Resensitizing tigecycline- and colistin-resistant Escherichia coli using an engineered conjugative CRISPR/Cas9 system. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
994001.0000Resensitizing tigecycline- and colistin-resistant Escherichia coli using an engineered conjugative CRISPR/Cas9 system. Tigecycline and colistin were referred to as the "last resort" antibiotics in defending against carbapenem-resistant, Gram-negative bacterial infections, and are currently widely used in clinical treatment. However, the emergence and prevalence of plasmid-mediated tet(X4) and mcr-1 genes pose a serious threat to the therapeutic application of tigecycline and colistin, respectively. In this research, a tigecycline- and colistin-resistant bacteria resensitization system was developed based on efficient and specific DNA damage caused by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Associated Protein 9 (Cas9) nucleases. A conjugation method was used to deliver the resensitization system, which harbors two single-guide RNAs targeting tet(X4) and mcr-1 genes and constitutively expressed Cas9. The conjugation efficiency was nearly 100% after conjugation condition optimization in vitro, and the resensitivity efficiency for clinical isolates was over 90%. In addition, when performing resensitization in vivo, the resistance marker was replaced with a glutamate-based, chromosomal, plasmid-balanced lethal system to prevent the introduction of additional resistance genes in clinical settings, making this strategy a therapeutic approach to combat the in vivo spread of antibiotic resistance genes (ARGs) among bacterial pathogens. As a proof of concept, this resensitive system can significantly decrease the counts of tigecycline- and colistin-resistant bacteria to 1% in vivo. Our study demonstrates the efficacy and adaptability of CRISPR-Cas systems as powerful and programmable antimicrobials in resensitizing tet(X4)- and mcr-1-mediated, tigecycline- and colistin-resistant strains, and opens up new pathways for the development of CRISPR-based tools for selective bacterial pathogen elimination and precise microbiome composition change. IMPORTANCE: The emergence of plasmid-encoded tet(X4) and mcr-1 isolated from human and animal sources has affected the treatment of tigecycline and colistin, and has posed a significant threat to public health. Tigecycline and colistin are considered as the "last line of defense" for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections, so there is an urgent need to find a method that can resensitize tet(X4)-mediated tigecycline-resistant and mcr-1-mediated colistin-resistant bacteria. In this study, we developed a glutamate-based, chromosomal, plasmid-balanced lethal conjugative CRISPR/Cas9 system, which can simultaneously resensitize tet(X4)-mediated tigecycline-resistant and mcr-1-mediated colistin-resistant Escherichia coli. The counts of tigecycline- and colistin-resistant bacteria decreased to 1% in vivo after the resensitization system was administered. This study opens up new pathways for the development of CRISPR-based tools for selective bacterial pathogen elimination and precise microbiome composition change.202438385691
994210.9998Exploring the Potential of CRISPR-Cas9 Under Challenging Conditions: Facing High-Copy Plasmids and Counteracting Beta-Lactam Resistance in Clinical Strains of Enterobacteriaceae. The antimicrobial resistance (AMR) crisis urgently requires countermeasures for reducing the dissemination of plasmid-borne resistance genes. Of particular concern are opportunistic pathogens of Enterobacteriaceae. One innovative approach is the CRISPR-Cas9 system which has recently been used for plasmid curing in defined strains of Escherichia coli. Here we exploited this system further under challenging conditions: by targeting the bla (TEM-) (1) AMR gene located on a high-copy plasmid (i.e., 100-300 copies/cell) and by directly tackling bla (TEM-) (1)-positive clinical isolates. Upon CRISPR-Cas9 insertion into a model strain of E. coli harboring bla (TEM-) (1) on the plasmid pSB1A2, the plasmid number and, accordingly, the bla (TEM-) (1) gene expression decreased but did not become extinct in a subpopulation of CRISPR-Cas9 treated bacteria. Sequence alterations in bla (TEM-) (1) were observed, likely resulting in a dysfunction of the gene product. As a consequence, a full reversal to an antibiotic sensitive phenotype was achieved, despite plasmid maintenance. In a clinical isolate of E. coli, plasmid clearance and simultaneous re-sensitization to five beta-lactams was possible. Reusability of antibiotics could be confirmed by rescuing larvae of Galleria mellonella infected with CRISPR-Cas9-treated E. coli, as opposed to infection with the unmodified clinical isolate. The drug sensitivity levels could also be increased in a clinical isolate of Enterobacter hormaechei and to a lesser extent in Klebsiella variicola, both of which harbored additional resistance genes affecting beta-lactams. The data show that targeting drug resistance genes is encouraging even when facing high-copy plasmids. In clinical isolates, the simultaneous interference with multiple genes mediating overlapping drug resistance might be the clue for successful phenotype reversal.202032425894
994120.9998CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.201626502735
977030.9998Exogenous adenosine counteracts tigecycline resistance in tet(X3)-harboring Escherichia coli. The rapid spread of antibiotic resistance poses a global health crisis. Tigecycline is a last-resort antibiotic, but the recent emergence of the plasmid-borne tet(X3) gene conferring high-level tigecycline resistance is deeply concerning. Here, we report a metabolomics-guided approach to overcome tet(X3)-mediated resistance. Using untargeted metabolomics, we identified adenosine as a key metabolic biomarker associated with tet(X3) expression. Remarkably, supplementation with exogenous adenosine was able to restore tigecycline susceptibility in tet(X3)-positive Escherichia coli both in vitro and in vivo. Our mechanistic investigations reveal that adenosine enhances the bactericidal effects of tigecycline by inducing oxidative stress, DNA/RNA damage, and cell membrane disruption in resistant bacteria. This study establishes a powerful metabolomics-driven strategy to potentiate antibiotic efficacy against drug-resistant pathogens. The adenosine-based adjuvant therapy represents a promising approach to combat the global crisis of antibiotic resistance.IMPORTANCEThe emergence and widespread dissemination of the high-level tigecycline resistance gene tet(X3) have posed a significant challenge to the efficacy of tigecycline, which serves as the "last line of defense" against antimicrobial-resistant bacteria. Although tigecycline has not been approved for veterinary clinical use, constant detection of tet(X3) genes and new subtypes in livestock farming environments poses a substantial threat to public health safety. While developing novel antibiotics is an effective approach to eradicate resistance genes/bacteria, it entails considerable costs and a lengthy timeframe. This study discovered that exogenous adenosine can effectively restore the sensitivity of tet(X3)-positive Escherichia coli to tigecycline through metabolic reprogramming based on a non-targeted metabolomics strategy. The findings are highly significant for exploring comprehensive mechanisms underlying bacterial multidrug resistance, utilizing metabolic reprogramming strategies to curb the spread of novel resistant genes, and treating clinical infections caused by tet(X3)-positive bacteria.202540622216
431940.9998Threat and Control of tet(X)-Mediated Tigecycline-Resistant Acinetobacter sp. Bacteria. Tigecycline is regarded as one of the last-resort antibiotics against multidrug-resistant (MDR) Acinetobacter sp. bacteria. Recently, the tigecycline-resistant Acinetobacter sp. isolates mediated by tet(X) genes have emerged as a class of global pathogens for humans and food-producing animals. However, the genetic diversities and treatment options were not systematically discussed in the era of One Health. In this review, we provide a detailed illustration of the evolution route, distribution characteristics, horizontal transmission, and rapid detection of tet(X) genes in diverse Acinetobacter species. We also detail the application of chemical drugs, plant extracts, phages, antimicrobial peptides (AMPs), and CRISPR-Cas technologies for controlling tet(X)-positive Acinetobacter sp. pathogens. Despite excellent activities, the antibacterial spectrum and application safety need further evaluation and resolution. It is noted that deep learning is a promising approach to identify more potent antimicrobial compounds.202541097540
976750.9997Metallo-β-lactamase NDM-1 serves as a universal vaccine candidate for combatting antimicrobial resistance. The rapid emergence and spread of antimicrobial resistance have become critical global health issues, leading to significant morbidity and mortality worldwide. With the increase in resistance to multiple drugs, especially frontline clinical antibiotics, there is an urgent need for novel and effective alternative strategies. Herein, we developed a vaccine targeting the antimicrobial resistance enzyme NDM-1, which was first identified in Klebsiella pneumoniae and has quickly spread to other gram-negative bacteria. Our results demonstrate that NDM-1 primarily triggers a humoral immune response and effectively protects mice from lethal Klebsiella pneumoniae infection, as evidenced by increased survival rates, reduced bacterial loads, and decreased lung inflammation in mice. The specific antibodies generated were able to inhibit the enzymatic activity of NDM-1, bacterial growth, and exhibit opsonophagocytic activity against Klebsiella pneumoniae in vitro. Both active and passive immunization with NDM-1 showed an additive effect when combined with meropenem therapy. Furthermore, NDM-1 immunization induced cross-reactivity with NDM-1 variants, potentially providing broad protection against bacteria carrying different NDM genes. Additionally, heptamerization of NDM-1 improved its immunogenicity and protective efficacy in mice. These results highlight the potential of vaccine development based on antibiotic resistance candidates for broadly combatting antimicrobial resistance.202540505900
486460.9997Colistin resistance mechanisms in Gram-negative bacteria: a Focus on Escherichia coli. Multidrug-resistant (MDR) Escherichia coli strains have rapidly increased worldwide, and effective antibiotic therapeutic options are becoming more restricted. As a polymyxin antibiotic, colistin has a long history of usage, and it is used as a final line of treatment for severe infections by Gram-negative bacteria (GNB) with high-level resistance. However, its application has been challenged by the emergence of E. coli colistin resistance. Hence, determining the mechanism that confers colistin resistance is crucial for monitoring and controlling the dissemination of colistin-resistant E. coli strains. This comprehensive review summarizes colistin resistance mechanisms in E. coli strains and concentrates on the history, mode of action, and therapeutic implications of colistin. We have mainly focused on the fundamental mechanisms of colistin resistance that are mediated by chromosomal or plasmid elements and discussed major mutations in the two-component systems (TCSs) genes and plasmids that transmit the mobilized colistin resistance resistant genes in E. coli strains.202336754367
505970.9997Site-selective modifications by lipid A phosphoethanolamine transferases linked to colistin resistance and bacterial fitness. Genes encoding lipid A modifying phosphoethanolamine transferases (PETs) are genetically diverse and can confer resistance to colistin and antimicrobial peptides. To better understand the functional diversity of PETs, we characterized three canonical mobile colistin resistance (mcr) alleles (mcr-1, -3, -9), one intrinsic pet (eptA), and two mcr-like genes (petB, petC) in Escherichia coli. Using an isogenic expression system, we show that mcr-1 and mcr-3 confer similar phenotypes of decreased colistin susceptibility with low fitness costs. mcr-9, which is phylogenetically closely related to mcr-3, and eptA only provide fitness advantages in the presence of sub-inhibitory concentrations of colistin and significantly reduce fitness in media without colistin. PET-B and PET-C were phenotypically distinct from bonafide PETs; neither impacted colistin susceptibility nor caused considerable fitness cost. Strikingly, we found for the first time that different PETs selectively modify different phosphates of lipid A; MCR-1, MCR-3, and PET-C selectively modify the 4'-phosphate, whereas MCR-9 and EptA modify the 1-phosphate. However, 4'-phosphate modifications facilitated by MCR-1 and -3 are associated with lowered colistin susceptibility and low toxicity. Our results suggest that PETs have a wide phenotypic diversity and that increased colistin resistance is associated with specific lipid A modification patterns that have been largely unexplored thus far. IMPORTANCE: Rising levels of resistance to increasing numbers of antimicrobials have led to the revival of last resort antibiotic colistin. Unfortunately, resistance to colistin is also spreading in the form of mcr genes, making it essential to (i) improve the identification of resistant bacteria to allow clinicians to prescribe effective drug regimens and (ii) develop new combination therapies effective at targeting resistant bacteria. Our results demonstrate that PETs, including MCR variants, are site-selective in Escherichia coli and that site-selectivity correlates with the level of susceptibility and fitness costs conferred by certain PETs. Site selectivity associated with a given PET may not only help predict colistin resistance phenotypes but may also provide an avenue to (i) improve drug regimens and (ii) develop new combination therapies to better combat colistin-resistant bacteria.202439611852
487180.9997Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR.202336640846
502290.9997HIV Drugs Inhibit Transfer of Plasmids Carrying Extended-Spectrum β-Lactamase and Carbapenemase Genes. Antimicrobial-resistant (AMR) infections pose a serious risk to human and animal health. A major factor contributing to this global crisis is the sharing of resistance genes between different bacteria via plasmids. The WHO lists Enterobacteriaceae, such as Escherichia coli and Klebsiella pneumoniae, producing extended-spectrum β-lactamases (ESBL) and carbapenemases as "critical" priorities for new drug development. These resistance genes are most often shared via plasmid transfer. However, finding methods to prevent resistance gene sharing has been hampered by the lack of screening systems for medium-/high-throughput approaches. Here, we have used an ESBL-producing plasmid, pCT, and a carbapenemase-producing plasmid, pKpQIL, in two different Gram-negative bacteria, E. coli and K. pneumoniae Using these critical resistance-pathogen combinations, we developed an assay using fluorescent proteins, flow cytometry, and confocal microscopy to assess plasmid transmission inhibition within bacterial populations in a medium-throughput manner. Three compounds with some reports of antiplasmid properties were tested; chlorpromazine reduced transmission of both plasmids and linoleic acid reduced transmission of pCT. We screened the Prestwick library of over 1,200 FDA-approved drugs/compounds. From this, we found two nucleoside analogue drugs used to treat HIV, abacavir and azidothymidine (AZT), which reduced plasmid transmission (AZT, e.g., at 0.25 μg/ml reduced pCT transmission in E. coli by 83.3% and pKpQIL transmission in K. pneumoniae by 80.8% compared to untreated controls). Plasmid transmission was reduced by concentrations of the drugs which are below peak serum concentrations and are achievable in the gastrointestinal tract. These drugs could be used to decolonize humans, animals, or the environment from AMR plasmids.IMPORTANCE More and more bacterial infections are becoming resistant to antibiotics. This has made treatment of many infections very difficult. One of the reasons this is such a large problem is that bacteria are able to share their genetic material with other bacteria, and these shared genes often include resistance to a variety of antibiotics, including some of our drugs of last resort. We are addressing this problem by using a fluorescence-based system to search for drugs that will stop bacteria from sharing resistance genes. We uncovered a new role for two drugs used to treat HIV and show that they are able to prevent the sharing of two different types of resistance genes in two unique bacterial strains. This work lays the foundation for future work to reduce the prevalence of resistant infections.202032098822
5078100.9997A simple cut and stretch assay to detect antimicrobial resistance genes on bacterial plasmids by single-molecule fluorescence microscopy. Antimicrobial resistance (AMR) is a fast-growing threat to global health. The genes conferring AMR to bacteria are often located on plasmids, circular extrachromosomal DNA molecules that can be transferred between bacterial strains and species. Therefore, effective methods to characterize bacterial plasmids and detect the presence of resistance genes can assist in managing AMR, for example, during outbreaks in hospitals. However, existing methods for plasmid analysis either provide limited information or are expensive and challenging to implement in low-resource settings. Herein, we present a simple assay based on CRISPR/Cas9 excision and DNA combing to detect antimicrobial resistance genes on bacterial plasmids. Cas9 recognizes the gene of interest and makes a double-stranded DNA cut, causing the circular plasmid to linearize. The change in plasmid configuration from circular to linear, and hence the presence of the AMR gene, is detected by stretching the plasmids on a glass surface and visualizing by fluorescence microscopy. This single-molecule imaging based assay is inexpensive, fast, and in addition to detecting the presence of AMR genes, it provides detailed information on the number and size of plasmids in the sample. We demonstrate the detection of several β-lactamase-encoding genes on plasmids isolated from clinical samples. Furthermore, we demonstrate that the assay can be performed using standard microbiology and clinical laboratory equipment, making it suitable for low-resource settings.202235660772
9914110.9997Identification of host genetic factors modulating β-lactam resistance in Escherichia coli harbouring plasmid-borne β-lactamase through transposon-sequencing. Since β-lactam antibiotics are widely used, emergence of bacteria with resistance to them poses a significant threat to society. In particular, acquisition of genes encoding β-lactamase, an enzyme that degrades β-lactam antibiotics, has been a major contributing factor in the emergence of bacteria that are resistant to β-lactam antibiotics. However, relatively few genetic targets for killing these resistant bacteria have been identified to date. Here, we used a systematic approach called transposon-sequencing (Tn-Seq), to screen the Escherichia coli genome for host genetic factors that, when mutated, affect resistance to ampicillin, one of the β-lactam antibiotics, in a strain carrying a plasmid that encodes β-lactamase. This approach enabled not just the isolation of genes previously known to affect β-lactam resistance, but the additional loci skp, gshA, phoPQ and ypfN. Individual mutations in these genes modestly but consistently affected antibiotic resistance. We have identified that these genes are not only implicated in β-lactam resistance by itself but also play a crucial role in conditions associated with the expression of β-lactamase. GshA and phoPQ appear to contribute to β-lactam resistance by regulating membrane integrity. Notably, the overexpression of the uncharacterized membrane-associated protein, ypfN, has been shown to significantly enhance β-lactam resistance. We applied the genes identified from the screening into Salmonella Typhimurium and Pseudomonas aeruginosa strains, both critical human pathogens with antibiotic resistance, and observed their significant impact on β-lactam resistance. Therefore, these genes can potentially be utilized as therapeutic targets to control the survival of β-lactamase-producing bacteria.202540231449
9768120.9997Inosine monophosphate overcomes the coexisting resistance of mcr-1 and bla(NDM-1) in Escherichia coli. INTRODUCTION: The rise of antibiotic-resistant bacteria, particularly those harboring mcr-1 and bla(NDM-1), threatens public health by reducing the efficacy of colistin and carbapenems. Recently, the co-spread of mcr-1 and bla(NDM-1) has been reported, and the emergence of dual-resistant Enterobacteriaceae severely exacerbates antimicrobial resistance. OBJECTIVES: This study aims to investigate the impact of mcr-1 and bla(NDM-1) expression on metabolism in Escherichia coli and to identify potential antimicrobial agents capable of overcoming the resistance conferred by these genes. METHODS: We employed non-targeted metabolomics to profile the metabolic perturbations of E. coli strains harboring mcr-1 and bla(NDM-1). The bactericidal effects of the differential metabolite, inosine monophosphate (IMP), were assessed both in vitro using time-killing assays and in vivo using a mouse infection model. The antimicrobial mechanism of IMP was elucidated through transcriptomic analysis and biochemical approaches. RESULTS: Metabolic profiling revealed significant alterations in the purine pathway, with IMP demonstrating potent bactericidal activity against E. coli strains carrying both resistance genes. IMP increased membrane permeability, disrupted proton motive force, reduced ATP levels, induced oxidative damage by promoting reactive oxygen species and inhibiting bacterial antioxidant defenses, and improved the survival rate of infected mice. CONCLUSION: Our findings suggest that IMP could be a promising candidate for combating mcr-1 and bla(NDM-1)-mediated resistance and provide a novel approach for discovering antimicrobial agents against colistin- and carbapenem-resistant bacteria.202540139526
9939130.9997Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. OBJECTIVES: In this study, we developed an IS26-based CRISPR/Cas9 system as a proof-of-concept study to explore the potential of a re-engineered bacterial translocatable unit (TU) for curing and immunizing against the replication genes and antimicrobial resistance genes. METHODS: A series of pIS26-CRISPR/Cas9 suicide plasmids were constructed, and specific guide RNAs were designed to target the replication gene of IncX4, IncI2 and IncHI2 plasmids, and the antibiotic resistance genes mcr-1, blaKPC-2 and blaNDM-5. Through conjugation and induction, the transposition efficiency and plasmid-curing efficiency in each recipient were tested. In addition, we examined the efficiency of the IS26-CRISPR/Cas9 system of cell immunity against the acquisition of the exogenous resistant plasmids by introducing this system into antimicrobial-susceptible hosts. RESULTS: This study aimed to eliminate the replication genes and antimicrobial resistance genes using pIS26-CRISPR/Cas9. Three plasmids with different replicon types, including IncX4, IncI2 and IncHI2 in three isolates, two pUC19-derived plasmids, pUC19-mcr-1 and pUC19-IS26mcr-1, in two lab strains, and two plasmids bearing blaKPC-2 and blaNDM-5 in two isolates were all successfully eliminated. Moreover, the IS26-based CRISPR/Cas9 system that remained in the plasmid-cured strains could efficiently serve as an immune system against the acquisition of the exogenous resistant plasmids. CONCLUSIONS: The IS26-based CRISPR/Cas9 system can be used to efficiently sensitize clinical Escherichia coli isolates to antibiotics in vitro. The single-guide RNAs targeted resistance genes or replication genes of specific incompatible plasmids that harboured resistance genes, providing a novel means to naturally select bacteria that cannot uptake and disseminate such genes.202134613377
4878140.9997Bacteria carrying mobile colistin resistance genes and their control measures, an updated review. The plasmid encoded mobile colistin resistance (MCRs) enzyme poses a significant challenge to the clinical efficacy of colistin, which is frequently employed as a last resort antibiotic for treating infections caused by multidrug resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A of the outer membrane of gram-negative bacteria, thereby facilitating the acquired colistin resistance. This review aims to summarize and critically discuss recent advancements in the distribution and pathogenesis of mcr-positive bacteria, as well as the various control measures available for treating these infections. In addition, the ecology of mcr genes, colistin-resistance mechanism, co-existence with other antibiotic resistant genes, and their impact on clinical treatment are also analyzed to address the colistin resistance crisis. These insights provide a comprehensive perspective on MCRs and serve as a valuable reference for future therapeutic approaches to effectively combat mcr-positive bacterial infections.202439516398
4880150.9997Molecular mechanisms of tigecycline-resistance among Enterobacterales. The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.202438655285
5691160.9997Rapid and Accurate Antibiotic Susceptibility Determination of tet(X)-Positive E. coli Using RNA Biomarkers. The emergence and prevalence of novel plasmid-mediated tigecycline resistance genes, namely, tet(X) and their variants, pose a serious threat to public health worldwide. Rapid and accurate antibiotic susceptibility testing (AST) that can simultaneously detect the genotype and phenotype of tet(X)-positive bacteria may contribute to the deployment of an effective antibiotic arsenal, mortality reduction, and a decrease in the use of broad-spectrum antimicrobial agents. However, current bacterial growth-based AST methods, such as broth microdilution, are time consuming and delay the prompt treatment of infectious diseases. Here, we developed a rapid RNA-based AST (RBAST) assay to effectively distinguish tet(X)-positive and -negative strains. RBAST works by detecting specific mRNA expression signatures in bacteria after short-term tigecycline exposure. As a proof of concept, a panel of clinical isolates was characterized successfully by using the RBAST method, with a 3-h assay time and 87.9% accuracy (95% confidence interval [CI], 71.8% to 96.6%). Altogether, our findings suggest that RNA signatures upon antibiotic exposure are promising biomarkers for the development of rapid AST, which could inform early antibiotic choices. IMPORTANCE Infections caused by multidrug-resistant (MDR) Gram-negative pathogens are an increasing threat to global health. Tigecycline is one of the last-resort antibiotics for the treatment of these complicated infections; however, the emergence of plasmid-encoded tigecycline resistance genes, namely, tet(X), severely diminishes its clinical efficacy. Currently, there is a lack of rapid and accurate antibiotic susceptibility testing (AST) for the detection of tet(X)-positive bacteria. In this study, we developed a rapid and robust RNA-based antibiotic susceptibility determination (RBAST) assay to effectively distinguish tet(X)-negative and -positive strains using specific RNA biomarkers in bacteria after tigecycline exposure. Using this RBAST method, we successfully characterized a set of clinical strains in 3 h. Our data indicate that the RBAST assay is useful for identifying tet(X)-positive Escherichia coli.202134704829
9912170.9997Comprehensive Genomic Investigation of Coevolution of mcr genes in Escherichia coli Strains via Nanopore Sequencing. Horizontal gene transfer facilitates the spread of antibiotic resistance genes, which constitutes a global challenge. However, the evolutionary trajectory of the mobile colistin resistome in bacteria is largely unknown. To investigate the coevolution and fitness cost of the colistin resistance genes in wild strains, different assays to uncover the genomic dynamics of mcr-1 and mcr-3 in bacterial populations are utilized. Escherichia coli strains harboring both mcr-1 and mcr-3.1/3.5 are isolated and mcr genes are associated with diverse mobile elements. Under exposure to colistin, the mcr-1-bearing resistome is stably inherited during bacterial replication, but mcr-3 is prone to be eliminated in populations of certain strains. In the absence of colistin, the persistence rates of the mcr-1 and mcr-3-bearing subclones varies depending on the genomic background. The decay of the mcr-bearing bacterial populations can be mediated by the elimination of mcr-containing segments, large genomic deletions, and plasmid loss. Mobile elements, including plasmids and transposons, are double-edged swords in the evolution of the resistome. The findings support the idea that antibiotic overuse accounts for global spread of multidrug-resistant (MDR) bacteria. Therefore, stringent regulation of antibiotic prescription for humans and animals should be performed systematically to alleviate the threat of MDR bacteria.202133728052
4875180.9997An Overview of the Genetic Mechanisms of Colistin-Resistance in Bacterial Pathogens: An Indian Perspective. Colistin resistance in bacteria is a growing global issue, given its role as a critical last-resort antibiotic, particularly for treating Gram-negative bacterial infections. Pathogens adopt multiple resistance mechanisms, mediated either by plasmids or chromosomal changes. Some of the most frequently observed strategies include the occurrence of plasmid-borne mobile colistin resistance (mcr) genes, enhanced efflux pump activity, mutations in the regulatory systems, and alterations in the lipid A structure. This article provides an overview of the studies investigating the genetic mechanisms underlying colistin resistance in nosocomial Gram-negative bacteria from India. A total of 37 studies were identified through online searches across various databases, including PubMed, ScienceDirect, and Web of Science. These studies were reviewed to examine bacterial species and their mechanisms of colistin resistance. Over 26 (70.27%) studies were focused on Klebsiella pneumoniae. The most commonly reported mechanism of colistin resistance involved mutations in the two-component systems pmrAB and phoPQ. Plasmid-mediated colistin-resistant mcr genes were identified in 22 studies (18.18%). Four studies reported the overexpression of efflux pump genes as a mechanism of colistin resistance. This article provides a comprehensive summary of these studies, emphasizing the presence of diverse resistance mechanisms across various pathogens. It underscores the necessity for future genomic research on a broader range of pathogens to investigate the prevalence of different mechanisms of colistin resistance in the various regions of India.202540078264
4822190.9997A Molecular Perspective on Colistin and Klebsiella pneumoniae: Mode of Action, Resistance Genetics, and Phenotypic Susceptibility. Klebsiella pneumoniae is a rod-shaped, encapsulated, Gram-negative bacteria associated with multiple nosocomial infections. Multidrug-resistant (MDR) K. pneumoniae strains have been increasing and the therapeutic options are increasingly limited. Colistin is a long-used, polycationic, heptapeptide that has regained attention due to its activity against Gram-negative bacteria, including the MDR K. pneumoniae strains. However, this antibiotic has a complex mode of action that is still under research along with numerous side-effects. The acquisition of colistin resistance is mainly associated with alteration of lipid A net charge through the addition of cationic groups synthesized by the gene products of a multi-genic regulatory network. Besides mutations in these chromosomal genes, colistin resistance can also be achieved through the acquisition of plasmid-encoded genes. Nevertheless, the diversity of molecular markers for colistin resistance along with some adverse colistin properties compromises the reliability of colistin-resistance monitorization methods. The present review is focused on the colistin action and molecular resistance mechanisms, along with specific limitations on drug susceptibility testing for K. pneumoniae.202134202395