Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
990201.0000Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. It is now common for bacterial infections to resist the preferred antibiotic treatment. In particular, hospital-acquired infections that are refractory to multiple antibiotics and ultimately result in death of the patient are prevalent. Many of the bacteria causing these infections have become resistant to antibiotics through the process of lateral gene transfer, with the newly acquired genes encoding a variety of resistance-mediating proteins. These foreign genes often enter the bacteria on plasmids, which are small, circular, extrachromosomal pieces of DNA. This plasmid-encoded resistance has been observed for virtually all classes of antibiotics and in a wide variety of Gram-positive and Gram-negative organisms; many antibiotics are no longer effective due to such plasmid-encoded resistance. The systematic removal of these resistance-mediating plasmids from the bacteria would re-sensitize bacteria to standard antibiotics. As such, plasmids offer novel targets that have heretofore been unexploited clinically. This Perspective details the role of plasmids in multi-drug resistant bacteria, the mechanisms used by plasmids to control their replication, and the potential for small molecules to disrupt plasmid replication and re-sensitize bacteria to antibiotics. An emphasis is placed on plasmid replication that is mediated by small counter-transcript RNAs, and the "plasmid addiction" systems that employ toxins and antitoxins.200515750634
990310.9999Bacterial plasmid addiction systems and their implications for antibiotic drug development. Bacteria frequently carry mobile genetic elements capable of being passed to other bacterial cells. An example of this is the transfer of plasmids (small, circular DNA molecules) that often contain antibiotic resistance genes from one bacterium to another. Plasmids have evolved mechanisms to ensure their survival through generations by employing plasmids segregation and replication machinery and plasmid addiction systems. Plasmid addiction systems utilize a post-segregational killing of cells that have not received a plasmid. In this review, the types of plasmid addiction systems are described as well as their prevalence in antibiotic resistant bacteria. Lastly, the possibility of targeting these plasmid addiction systems for the treatment of antibiotic resistant bacterial infections is explored.201728781980
931020.9999Bacterial resistance to antibiotics. Effective antibacterial drugs have been available for nearly 50 years. After the introduction of each new such drug, whether chemically synthesized or a naturally occurring antibiotic, bacterial resistance to it has emerged. The genetic mechanisms by which bacteria have acquired resistance were quite unexpected; a new evolutionary pathways has been revealed. Although some antibiotic resistance has resulted from mutational changes in structural proteins--targets for the drugs' action--most has resulted from the acquisition of new, ready-made genes from an external source--that is, from another bacterium. Vectors of the resistance genes are plasmids--heritable DNA molecules that are transmissible between bacterial cells. Plasmids without antibiotic-resistance genes are common in all kinds of bacteria. Resistance plasmids have resulted from the insertion of new DNA sequences into previously existing plasmids. Thus, the spread of antibiotic resistance is at three levels: bacteria between people or animals; plasmids between bacteria; and transposable genes between plasmids.19846319093
424130.9999Mechanisms of antimicrobial resistance and implications for epidemiology. The development of antibacterial agents has provided a means of treating bacterial diseases which were, previously, often fatal in both man and animal and thus represents one of the major advances of the 20th century. However, the efficacy of these agents is increasingly being compromised by the development of bacterial resistance to the drugs currently available for therapeutic use. Bacterial resistance can be combated in two ways. New drugs to which bacteria are susceptible can be developed and policies to contain the development and spread of resistance can be implemented. Both strategies require an understanding of the mechanisms of drug resistance, its epidemiology and the role of environmental factors in promoting resistance. Over the past thirty years our knowledge of bacterial resistance has increased dramatically mainly due to new technology that has become available. Bacteria are able to resist antibacterials by a variety of mechanisms: for example, altering the target to decrease susceptibility to the antibacterial, inactivating or destroying the drug, reducing drug transport into the cell or metabolic bypass. These drug resistance determinants are mediated via one of two distinct genetic mechanisms, a mutation in the bacterial chromosome or by a transmissible element; either a plasmid or a transposon. Significant differences exist between these two types of drug resistance as transmissible resistance, which is mainly plasmid-mediated, permits intraspecies and even interspecies transfer to occur. In contrast, chromosomal resistance can only be passed on to progeny. Transmissible antibacterial resistance is the major cause of concern as it can lead to the rapid spread of antibacterial resistance and has proven difficult, if not impossible, to eradicate. Furthermore, plasmids and transposons can code for multiple antibiotic resistance as well as virulence genes. Antibacterials for which transferable resistance has been identified include most commonly used antibacterials such as beta-lactams, aminoglycosides, macrolides, sulphonamides, tetracyclines, chloramphenicol and trimethoprim. One notable exception is the 4-quinolones for which plasmid-mediated resistance has yet to be identified.19938212509
967940.9999Integrons as the potential targets for combating multidrug resistance in Enterobacteriaceae using CRISPR- Cas9 technique. The emergence of multi-drug resistance (MDR) to pan-drug resistance (PDR) in Enterobacteriaceae has made treatment extremely challenging. Genetic mutations and horizontal gene transfer (HGT) through mobile genetic elements (MGEs) were frequently associated mechanisms of drug resistance in pathogens. However, transposons, plasmids, and integrons transfer MDR genes in bacterium via HGT much faster. Integrons are dsDNA segment that plays a crucial role in the adaptation and evolution of bacteria. They contain multiple gene cassettes that code for antibiotic resistance determinants that are expressed by a single promoter (Pc). Integrons are the cause of drug resistance in Enterobacteriaceae. Although alternatives to antibiotics such as bacteriophages, phage proteins, antimicrobial peptides, and natural compounds have been widely used to treat MDR infections, there have been limited efforts to reverse the antibiotic resistance ability of bacteria. Thus, silencing the genes harboured on MGEs achieved by Gene Editing Techniques (GETs) might prevent the spread of MDR. One such GETs, which has a simple design, good repeatability, low cost, and high efficiency, is CRISPR- Cas9 system. Thus, this review is a first of the kind that focuses on utilizing the structure of an integron to make it an ideal target for GETs like CRISPR- Cas9 systems.202337410611
425450.9999The forgotten Gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. Gram-negative bacilli have become increasingly resistant to antibiotics over the past 2 decades due to selective pressure from the extensive use of antibiotics in the hospital and community. In addition, these bacteria have made optimum use of their innate genetic capabilities to extensively mutate structural and regulatory genes of antibiotic resistance factors, broadening their ability to modify or otherwise inactivate antibiotics in the cell. The great genetic plasticity of bacteria have permitted the transfer of resistance genes on plasmids and integrons between bacterial species allowing an unprecedented dissemination of genes leading to broad-spectrum resistance. As a result, many Gram-negative bacilli possess a complicated set of genes encoding efflux pumps, alterations in outer membrane lipopolysaccharides, regulation of porins and drug inactivating enzymes such as beta-lactamases, that diminish the clinical utility of today's antibiotics. The cross-species mobility of these resistance genes indicates that multidrug resistance will only increase in the future, impacting the efficacy of existing antimicrobials. This trend toward greater resistance comes at a time when very few new antibiotics have been identified capable of controlling such multi-antibiotic resistant pathogens. The continued dissemination of these resistance genes underscores the need for new classes of antibiotics that do not possess the liability of cross-resistance to existing classes of drugs and thereby having diminished potency against Gram-negative bacilli.200616359640
939860.9998Effectiveness of CRISPR-Cas in Sensitizing Bacterial Populations with Plasmid-Encoded Antimicrobial Resistance. The spread of bacteria resistant to antibiotics poses a serious threat to human health. Genes that encode antibiotic resistance are often harbored on plasmids, extra-chromosomal DNA molecules found in bacteria. The emergence of multiresistance plasmids is particularly problematic and demands the development of new antibiotics and alternative strategies. CRISPR-Cas derived tools with their sequence specificity offer a promising new approach to combating antibiotic resistance. By introducing CRISPR-Cas encoding plasmids that %specifically target antibiotic resistance genes on plasmids, the susceptibility of bacteria to conventional antibiotics can be restored. However, genetic variation within bacterial populations can hinder the effectiveness of such CRISPR-Cas tools by allowing some mutant plasmids to evade CRISPR-mediated cleaving or gene silencing. In this study, we develop a model to test the effectiveness of CRISPR-Cas in sensitizing bacterial populations carrying resistance on non-transmissible plasmids and assess the success probability of a subsequent treatment with conventional antibiotics. We evaluate this probability according to the target interference mechanism, the copy number of the resistance-encoding plasmid, and its compatibility with the CRISPR-Cas encoding plasmid. Our results identify promising approaches to revert antibiotic resistance with CRISPR-Cas encoding plasmids: A DNA-cleaving CRISPR-Cas system on a plasmid incompatible with the targeted plasmid is most effective for low copy numbers, while for resistance plasmids with higher copy numbers gene silencing by CRISPR-Cas systems encoded on compatible plasmids is the superior solution.202540985758
442870.9998Multidrug resistance in enteric and other gram-negative bacteria. In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.19968647368
425380.9998Molecular mechanisms of polymyxin resistance and detection of mcr genes. Antibiotic resistance is an ever-increasing global problem. Major commercial antibiotics often fail to fight common bacteria, and some pathogens have become multi-resistant. Polymyxins are potent bactericidal antibiotics against gram-negative bacteria. Known resistance to polymyxin includes intrinsic, mutational and adaptive mechanisms, with the recently described horizontally acquired resistance mechanisms. In this review, we present several strategies for bacteria to develop enhanced resistance to polymyxins, focusing on changes in the outer membrane, efflux and other resistance determinants. Better understanding of the genes involved in polymyxin resistance may pave the way for the development of new and effective antimicrobial agents. We also report novel in silico tested primers for PCR assay that may be able distinguish colistin-resistant isolates carrying the plasmid-encoded mcr genes and will assist in combating the spread of colistin resistance in bacteria.201930439931
930990.9998Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation.200818193080
4429100.9998General mechanisms of resistance to antibiotics. Resistance to antimicrobial agents may result from intrinsic properties of organisms, through mutation and through plasmid- and transposon-specified genes. beta-Lactam resistance is most frequently associated with one or more chromosomal- or plasmid-specified beta-lactamases. Recently, mutations modifying penicillin-binding proteins have been detected with increased frequency as a cause of beta-lactam resistance. Mixed mechanisms, reduced permeability and tolerance are other causes of resistance. Aminoglycoside resistance always involves some modification of drug uptake, most often due to a variety of enzymes modifying these compounds. Reduced uptake is a primary cause of resistance in anaerobic bacteria and bacteria growing anaerobically, some strains of Pseudomonas aeruginosa, and mutants that arise during antimicrobial therapy and are defective in energy-generation systems. Resistance to other antimicrobial agents is presented in tabular form.19883062000
4250110.9998Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions.201728258229
4427120.9998Mechanisms of quinolone action and microbial response. Over the years, chromosomal mapping of the bacterial genome of Escherichia coli has demonstrated that many loci are associated with quinolone resistance, which is mainly a result of chromosomal mutation or alteration of the quantity or type of porins in the outer membrane of Gram-negative bacteria. There has been one report of a small and confined episode of plasmid-mediated resistance to fluoroquinolones, which did not appear to persist. With the increasingly widespread use of an expanding range of fluoroquinolone antibiotics, a range and mix in individual bacterial isolates of the different mechanisms of resistance to fluoroquinolones will undoubtedly be encountered amongst clinically significant bacteria. Currently, transferable resistance is extremely rare and most resistant bacteria arise from clonal expansion of mutated strains. However, it is conceivable that in the future, horizontal gene transfer may become a more important means of conferring resistance to fluoroquinolones.200312702701
3837130.9998Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance.201626668183
4249140.9998Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis. Although the emergence and spread of antimicrobial resistance in major bacterial pathogens for the past decades poses a growing challenge to public health, discovery of novel antimicrobial agents from natural products or modification of existing antibiotics cannot circumvent the problem of antimicrobial resistance. The recent development of bacterial genomics and the availability of genome sequences allow the identification of potentially novel antimicrobial agents. The cellular targets of new antimicrobial agents must be essential for the growth, replication, or survival of the bacterium. Conserved genes among different bacterial genomes often turn out to be essential (1, 2). Thus, the combination of comparative genomics and the gene knock-out procedure can provide effective ways to identify the essential genes of bacterial pathogens (3). Identification of essential genes in bacteria may be utilized for the development of new antimicrobial agents because common essential genes in diverse pathogens could constitute novel targets for broad-spectrum antimicrobial agents.200818392984
9275150.9998Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.201121632619
9901160.9998Plasmid interference for curing antibiotic resistance plasmids in vivo. Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing ('addiction') systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative 'interference plasmids' were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored.201728245276
4133170.9998Importance of integrons in the diffusion of resistance. Horizontal transfer of resistance genes is a successful mechanism for the transmission and dissemination of multiple drug resistance among bacterial pathogens. The impact of horizontally transmitted genetic determinants in the evolution of resistance is particularly evident when resistance genes are physically associated in clusters and transferred en bloc to the recipient cell. Recent advances in the molecular characterisation of antibiotic resistance mechanisms have highlighted the existence of genetic structures. called integrons, involved in the acquisition of resistance genes. These DNA elements have frequently been reported in multi-drug resistant strains isolated from animals and humans, and are located either on the bacterial chromosome or on broad-host-range plasmids. The role of integrons in the development of multiple resistance relies on their unique capacity to cluster and express drug resistance genes. Moreover, the spread of resistance genes among different replicons and their exchange between plasmid and bacterial chromosome are facilitated by the integration of integrons into transposable elements. The association of a highly efficient gene capture and expression system, together with the capacity for vertical and horizontal transmission of resistance genes represents a powerful weapon used by bacteria to combat the assault of antibiotics.200111432416
4248180.9998Phage Display Technique: A Novel Medicinal Approach to Overcome An tibiotic Resistance by Using Peptide-Based Inhibitors Against β-Lactamases. The emergence of antibiotic resistance in bacteria is a serious threat with enormous social and economic implications. The distribution of resistance genes/markers through horizontal gene transfer leads to the dissemination of resistant strains in different parts of the world. The resistant bacteria acquire the ability to overcome resistance by different modes amongst which the expression of β-lactamases is a major factor. The β-lactamase enzymes cleave the amide bond of the β-lactam antibiotics, which constitute about one-third of the antibiotics used all over the world. In a quest to control the spread of resistant bacteria, advanced generations of antibiotics are used either alone or in combination with inhibitors. However, these antibiotics and inhibitors also contain β-lactam ring in their structure and hence are prone to be hydrolyzed by β-lactamase enzymes in the near future. Thus, the severity of the problem is manifested due to the paucity of novel non-β-lactam core containing antibiotics in the drug development stage. One approach to overcome these shortcomings is to use peptide-based inhibitors. Here, we describe the potential use of phage display technique to screen commercially available libraries to pan against β-lactamase enzymes. The main advantage of using peptide-based inhibitors is that the bacteria will not be able to recruit pre-existing defense mechanisms and it will take a long time to evolve a new mechanism in its defense against peptide-based inhibitors.201727465983
9829190.9998Promiscuous transfer of drug resistance in gram-negative bacteria. Bacterial conjugation is a major mechanism for the spread of antibiotic-resistance genes in pathogenic organisms. In gram-negative bacteria, broad-host-range drug-resistance plasmids mediate genetic exchange between many unrelated species. The mechanism of conjugation encoded by the broad-host-range IncP plasmid RK2 has been studied in detail. The location and sequence of the transfer origin of RK2 has been determined. Several barriers limit plasmid transfer between unrelated bacteria: interactions at the cell surface may prevent effective mating contact, restriction systems may degrade foreign DNA, or the plasmid may not replicate in the new host. RK2 has evolved specific mechanisms by which it overcomes these barriers; this plasmid can mediate the transfer of resistance to most gram-negative bacteria.19846143782