# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9916 | 0 | 1.0000 | Collateral sensitivity associated with antibiotic resistance plasmids. Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR. | 2021 | 33470194 |
| 3831 | 1 | 0.9999 | The distribution of fitness effects of plasmid pOXA-48 in clinical enterobacteria. Antimicrobial resistance (AMR) in bacteria is a major public health problem. The main route for AMR acquisition in clinically important bacteria is the horizontal transfer of plasmids carrying resistance genes. AMR plasmids allow bacteria to survive antibiotics, but they also entail physiological alterations in the host cell. Multiple studies over the last few years have indicated that these alterations can translate into a fitness cost when antibiotics are absent. However, due to technical limitations, most of these studies are based on analysing new associations between plasmids and bacteria generated in vitro, and we know very little about the effects of plasmids in their native bacterial hosts. In this study, we used a CRISPR-Cas9-tool to selectively cure plasmids from clinical enterobacteria to overcome this limitation. Using this approach, we were able to study the fitness effects of the carbapenem resistance plasmid pOXA-48 in 35 pOXA-48-carrying isolates recovered from hospitalized patients. Our results revealed that pOXA-48 produces variable effects across the collection of wild-type enterobacterial strains naturally carrying the plasmid, ranging from fitness costs to fitness benefits. Importantly, the plasmid was only associated with a significant fitness reduction in four out of 35 clones, and produced no significant changes in fitness in the great majority of isolates. Our results suggest that plasmids produce neutral fitness effects in most native bacterial hosts, helping to explain the great prevalence of plasmids in natural microbial communities. | 2023 | 37505800 |
| 9917 | 2 | 0.9999 | Fluorescence-Based Detection of Natural Transformation in Drug-Resistant Acinetobacter baumannii. Acinetobacter baumannii is a nosocomial agent with a high propensity for developing resistance to antibiotics. This ability relies on horizontal gene transfer mechanisms occurring in the Acinetobacter genus, including natural transformation. To study natural transformation in bacteria, the most prevalent method uses selection for the acquisition of an antibiotic resistance marker in a target chromosomal locus by the recipient cell. Most clinical isolates of A. baumannii are resistant to multiple antibiotics, limiting the use of such selection-based methods. Here, we report the development of a phenotypic and selection-free method based on flow cytometry to detect transformation events in multidrug-resistant (MDR) clinical A. baumannii isolates. To this end, we engineered a translational fusion between the abundant and conserved A. baumannii nucleoprotein (HU) and the superfolder green fluorescent protein (sfGFP). The new method was benchmarked against the conventional antibiotic selection-based method. Using this new method, we investigated several parameters affecting transformation efficiencies and identified conditions of transformability one hundred times higher than those previously reported. Using optimized transformation conditions, we probed natural transformation in a set of MDR clinical and nonclinical animal A. baumannii isolates. Regardless of their origin, the majority of the isolates displayed natural transformability, indicative of a conserved trait in the species. Overall, this new method and optimized protocol will greatly facilitate the study of natural transformation in the opportunistic pathogen A. baumanniiIMPORTANCE Antibiotic resistance is a pressing global health concern with the rise of multiple and panresistant pathogens. The rapid and unfailing resistance to multiple antibiotics of the nosocomial agent Acinetobacter baumannii, notably to carbapenems, prompt to understand the mechanisms behind acquisition of new antibiotic resistance genes. Natural transformation, one of the horizontal gene transfer mechanisms in bacteria, was only recently described in A. baumannii and could explain its ability to acquire resistance genes. We developed a reliable method to probe and study natural transformation mechanism in A. baumannii More broadly, this new method based on flow cytometry will allow experimental detection and quantification of horizontal gene transfer events in multidrug-resistant A. baumannii. | 2018 | 30012729 |
| 3833 | 3 | 0.9999 | Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. The emergence of pathogenic bacteria resistant to multiple antibiotics is a serious worldwide public health concern. Whenever antibiotics are applied, the genes encoding for antibiotic resistance are selected for within bacterial populations. This has led to the prevalence of conjugative plasmids that carry resistance genes and can transfer themselves between diverse bacterial groups. In this study, we investigated whether it is feasible to attempt to prevent the spread of antibiotic resistances with a lytic bacteriophage, which can replicate in a wide range of gram-negative bacteria harbouring conjugative drug resistance-conferring plasmids. The counter-selection against the plasmid was shown to be effective, reducing the frequency of multidrug-resistant bacteria that formed via horizontal transfer by several orders of magnitude. This was true also in the presence of an antibiotic against which the plasmid provided resistance. Majority of the multiresistant bacteria subjected to phage selection also lost their conjugation capability. Overall this study suggests that, while we are obligated to maintain the selection for the spread of the drug resistances, the 'fight evolution with evolution' approach could help us even out the outcome to our favour. | 2013 | 24062801 |
| 3835 | 4 | 0.9998 | Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria. The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of bla(TEM-1) expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics. | 2024 | 38521779 |
| 4152 | 5 | 0.9998 | Quinolone resistance: much more than predicted. Since quinolones are synthetic antibiotics, it was predicted that mutations in target genes would be the only mechanism through which resistance could be acquired, because there will not be quinolone-resistance genes in nature. Contrary to this prediction, a variety of elements ranging from efflux pumps, target-protecting proteins, and even quinolone-modifying enzymes have been shown to contribute to quinolone resistance. The finding of some of these elements in plasmids indicates that quinolone resistance can be transferable. As a result, there has been a developing interest on the reservoirs for quinolone-resistance genes and on the potential risks associated with the use of these antibiotics in non-clinical environments. As a matter of fact, plasmid-encoded, quinolone-resistance qnr genes originated in the chromosome of aquatic bacteria. Thus the use of quinolones in fish-farming might constitute a risk for the emergence of resistance. Failure to predict the development of quinolone resistance reinforces the need of taking into consideration the wide plasticity of biological systems for future predictions. This plasticity allows pathogens to deal with toxic compounds, including those with a synthetic origin as quinolones. | 2011 | 21687414 |
| 9895 | 6 | 0.9998 | Clinically Relevant Plasmid-Host Interactions Indicate that Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella pneumoniae Carbapenemase-Carrying Plasmids. The rapid dissemination of antimicrobial resistance (AMR) around the globe is largely due to mobile genetic elements, such as plasmids. They confer resistance to critically important drugs, including extended-spectrum beta-lactams, carbapenems, and colistin. Large, complex resistance plasmids have evolved alongside their host bacteria. However, much of the research on plasmid-host evolution has focused on small, simple laboratory plasmids in laboratory-adapted bacterial hosts. These and other studies have documented mutations in both host and plasmid genes which occur after plasmid introduction to ameliorate fitness costs of plasmid carriage. We describe here the impact of two naturally occurring variants of a large AMR plasmid (pKpQIL) on a globally successful pathogen. In our study, after pKpQIL plasmid introduction, no changes in coding domain sequences were observed in their natural host, Klebsiella pneumoniae However, significant changes in chromosomal and plasmid gene expression may have allowed the bacterium to adapt to the acquisition of the AMR plasmid. We hypothesize that this was sufficient to ameliorate the associated fitness costs of plasmid carriage, as pKpQIL plasmids were maintained without selection pressure. The dogma that removal of selection pressure (e.g., antimicrobial exposure) results in plasmid loss due to bacterial fitness costs is not true for all plasmid/host combinations. We also show that pKpQIL impacted the ability of K. pneumoniae to form a biofilm, an important aspect of virulence. This study used highly relevant models to study the interaction between AMR plasmids and pathogens and revealed striking differences from results of studies done on laboratory-adapted plasmids and strains.IMPORTANCE Antimicrobial resistance is a serious problem facing society. Many of the genes that confer resistance can be shared between bacteria through mobile genetic elements, such as plasmids. Our work shows that when two clinically relevant AMR plasmids enter their natural host bacteria, there are changes in gene expression, rather than changes to gene coding sequences. These changes in gene expression ameliorate the potential fitness costs of carriage of these AMR plasmids. In line with this, the plasmids were stable within their natural host and were not lost in the absence of selective pressure. We also show that better understanding of the impact of resistance plasmids on fundamental pathogen biology, including biofilm formation, is crucial for fighting drug-resistant infections. | 2018 | 29691332 |
| 4133 | 7 | 0.9998 | Importance of integrons in the diffusion of resistance. Horizontal transfer of resistance genes is a successful mechanism for the transmission and dissemination of multiple drug resistance among bacterial pathogens. The impact of horizontally transmitted genetic determinants in the evolution of resistance is particularly evident when resistance genes are physically associated in clusters and transferred en bloc to the recipient cell. Recent advances in the molecular characterisation of antibiotic resistance mechanisms have highlighted the existence of genetic structures. called integrons, involved in the acquisition of resistance genes. These DNA elements have frequently been reported in multi-drug resistant strains isolated from animals and humans, and are located either on the bacterial chromosome or on broad-host-range plasmids. The role of integrons in the development of multiple resistance relies on their unique capacity to cluster and express drug resistance genes. Moreover, the spread of resistance genes among different replicons and their exchange between plasmid and bacterial chromosome are facilitated by the integration of integrons into transposable elements. The association of a highly efficient gene capture and expression system, together with the capacity for vertical and horizontal transmission of resistance genes represents a powerful weapon used by bacteria to combat the assault of antibiotics. | 2001 | 11432416 |
| 9908 | 8 | 0.9998 | Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen. | 2016 | 27681923 |
| 3821 | 9 | 0.9998 | Persistence of transferable extended-spectrum-β-lactamase resistance in the absence of antibiotic pressure. The treatment of infections caused by antibiotic-resistant bacteria is one of the great challenges faced by clinicians in the 21st century. Antibiotic resistance genes are often transferred between bacteria by mobile genetic vectors called plasmids. It is commonly believed that removal of antibiotic pressure will reduce the numbers of antibiotic-resistant bacteria due to the perception that carriage of resistance imposes a fitness cost on the bacterium. This study investigated the ability of the plasmid pCT, a globally distributed plasmid that carries an extended-spectrum-β-lactamase (ESBL) resistance gene (bla(CTX-M-14)), to persist and disseminate in the absence of antibiotic pressure. We investigated key attributes in plasmid success, including conjugation frequencies, bacterial-host growth rates, ability to cause infection, and impact on the fitness of host strains. We also determined the contribution of the bla(CTX-M-14) gene itself to the biology of the plasmid and host bacterium. Carriage of pCT was found to impose no detectable fitness cost on various bacterial hosts. An absence of antibiotic pressure and inactivation of the antibiotic resistance gene also had no effect on plasmid persistence, conjugation frequency, or bacterial-host biology. In conclusion, plasmids such as pCT have evolved to impose little impact on host strains. Therefore, the persistence of antibiotic resistance genes and their vectors is to be expected in the absence of antibiotic selective pressure regardless of antibiotic stewardship. Other means to reduce plasmid stability are needed to prevent the persistence of these vectors and the antibiotic resistance genes they carry. | 2012 | 22710119 |
| 4240 | 10 | 0.9998 | Genetics of antimicrobial resistance. Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine. | 2006 | 17127523 |
| 3832 | 11 | 0.9998 | A population genomics approach to exploiting the accessory 'resistome' of Escherichia coli. The emergence of antibiotic resistance is a defining challenge, and Escherichia coli is recognized as one of the leading species resistant to the antimicrobials used in human or veterinary medicine. Here, we analyse the distribution of 2172 antimicrobial-resistance (AMR) genes in 4022 E. coli to provide a population-level view of resistance in this species. By separating the resistance determinants into 'core' (those found in all strains) and 'accessory' (those variably present) determinants, we have found that, surprisingly, almost half of all E. coli do not encode any accessory resistance determinants. However, those strains that do encode accessory resistance are significantly more likely to be resistant to multiple antibiotic classes than would be expected by chance. Furthermore, by studying the available date of isolation for the E. coli genomes, we have visualized an expanding, highly interconnected network that describes how resistances to antimicrobials have co-associated within genomes over time. These data can be exploited to reveal antimicrobial combinations that are less likely to be found together, and so if used in combination may present an increased chance of suppressing the growth of bacteria and reduce the rate at which resistance factors are spread. Our study provides a complex picture of AMR in the E. coli population. Although the incidence of resistance to all studied antibiotic classes has increased dramatically over time, there exist combinations of antibiotics that could, in theory, attack the entirety of E. coli, effectively removing the possibility that discrete AMR genes will increase in frequency in the population. | 2017 | 28785420 |
| 9897 | 12 | 0.9998 | The fitness connection of antibiotic resistance. More than three decades ago multidrug-resistant (MDR) clones of the pathogens: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Clostridioides difficile, Enterococcus faecium, Pseudomonas aeruginosa and Acinetobacter baumannii have started to disseminate across wide geographical areas. A characteristic feature of all these MDR lineages is the carriage of some mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV which besides conferring resistance to fluoroquinolones are associated with a fitness benefit. Several lines of evidence strongly suggest that extra fitness conferred by these mutations facilitated the dissemination of the international MDR lineages. MDR pathogens require extra energy to cover the fitness cost conferred by the excess antibiotic resistance gene cargo. However, extra energy generated by upgraded metabolic activity was demonstrated to increase the uptake of antibiotics enhancing susceptibility. Accordingly, MDR bacteria need additional positive fitness schemes which, similarly to the QRDR advantage, will not compromise resistance. Some of these, not clone-specific effects are large genomes, the carriage of low-cost plasmids, the transfer of plasmid genes to the chromosome, the application of weak promoters in integrons and various techniques for the economic control of the activity of the integrase enzyme including a highly sophisticated system in A. baumannii. These impacts - among others - will confer a fitness advantage promoting the spread of MDR pathogens. However, even the potential of extra fitness generated by the combined effect of various schemes is not without limit and virulence-related genes or less relevant antibiotic resistance gene cargoes will often be sacrificed to permit the acquisition of high-priority resistance determinants. Accordingly major MDR clone strains are usually less virulent than susceptible isolates. In summary, a fitness approach to the research of antibiotic resistance is very useful since the fitness status of MDR bacteria seem to profoundly impact the capacity to disseminate in the healthcare setting. | 2025 | 40276228 |
| 3836 | 13 | 0.9998 | Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. | 2012 | 22048956 |
| 4149 | 14 | 0.9998 | Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Soil bacteria may contain antibiotic resistance genes responsible for different mechanisms that permit them to overcome the natural antibiotics present in the environment. This gene pool has been recently named the 'resistome', and its components can be mobilized into the microbial community affecting humans because of the participation of genetic platforms that efficiently facilitate the mobilization and maintenance of these resistance genes. Evidence for this transference has been suggested or demonstrated with newly identified widespread genes in multidrug-resistant bacteria. These resistance genes include those responsible for ribosomal methylases affecting aminoglycosides (armA, rtmB), methyltransferases affecting linezolid (cfr) or plasmid-mediated efflux pumps conferring low-level fluoroquinolone resistance (qepA), all of which are associated with antibiotic-producing bacteria. In addition, resistance genes whose ancestors have been identified in environmental isolates that are not recognized as antibiotic producers have also been recently detected. These include the qnr and the bla(CTX) genes compromising the activity of fluoroquinolones and extended-spectrum cephalosporins, respectively. The application of metagenomic tools and phylogenetic analysis will facilitate future identification of other new resistance genes and their corresponding ancestors in environmental bacteria, and will enable further exploration of the concept of the resistome as being a unique reservoir of antibiotic resistance genes and genetic elements participating in resistance gene transfer. | 2009 | 19220348 |
| 3837 | 15 | 0.9998 | Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance. | 2016 | 26668183 |
| 4241 | 16 | 0.9998 | Mechanisms of antimicrobial resistance and implications for epidemiology. The development of antibacterial agents has provided a means of treating bacterial diseases which were, previously, often fatal in both man and animal and thus represents one of the major advances of the 20th century. However, the efficacy of these agents is increasingly being compromised by the development of bacterial resistance to the drugs currently available for therapeutic use. Bacterial resistance can be combated in two ways. New drugs to which bacteria are susceptible can be developed and policies to contain the development and spread of resistance can be implemented. Both strategies require an understanding of the mechanisms of drug resistance, its epidemiology and the role of environmental factors in promoting resistance. Over the past thirty years our knowledge of bacterial resistance has increased dramatically mainly due to new technology that has become available. Bacteria are able to resist antibacterials by a variety of mechanisms: for example, altering the target to decrease susceptibility to the antibacterial, inactivating or destroying the drug, reducing drug transport into the cell or metabolic bypass. These drug resistance determinants are mediated via one of two distinct genetic mechanisms, a mutation in the bacterial chromosome or by a transmissible element; either a plasmid or a transposon. Significant differences exist between these two types of drug resistance as transmissible resistance, which is mainly plasmid-mediated, permits intraspecies and even interspecies transfer to occur. In contrast, chromosomal resistance can only be passed on to progeny. Transmissible antibacterial resistance is the major cause of concern as it can lead to the rapid spread of antibacterial resistance and has proven difficult, if not impossible, to eradicate. Furthermore, plasmids and transposons can code for multiple antibiotic resistance as well as virulence genes. Antibacterials for which transferable resistance has been identified include most commonly used antibacterials such as beta-lactams, aminoglycosides, macrolides, sulphonamides, tetracyclines, chloramphenicol and trimethoprim. One notable exception is the 4-quinolones for which plasmid-mediated resistance has yet to be identified. | 1993 | 8212509 |
| 3834 | 17 | 0.9998 | What antimicrobial resistance has taught us about horizontal gene transfer. Horizontal gene transfer (HGT) has been responsible for the dissemination of numerous antimicrobial-resistance determinants throughout diverse bacterial species. The rapid and broad dissemination of resistance determinants by HGT, and subsequent selection for resistance imposed by the use of antimicrobials, threatens to undermine the usefulness of antimicrobials. However, vigilant surveillance of the emerging antimicrobial resistance in clinical settings and subsequent studies of resistant isolates create a powerful system for studying HGT and detecting rare events. Two of the most closely monitored phenotypes are resistance to beta-lactams and resistance to fluoroquinolones. Studies of resistance to these antimicrobials have revealed that (1) transformation occurs between different species of bacteria including some recipient species that were not previously known to be competent for natural transformation; (2) transduction may be playing an important role in generating novel methicillin-resistant Staphylococcus aureus (MRSA) strains, although the details of transferring the SCCmec element are not yet fully understood; (3) Resistance genes are probably moving to plasmids from chromosomes more rapidly than in the past; and (4) Resistance genes are aggregating upon plasmids. The linkage of numerous resistance genes on individual plasmids may underlie the persistence of resistance to specific antimicrobials even when use of those antimicrobials is discontinued. Further studies of HGT and methods for controlling HGT may be necessary to maintain the usefulness of antimicrobials. | 2009 | 19271198 |
| 9896 | 18 | 0.9998 | Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter. Acinetobacter baumannii infection poses a major health threat, with recurrent treatment failure due to antibiotic resistance, notably to carbapenems. While genomic analyses of clinical strains indicate that homologous recombination plays a major role in the acquisition of antibiotic resistance genes, the underlying mechanisms of horizontal gene transfer often remain speculative. Our understanding of the acquisition of antibiotic resistance is hampered by the lack of experimental systems able to reproduce genomic observations. We here report the detection of recombination events occurring spontaneously in mixed bacterial populations and which can result in the acquisition of resistance to carbapenems. We show that natural transformation is the main driver of intrastrain but also interstrain recombination events between A. baumannii clinical isolates and pathogenic species of Acinetobacter. We observed that interbacterial natural transformation in mixed populations is more efficient at promoting the acquisition of large resistance islands (AbaR4 and AbaR1) than when the same bacteria are supplied with large amounts of purified genomic DNA. Importantly, analysis of the genomes of the recombinant progeny revealed large recombination tracts (from 13 to 123 kb) similar to those observed in the genomes of clinical isolates. Moreover, we highlight that transforming DNA availability is a key determinant of the rate of recombinants and results from both spontaneous release and interbacterial predatory behavior. In the light of our results, natural transformation should be considered a leading mechanism of genome recombination and horizontal gene transfer of antibiotic resistance genes in Acinetobacter baumannii. IMPORTANCE Acinetobacter baumannii is a multidrug-resistant pathogen responsible for difficult-to-treat hospital-acquired infections. Understanding the mechanisms leading to the emergence of the multidrug resistance in this pathogen today is crucial. Horizontal gene transfer is assumed to largely contribute to this multidrug resistance. However, in A. baumannii, the mechanisms leading to genome recombination and the horizontal transfer of resistance genes are poorly understood. We describe experimental evidence that natural transformation, a horizontal gene transfer mechanism recently highlighted in A. baumannii, allows the highly efficient interbacterial transfer of genetic elements carrying resistance to last-line antibiotic carbapenems. Importantly, we demonstrated that natural transformation, occurring in mixed populations of Acinetobacter, enables the transfer of large resistance island-mobilizing multiple-resistance genes. | 2022 | 35073754 |
| 3816 | 19 | 0.9998 | Persistence and reversal of plasmid-mediated antibiotic resistance. In the absence of antibiotic-mediated selection, sensitive bacteria are expected to displace their resistant counterparts if resistance genes are costly. However, many resistance genes persist for long periods in the absence of antibiotics. Horizontal gene transfer (primarily conjugation) could explain this persistence, but it has been suggested that very high conjugation rates would be required. Here, we show that common conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics in Escherichia coli. The notion is applicable to nine plasmids from six major incompatibility groups and mixed populations carrying multiple plasmids. These results suggest that reducing antibiotic use alone is likely insufficient for reversing resistance. Therefore, combining conjugation inhibition and promoting plasmid loss would be an effective strategy to limit conjugation-assisted persistence of antibiotic resistance. | 2017 | 29162798 |