Molecular mechanisms of fluoroquinolone resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
992401.0000Molecular mechanisms of fluoroquinolone resistance. Fluoroquinolones have a broad spectrum of activity for complicated urinary tract infections, gastrointestinal infections, respiratory tract infections, sexually transmitted diseases, and chronic osteomyelitis. Since fluoroquinolones are excellent antibiotics for a number of clinical indications, their consumption has increased rapidly, both in human medicine and in food animals. Resistance to fluoroquinolones is chromosomal mediated, involving mutations either in the target genes including DNA gyrase (gyrA or gyrB) and topoisomerase IV (parC or parE), or in the regulatory factors controlling bacterial permeability or the efflux capacity of the bacteria. This review focuses on mechanisms of fluoroquinolone resistance, including known and proposed molecular mechanisms. This review also discuses the clinical impact of fluoroquinolone-resistant bacteria.200312741725
483310.9999Emerging mechanisms of fluoroquinolone resistance. Broad use of fluoroquinolones has been followed by emergence of resistance, which has been due mainly to chromosomal mutations in genes encoding the subunits of the drugs' target enzymes, DNA gyrase and topoisomerase IV, and in genes that affect the expression of diffusion channels in the outer membrane and multidrug-resistance efflux systems. Resistance emerged first in species in which single mutations were sufficient to cause clinically important levels of resistance (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). Subsequently, however, resistance has emerged in bacteria such as Campylobacter jejuni, Escherichia coli, and Neisseria gonorrhoeae, in which multiple mutations are required to generate clinically important resistance. In these circumstances, the additional epidemiologic factors of drug use in animals and human-to-human spread appear to have contributed. Resistance in Streptococcus pneumoniae, which is currently low, will require close monitoring as fluoroquinolones are used more extensively for treating respiratory tract infections.200111294736
483020.9998Mechanisms of resistance to quinolones. The increased use of fluoroquinolones has led to increasing resistance to these antimicrobials, with rates of resistance that vary by both organism and geographic region. Resistance to fluoroquinolones typically arises as a result of alterations in the target enzymes (DNA gyrase and topoisomerase IV) and of changes in drug entry and efflux. Mutations are selected first in the more susceptible target: DNA gyrase, in gram-negative bacteria, or topoisomerase IV, in gram-positive bacteria. Additional mutations in the next most susceptible target, as well as in genes controlling drug accumulation, augment resistance further, so that the most-resistant isolates have mutations in several genes. Resistance to quinolones can also be mediated by plasmids that produce the Qnr protein, which protects the quinolone targets from inhibition. Qnr plasmids have been found in the United States, Europe, and East Asia. Although Qnr by itself produces only low-level resistance, its presence facilitates the selection of higher-level resistance mutations, thus contributing to the alarming increase in resistance to quinolones.200515942878
440230.9998Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Introduction: Stenotrophomonas maltophilia is a prototype of bacteria intrinsically resistant to antibiotics. The reduced susceptibility of this microorganism to antimicrobials mainly relies on the presence in its chromosome of genes encoding efflux pumps and antibiotic inactivating enzymes. Consequently, the therapeutic options for treating S. maltophilia infections are limited.Areas covered: Known mechanisms of intrinsic, acquired and phenotypic resistance to antibiotics of S. maltophilia and the consequences of such resistance for treating S. maltophilia infections are discussed. Acquisition of some genes, mainly those involved in co-trimoxazole resistance, contributes to acquired resistance. Mutation, mainly in the regulators of chromosomally-encoded antibiotic resistance genes, is a major cause for S. maltophilia acquisition of resistance. The expression of some of these genes is triggered by specific signals or stressors, which can lead to transient phenotypic resistance.Expert opinion: Treatment of S. maltophilia infections is difficult because this organism presents low susceptibility to antibiotics. Besides, it can acquire resistance to antimicrobials currently in use. Particularly problematic is the selection of mutants overexpressing efflux pumps since they present a multidrug resistance phenotype. The use of novel antimicrobials alone or in combination, together with the development of efflux pumps' inhibitors may help in fighting S. maltophilia infections.202032052662
442940.9998General mechanisms of resistance to antibiotics. Resistance to antimicrobial agents may result from intrinsic properties of organisms, through mutation and through plasmid- and transposon-specified genes. beta-Lactam resistance is most frequently associated with one or more chromosomal- or plasmid-specified beta-lactamases. Recently, mutations modifying penicillin-binding proteins have been detected with increased frequency as a cause of beta-lactam resistance. Mixed mechanisms, reduced permeability and tolerance are other causes of resistance. Aminoglycoside resistance always involves some modification of drug uptake, most often due to a variety of enzymes modifying these compounds. Reduced uptake is a primary cause of resistance in anaerobic bacteria and bacteria growing anaerobically, some strains of Pseudomonas aeruginosa, and mutants that arise during antimicrobial therapy and are defective in energy-generation systems. Resistance to other antimicrobial agents is presented in tabular form.19883062000
425350.9998Molecular mechanisms of polymyxin resistance and detection of mcr genes. Antibiotic resistance is an ever-increasing global problem. Major commercial antibiotics often fail to fight common bacteria, and some pathogens have become multi-resistant. Polymyxins are potent bactericidal antibiotics against gram-negative bacteria. Known resistance to polymyxin includes intrinsic, mutational and adaptive mechanisms, with the recently described horizontally acquired resistance mechanisms. In this review, we present several strategies for bacteria to develop enhanced resistance to polymyxins, focusing on changes in the outer membrane, efflux and other resistance determinants. Better understanding of the genes involved in polymyxin resistance may pave the way for the development of new and effective antimicrobial agents. We also report novel in silico tested primers for PCR assay that may be able distinguish colistin-resistant isolates carrying the plasmid-encoded mcr genes and will assist in combating the spread of colistin resistance in bacteria.201930439931
992660.9998beta-Lactamases of gram-negative bacteria: new challenges for new drugs. The major emphasis in new drug design within the beta-lactam family has been on compounds less susceptible to hydrolysis by beta-lactamases and on combinations containing an enzyme-labile drug plus a beta-lactamase inhibitor. The introduction of such new compounds into clinical use has been followed by the discovery of novel mechanisms of resistance among gram-negative bacteria. These include the appearance of new enzymes, many of which are derivatives of older beta-lactamases. In addition, genes for certain broad-spectrum enzymes previously restricted to chromosomal sites have moved onto plasmids. There is now a greater appreciation of how alterations in enzyme expression--either alone or in concert with changes in drug permeation--can also lead to resistance. Clearly, recent events in the development of new beta-lactam agents have led to a new phase in the understanding of beta-lactam resistance.19921600011
444170.9998Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (e.g., beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa--are reviewed to illustrate the varied ways in which resistant bacteria develop.200616735149
444280.9998Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (eg, beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa-are reviewed to illustrate the varied ways in which resistant bacteria develop.200616813980
483290.9998Antibiotic resistance of Pseudomonas species. Pseudomonas species are highly versatile organisms with genetic and physiologic capabilities that allow them to flourish in environments hostile to most pathogenic bacteria. Within the lung of the patient with cystic fibrosis, exposed to a number of antimicrobial agents, highly resistant clones of Pseudomonas are selected. These may have acquired plasmid-mediated genes encoding a variety of beta-lactamases or aminoglycoside modifying enzymes. Frequently these resistance determinants are on transposable elements, facilitating their dissemination among the population of bacteria. Mutations in chromosomal genes can also occur, resulting in constitutive expression of normally repressed enzymes, such as the chromosomal cephalosporinase of Pseudomonas aeruginosa or Pseudomonas cepacia. These enzymes may confer resistance to the expanded-spectrum beta-lactam drugs. Decreased cellular permeability to the beta-lactams and the aminoglycosides also results in clinically significant antibiotic resistance. The development of new drugs with anti-Pseudomonas activity, beta-lactam agents and the quinolones, has improved the potential for effective chemotherapy but has not surpassed the potential of the organisms to develop resistance.19863701534
4831100.9998Mechanism of quinolone resistance in anaerobic bacteria. Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.200312848726
4427110.9998Mechanisms of quinolone action and microbial response. Over the years, chromosomal mapping of the bacterial genome of Escherichia coli has demonstrated that many loci are associated with quinolone resistance, which is mainly a result of chromosomal mutation or alteration of the quantity or type of porins in the outer membrane of Gram-negative bacteria. There has been one report of a small and confined episode of plasmid-mediated resistance to fluoroquinolones, which did not appear to persist. With the increasingly widespread use of an expanding range of fluoroquinolone antibiotics, a range and mix in individual bacterial isolates of the different mechanisms of resistance to fluoroquinolones will undoubtedly be encountered amongst clinically significant bacteria. Currently, transferable resistance is extremely rare and most resistant bacteria arise from clonal expansion of mutated strains. However, it is conceivable that in the future, horizontal gene transfer may become a more important means of conferring resistance to fluoroquinolones.200312702701
4444120.9998Mechanisms of resistance to fluoroquinolones. Fluoroquinolones have some of the properties of an 'ideal' anti-microbial agent. Because of their potent broad spectrum activity and absence of transferable mechanism of resistance or inactivating enzymes, it was hoped that clinical resistance to this useful group of drugs would not occur. However, over the years, due to intense selective pressure and relative lack of potency of the available quinolones against some strains, bacteria have evolved at least two mechanisms of resistance: (i) alteration of molecular targets, and (ii) reduction of drug accumulation. DNA gyrase and topoisomerase IV are the two molecular targets of fluoroquinolones. Mutations in specified regions (quinolone resistance-determining region) in genes coding for the gyrase and/or topoisomerase leads to clinical resistance. An efflux pump effective in pumping out hydrophilic quinolones has been described. Newer fluoroquinolones which recognize both molecular targets and have improved pharmacokinetic properties offer hope of higher potency, thereby reducing the probability of development of resistance.199910573971
4241130.9997Mechanisms of antimicrobial resistance and implications for epidemiology. The development of antibacterial agents has provided a means of treating bacterial diseases which were, previously, often fatal in both man and animal and thus represents one of the major advances of the 20th century. However, the efficacy of these agents is increasingly being compromised by the development of bacterial resistance to the drugs currently available for therapeutic use. Bacterial resistance can be combated in two ways. New drugs to which bacteria are susceptible can be developed and policies to contain the development and spread of resistance can be implemented. Both strategies require an understanding of the mechanisms of drug resistance, its epidemiology and the role of environmental factors in promoting resistance. Over the past thirty years our knowledge of bacterial resistance has increased dramatically mainly due to new technology that has become available. Bacteria are able to resist antibacterials by a variety of mechanisms: for example, altering the target to decrease susceptibility to the antibacterial, inactivating or destroying the drug, reducing drug transport into the cell or metabolic bypass. These drug resistance determinants are mediated via one of two distinct genetic mechanisms, a mutation in the bacterial chromosome or by a transmissible element; either a plasmid or a transposon. Significant differences exist between these two types of drug resistance as transmissible resistance, which is mainly plasmid-mediated, permits intraspecies and even interspecies transfer to occur. In contrast, chromosomal resistance can only be passed on to progeny. Transmissible antibacterial resistance is the major cause of concern as it can lead to the rapid spread of antibacterial resistance and has proven difficult, if not impossible, to eradicate. Furthermore, plasmids and transposons can code for multiple antibiotic resistance as well as virulence genes. Antibacterials for which transferable resistance has been identified include most commonly used antibacterials such as beta-lactams, aminoglycosides, macrolides, sulphonamides, tetracyclines, chloramphenicol and trimethoprim. One notable exception is the 4-quinolones for which plasmid-mediated resistance has yet to be identified.19938212509
4312140.9997Genes and mutations conferring antimicrobial resistance in Salmonella: an update. Resistance to various classes of antimicrobial agents has been encountered in many bacteria of medical and veterinary relevance. Particular attention has been paid to zoonotic bacteria such as Salmonella. Over the years, various studies have reported the presence of genes and mutations conferring resistance to antimicrobial agents in Salmonella isolates. This review is intended to provide an update on what is currently known about the genetic basis of antimicrobial resistance in Salmonella.200616716631
9800150.9997Regulation of beta-lactamase induction in gram-negative bacteria: a key to understanding the resistance puzzle. Infections caused by drug-resistant microorganisms have posed a medical challenge since the advent of antimicrobial therapy. With the emergence of resistant strains, new antibiotics were available and introduced with great success until this decade. The appearance of multiresistant microorganisms pose a real and immediate public health concern. Are we entering into the post-antibiotic era? Will we return to pre-antimicrobial-era conditions, with morbidity and mortality resulting from untreatable infectious complications? The race to stay ahead of multiresistance involves not only continued drug development and selective use but elucidation of bacterial regulation of resistance. One way to ensure continued success of antimicrobial therapy is the identification of new bacterial targets--genes and their products involved in regulating or mediating resistance. Discussion will focus on one well-defined resistance mechanism in Gram-negative bacteria, the chromosomally located amp operon, responsible for one mechanism of beta-lactam resistance.19947723996
4316160.9997Why do antimicrobial agents become ineffectual? Antibiotic resistance has evolved over the past 50 years from a merely microbiological curiosity to a serious medical problem in hospitals all over the world. Resistance has been reported in almost all species of gram-positive and -negative bacteria to various classes of antibiotics including recently developed ones. Bacteria acquire resistance by reducing permeability and intracellular accumulation, by alteration of targets of antibiotic action, and by enzymatic modification of antibiotics. Inappropriate use of an antibiotic selects resistant strains much more frequently. Once resistant bacteria has emerged, the resistance can be transferred to other bacteria by various mechanisms, resulting in multiresistant strains. MRSA is one of the typical multiresistant nosocomial pathogens. A study of the PFGE pattern of endonuclease-digested chromosomal DNA showed that MRSA of a few clones were disseminated among newborns in the NICU of a Japanese hospital. In this regard, it is important to choose appropriate antibiotics and then after some time, to change to other classes to reduce the selection of resistant strains. Since the development of epoch-making new antibiotics is not expected in the near future, it has become very important to use existing antibiotics prudently based on mechanisms of antibiotic action and bacterial resistance. Control of nosocomial infection is also very important to reduce further spread of resistant bacteria.199810097676
4313170.9997Molecular epidemiology of clinically significant antibiotic resistance genes. Antimicrobials were first introduced into medical practice a little over 60 years ago and since that time resistant strains of bacteria have arisen in response to the selective pressure of their use. This review uses the paradigm of the evolution and spread of beta-lactamases and in particular beta-lactamases active against antimicrobials used to treat Gram-negative infections. The emergence and evolution particularly of CTX-M extended-spectrum beta-lactamases (ESBLs) is described together with the molecular mechanisms responsible for both primary mutation and horizontal gene transfer. Reference is also made to other significant antibiotic resistance genes, resistance mechanisms in Gram-negative bacteria, such as carbepenamases, and plasmid-mediated fluoroquinolone resistance. The pathogen Staphylococcus aureus is reviewed in detail as an example of a highly successful Gram-positive bacterial pathogen that has acquired and developed resistance to a wide range of antimicrobials. The role of selective pressures in the environment as well as the medical use of antimicrobials together with the interplay of various genetic mechanisms for horizontal gene transfer are considered in the concluding part of this review.200818311156
9925180.9997Plasmid-mediated quinolone resistance--current knowledge and future perspectives. Quinolones are a group of antimicrobial agents that were serendipitously discovered as byproducts of the synthesis of chloroquine. Chemical modifications, such as the addition of fluorine or piperazine, resulted in the synthesis of third- and fourth-generation fluoroquinolones, with broad-spectrum antimicrobial actions against aerobic or anaerobic, Gram-positive or Gram-negative bacteria. The efficacy and consequent widespread use of quinolones and fluoroquinolones has led to a steady global increase in resistance, mediated via gene mutations, alterations in efflux or cell membranes and plasmid-conferred resistance. The first plasmid-mediated quinolone resistance gene, qnrA1, was detected in 1998. Since then, many other genes have been identified and the underlying mechanisms of resistance have been elucidated. This review provides an overview of quinolone resistance, with particular emphasis on plasmid-mediated resistance.201323569126
4314190.9997Cephalosporin resistance among animal-associated Enterobacteria: a current perspective. Beta-lactam antimicrobials are an important class of drugs used for the treatment of infection. Resistance can arise by several mechanisms, including the acquisition of genes encoding beta-lactamases from other bacteria, alterations in cell membrane permeability and over expression of endogenous beta-lactamases. The acquisition of beta-lactamase resistance genes by both Salmonella and Escherichia coli appears to be on the rise, which may pose potential problems for the treatment of infections in both human and animal medicine. The prudent use of clinically important antimicrobials is therefore critical to maintain their effectiveness. Where possible, the use of newer generation cephalosporins should be limited in veterinary medicine.200515954857