pneumoniae, meningitis. Both phenotypic and sequence based studies have shown that the human associated streptococci from the mouth and nasopharynx harbor a large number of antibiotic resistance genes and these are often located on mobile genetic elements (MGEs) known as conjugative transposons or integrative and conjugative elements of the Tn916/Tn1545 family. These MGEs are responsible for the spread of the resistance genes between streptococci and also between streptococci and other bacteria. In this review we describe the resistances conferred by, and the genetic variations between the many different Tn916-like elements found in recent studies of oral and nasopharyngeal streptococci and show that Tn916-like elements are important mediators of antibiotic resistance genes within this genus. We will also discuss the role of the oral environment and how this is conducive to the transfer of these elements and discuss the contribution of both transformation and conjugation on the transfer and evolution of these elements in different streptococci.201425368607
982050.9997The Tn21 subgroup of bacterial transposable elements. The Tn3 family of transposable elements is probably the most successful group of mobile DNA elements in bacteria: there are many different but related members and they are widely distributed in gram-negative and gram-positive bacteria. The Tn21 subgroup of the Tn3 family contains closely related elements that provide most of the currently known variation in Tn3-like elements in gram-negative bacteria and that are largely responsible for the problem of multiple resistance to antibiotics in these organisms. This paper reviews the structure, the mechanism of transposition, the mode of acquisition of accessory genes, and the evolution of these elements.19901963947
416560.9997A modular master on the move: the Tn916 family of mobile genetic elements. The Tn916 family is a group of mobile genetic elements that are widespread among many commensal and pathogenic bacteria. These elements are found primarily, but not exclusively, in the Firmicutes. They are integrated into the bacterial genome and are capable of conjugative transfer to a new host and, often, intracellular transposition to a different genomic site - hence their name: 'conjugative transposons', or 'integrative conjugative elements'. An increasing variety of Tn916 relatives are being reported from different bacteria, harbouring genes coding for resistance to various antibiotics and the potential to encode other functions, such as lantibiotic immunity. This family of mobile genetic elements has an extraordinary ability to acquire accessory genes, making them important vectors in the dissemination of various traits among environmental, commensal and clinical bacteria. These elements are also responsible for genome rearrangements, providing considerable raw material on which natural selection can act. Therefore, the study of this family of mobile genetic elements is essential for a better understanding and control of the current rise of antibiotic resistance among pathogenic bacteria.200919464182
995270.9997Detection and Quantification of Conjugative Transfer of Mobile Genetic Elements Carrying Antibiotic Resistance Genes. Multidrug resistance, due to acquired antimicrobial resistance genes, is increasingly reported in the zoonotic pathogen Streptococcus suis. Most of these resistance genes are carried by chromosomal Mobile Genetic Elements (MGEs), in particular, Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs). ICEs and IMEs frequently form tandems or nested composite elements, which make their identification difficult. To evaluate their mobility, it is necessary to (i) select the suitable donor-recipient pairs for mating assays, (ii) do PCR excision tests to confirm that the genetic element is able to excise from the chromosome as a circular intermediate, and (iii) evaluate the transfer of the genetic element by conjugation by doing mating assays. In addition to a dissemination of resistance genes between S. suis strains, MGEs can lead to a spreading of resistance genes in the environment and toward pathogenic bacteria. This propagation had to be considered in a One Health perspective.202438884912
441780.9997Genetic mobility and distribution of tetracycline resistance determinants. Since 1953, tetracycline-resistant bacteria have been found increasingly in humans, animals, food and the environment. Tetracycline resistance is normally due to the acquisition of new genes and is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from its action. Gram-negative efflux genes are frequently associated with conjugative plasmids, whereas Gram-positive efflux genes are often found on small mobilizable plasmids or in the chromosome. The ribosomal protection genes are generally associated with conjugative transposons which have a preference for the chromosome. Recently, tetracycline resistance genes have been found in the genera Mycobacterium, Nocardia, Streptomyces and Treponema. The Tet M determinant codes for a ribosomal protection protein which can be found in Gram-positive, Gram-negative, cell-wall-free, aerobic, anaerobic, pathogenic, opportunistic and normal flora species. This promiscuous nature may be correlated with its location on a conjugative transposon and its ability to cross most biochemical and physical barriers found in bacteria. The Tet B efflux determinant is unlike other efflux gene products because it confers resistance to tetracycline, doxycycline and minocycline and has the widest host range of all Gram-negative efflux determinants. We have hypothesized that mobility and the environment of the bacteria may help influence the ultimate host range of specific tet genes. If we are to reverse the trend towards increasingly antibiotic-resistant pathogenic bacteria, we will need to change how antibiotics are used in both human and animal health as well as food production.19979189643
982590.9997Intercontinental spread of promiscuous mercury-resistance transposons in environmental bacteria. We demonstrate that horizontal spread of mer operons similar to worldwide spread of antibiotic-resistance genes in medically important bacteria occurred in bacteria found in ores, soils and waters. The spread was mediated by different transposons and plasmids. Some of the spreading transposons were damaged in different ways but this did not prevent their further spread. Certain transposons are mosaics composed of segments belonging to distinct sequence types. These mosaics arose as a result of homologous and site-specific recombination. Our data suggest that the mercury-resistance operons of Gram-negative environmental bacteria can be considered as a worldwide population composed of a relatively small number of distinct recombining clones shared, at least partially, by environmental and clinical bacteria.19979159519
9828100.9997Antibiotic resistance: genetic mechanisms and mobility. Based on the current knowledge, resistance genes seems mainly to originate in the organisms which produce antibiotics (Davies 1994). We lack considerably in the understanding of how these genes were transferred to pathogenic bacteria, and due to the enormous diversity of e.g. the soil flora, it is doubtful that we will ever obtain more that a faint picture of this. In Gram negative bacteria, more and more resistance genes are demonstrated to be located in integrons (e.g. beta-lactamase and streptomycin resistance genes in Salmonella Typhimurium DT104 (Sandvang et al. in press)). Integrons seem primarily to act as insertion sites for resistance genes. The origin of integrons as well as the resistance gene cassettes that are the other essential element of this system, is largely unknown (Hall & Collis 1995). Integrons can be located in the chromosome, in transposons, which have the ability to copy them themselves to other DNA molecules, or on plasmids. The emergence of resistant bacteria normally happens because of selection for a resistant clone of bacteria. Several mechanisms, however, exists by which the resistance genes can be transferred from one bacteria to another. Conjugation, mediated by plasmids or conjugative transposons, is currently the most well established of these mechanisms. Still, however, the selection pressure created by the use of antibiotics determines whether bacteria that have newly acquired a resistance gene expand to dominate in the population or remains a blink in history.199910783713
4468110.9997Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. In Gram-negative pathogens, multiple antibiotic resistance is common and many of the known resistance genes are contained in mobile gene cassettes. Cassettes can be integrated into or deleted from their receptor elements, the integrons, or infrequently may be integrated at other locations via site-specific recombination catalysed by an integron-encoded recombinase. As a consequence, arrays of several different antibiotic resistance genes can be created. Over 40 gene cassettes and three distinct classes of integrons have been identified to date. Cassette-associated genes conferring resistance to beta-lactams, aminoglycosides, trimethoprim, chloramphenicol, streptothricin and quaternary ammonium compounds used as antiseptics and disinfectants have been found. In addition, most members of the commonest family of integrons (class 1) include a sulfonamide resistance determinant in the backbone structure. Integrons are themselves translocatable, though most are defective transposon derivatives. Integron movement allows transfer of the cassette-associated resistance genes from one replicon to another or into another active transposon which facilitates spread of integrons that are transposition defective. Horizontal transfer of the resistance genes can be achieved when an integron containing one or more such genes is incorporated into a broad-host-range plasmid. Likewise, single cassettes integrated at secondary sites in a broad-host-range plasmid can also move across species boundaries.19979189642
4144120.9997The diversity of antimicrobial resistance genes among staphylococci of animal origin. Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria.201323499306
4161130.9997Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. In recent years, different acquired resistance mechanisms, including transposons, bacteriophages, plasmids, and integrons have been identified as involved in the spread of resistance genes in bacteria. The role of integrons as mobile genetic elements playing a central role in antibiotic resistance has been well studied and documented. Integrons are the ancient structures that mediate the evolution of bacteria by acquiring, storing, disposing, and resorting to the reading frameworks in gene cassettes. The term integron describes a large family of genetic elements, all of which are able to capture gene cassettes. Integrons were classified into three important classes based on integrase intI gene sequence. Integrons can carry and spread the antibiotic resistance genes among bacteria and are among the most significant routes of distribution of resistance genes via horizontal transfer. All integrons have three essential core features. The first feature is intI, the second one is an integron-associated recombination site, attI, and an integron-associated promoter, Pc, is the last feature. Among them, the class 1 integron is a major player in the dissemination of antibiotic resistance genes across pathogens and commensals. Various classes of integrons possessing a wide variety of gene cassettes are distributed in bacteria throughout the world. This review thus focuses on the distribution of integrons among important bacteria.202133953851
9821140.9996Mercury resistance (mer) operons in enterobacteria. Mercury resistance is found in many genera of bacteria. Common amongst enterobacteria are transposons related to Tn21, which is both mercuric ion- and streptomycin-/spectinomycin- and sulphonamide-resistant. Other Tn21-related transposons often have different antibiotic resistances compared with Tn21, but share many non-antibiotic-resistance genes with it. In this article we discuss possible mechanisms for the evolution of Tn21 and related genetic elements.200212196175
4658150.9996Class 1 integrons potentially predating the association with tn402-like transposition genes are present in a sediment microbial community. Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era."200616885440
4173160.9996Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock. Though numerous studies have shown that gene transfer occurs between distantly related bacterial genera under laboratory conditions, the frequency and breadth of horizontal transfer events in nature remain unknown. Previous evidence for natural intergeneric transfers came from studies of genes in human pathogens, bacteria that colonize the same host. We present evidence that natural transfer of a tetracycline resistance gene, tetQ, has occurred between bacterial genera that normally colonize different hosts. A DNA sequence comparative approach was taken to examine the extent of horizontal tetQ dissemination between species of Bacteroides, the predominant genus of the human colonic microflora, and between species of Bacteroides and of the distantly related genus Prevotella, a predominant genus of the microflora of the rumens and intestinal tracts of farm animals. Virtually identical tetQ sequences were found in a number of isolate pairs differing in taxonomy and geographic origin, indicating that extensive natural gene transmission has occurred. Among the exchange events indicated by the evidence was the very recent transfer of an allele of tetQ usually found in Prevotella spp. to a Bacteroides fragilis strain.19947944364
9950170.9996Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.202134076490
9949180.9996Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. The emergence of the multiresistance gene cfr in staphylococci is of global concern. In addition to conferring resistance to phenicols, lincosamides, pleuromutilins, streptogramin A antibiotics and selected 16-membered macrolides, the cfr gene also confers resistance to the oxazolidinone linezolid. Linezolid is a last-resort antimicrobial agent for the treatment of serious infections in humans caused by resistant Gram-positive bacteria. The cfr gene is often located on plasmids and several cfr-carrying plasmids have been described, which differ in their structure, their size and the presence of additional resistance genes. These plasmids are important vehicles that promote the spread of the cfr gene not only among bacteria of the same species, but also among those of different species and genera. Moreover, the cfr gene has been identified in close proximity to different insertion sequences, which most probably also play an important role in its dissemination. This review summarizes current knowledge on the genetic environment of the multiresistance gene cfr with particular reference to mobile genetic elements and co-located resistance genes that may support its emergence.201323543608
4141190.9996Aspects of bacterial resistance to antimicrobials used in veterinary dermatological practice. Aspects of bacterial resistance to the major classes of antimicrobials used in veterinary dermatology are presented in this review. Resistance of gram-positive and gram-negative bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, chloramphenicol, mupirocin, sulphonamides, trimethoprim, aminoglycosides, fluoroquinolones and β-lactam antibiotics are depicted with respect to the different mechanisms of acquired and intrinsic resistance. Examples are given for the three major resistance mechanisms, enzymatic inactivation, decreased intracellular drug accumulation and target modification. In addition, basic information about mobile genetic elements which carry resistance genes, such as plasmids, transposons and gene cassettes, and their modes of spreading via transduction, conjugation, mobilization and transformation is provided.199934644923