Genomic analysis reveals the role of integrative and conjugative elements in plant pathogenic bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
985801.0000Genomic analysis reveals the role of integrative and conjugative elements in plant pathogenic bacteria. BACKGROUND: ICEs are mobile genetic elements found integrated into bacterial chromosomes that can excise and be transferred to a new cell. They play an important role in horizontal gene transmission and carry accessory genes that may provide interesting phenotypes for the bacteria. Here, we seek to research the presence and the role of ICEs in 300 genomes of phytopathogenic bacteria with the greatest scientific and economic impact. RESULTS: Seventy-eight ICEs (45 distinct elements) were identified and characterized in chromosomes of Agrobacterium tumefaciens, Dickeya dadantii, and D. solani, Pectobacterium carotovorum and P. atrosepticum, Pseudomonas syringae, Ralstonia solanacearum Species Complex, and Xanthomonas campestris. Intriguingly, the co-occurrence of four ICEs was observed in some P. syringae strains. Moreover, we identified 31 novel elements, carrying 396 accessory genes with potential influence on virulence and fitness, such as genes coding for functions related to T3SS, cell wall degradation and resistance to heavy metals. We also present the analysis of previously reported data on the expression of cargo genes related to the virulence of P. atrosepticum ICEs, which evidences the role of these genes in the infection process of tobacco plants. CONCLUSIONS: Altogether, this paper has highlighted the potential of ICEs to affect the pathogenicity and lifestyle of these phytopathogens and direct the spread of significant putative virulence genes in phytopathogenic bacteria.202235962419
985910.9999Investigating the impact of insertion sequences and transposons in the genomes of the most significant phytopathogenic bacteria. Genetic variability in phytopathogens is one of the main problems encountered for effective plant disease control. This fact may be related to the presence of transposable elements (TEs), but little is known about their role in host genomes. Here, we performed the most comprehensive analysis of insertion sequences (ISs) and transposons (Tns) in the genomes of the most important bacterial plant pathogens. A total of 35 692 ISs and 71 transposons were identified in 270 complete genomes. The level of pathogen-host specialization was found to be a significant determinant of the element distribution among the species. Some Tns were identified as carrying virulence factors, such as genes encoding effector proteins of the type III secretion system and resistance genes for the antimicrobial streptomycin. Evidence for IS-mediated ectopic recombination was identified in Xanthomonas genomes. Moreover, we found that IS elements tend to be inserted in regions near virulence and fitness genes, such ISs disrupting avirulence genes in X. oryzae genomes. In addition, transcriptome analysis under different stress conditions revealed differences in the expression of genes encoding transposases in the Ralstonia solanacearum, X. oryzae, and P. syringae species. Lastly, we also investigated the role of Tns in regulation via small noncoding regulatory RNAs and found these elements may target plant-cell transcriptional activators. Taken together, the results indicate that TEs may have a fundamental role in variability and virulence in plant pathogenic bacteria.202438568199
931120.9998Various plasmid strategies limit the effect of bacterial restriction-modification systems against conjugation. In bacteria, genes conferring antibiotic resistance are mostly carried on conjugative plasmids, mobile genetic elements that spread horizontally between bacterial hosts. Bacteria carry defence systems that defend them against genetic parasites, but how effective these are against plasmid conjugation is poorly understood. Here, we study to what extent restriction-modification (RM) systems-by far the most prevalent bacterial defence systems-act as a barrier against plasmids. Using 10 different RM systems and 13 natural plasmids conferring antibiotic resistance in Escherichia coli, we uncovered variation in defence efficiency ranging from none to 105-fold protection. Further analysis revealed genetic features of plasmids that explain the observed variation in defence levels. First, the number of RM recognition sites present on the plasmids generally correlates with defence levels, with higher numbers of sites being associated with stronger defence. Second, some plasmids encode methylases that protect against restriction activity. Finally, we show that a high number of plasmids in our collection encode anti-restriction genes that provide protection against several types of RM systems. Overall, our results show that it is common for plasmids to encode anti-RM strategies, and that, as a consequence, RM systems form only a weak barrier for plasmid transfer by conjugation.202439413206
986030.9998Insights and inferences about integron evolution from genomic data. BACKGROUND: Integrons are mechanisms that facilitate horizontal gene transfer, allowing bacteria to integrate and express foreign DNA. These are important in the exchange of antibiotic resistance determinants, but can also transfer a diverse suite of genes unrelated to pathogenicity. Here, we provide a systematic analysis of the distribution and diversity of integron intI genes and integron-containing bacteria. RESULTS: We found integrons in 103 different pathogenic and non-pathogenic bacteria, in six major phyla. Integrons were widely scattered, and their presence was not confined to specific clades within bacterial orders. Nearly 1/3 of the intI genes that we identified were pseudogenes, containing either an internal stop codon or a frameshift mutation that would render the protein product non-functional. Additionally, 20% of bacteria contained more than one integrase gene. dN/dS ratios revealed mutational hotspots in clades of Vibrio and Shewanella intI genes. Finally, we characterized the gene cassettes associated with integrons in Methylobacillus flagellatus KT and Dechloromonas aromatica RCB, and found a heavy metal efflux gene as well as genes involved in protein folding and stability. CONCLUSION: Our analysis suggests that the present distribution of integrons is due to multiple losses and gene transfer events. While, in some cases, the ability to integrate and excise foreign DNA may be selectively advantageous, the gain, loss, or rearrangment of gene cassettes could also be deleterious, selecting against functional integrases. Thus, such a high fraction of pseudogenes may suggest that the selective impact of integrons on genomes is variable, oscillating between beneficial and deleterious, possibly depending on environmental conditions.200818513439
437340.9997Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such "short-term" evolution is often enabled by plasmids-extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries.201425426110
437450.9997Core genes can have higher recombination rates than accessory genes within global microbial populations. Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome.202235801696
437260.9997Plasmidome of Listeria spp.-The repA-Family Business. Bacteria of the genus Listeria (phylum Firmicutes) include both human and animal pathogens, as well as saprophytic strains. A common component of Listeria spp. genomes are plasmids, i.e., extrachromosomal replicons that contribute to gene flux in bacteria. This study provides an in-depth insight into the structure, diversity and evolution of plasmids occurring in Listeria strains inhabiting various environments under different anthropogenic pressures. Apart from the components of the conserved plasmid backbone (providing replication, stable maintenance and conjugational transfer functions), these replicons contain numerous adaptive genes possibly involved in: (i) resistance to antibiotics, heavy metals, metalloids and sanitizers, and (ii) responses to heat, oxidative, acid and high salinity stressors. Their genomes are also enriched by numerous transposable elements, which have influenced the plasmid architecture. The plasmidome of Listeria is dominated by a group of related replicons encoding the RepA replication initiation protein. Detailed comparative analyses provide valuable data on the level of conservation of these replicons and their role in shaping the structure of the Listeria pangenome, as well as their relationship to plasmids of other genera of Firmicutes, which demonstrates the range and direction of flow of genetic information in this important group of bacteria.202134638661
438170.9997Specific Gene Loci of Clinical Pseudomonas putida Isolates. Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.201626820467
986180.9997Comparative genomics of native plasmids from plant pathogenic Gammaproteobacteria. Plasmids are key in the evolution and adaptation of plant pathogenic Gammaproteobacteria (PPG), yet their diversity and functional contributions remain underexplored. Here, comparative genomics revealed extensive variation in plasmid size, replicon types, mobility, and genetic content across PPG. Most plasmids are small (< 200 kb), except in Pantoea, exhibiting high coding densities (76% to 78%). Five ancestral replicon types were identified across multiple orders, indicating vertical descent yet efficient horizontal transfer across taxa, although with limited genetic conservation. Virulence plasmids are widespread (56% to 68%) but differ in virulence gene content across orders: type III effector (T3E) genes are common in Pseudomonas and Xanthomonas, but rare in Enterobacterales and Xylella, aligning with their smaller effector repertoires. Plasmids frequently carry regulatory genes, highlighting their role in bacterial phenotype modulation. Distinct patterns were observed among orders: Enterobacterales plasmids often harbor thiamin biosynthesis operons and transcriptional regulators but lack post-transcriptional regulators, while most Pseudomonas and Xanthomonas plasmids are mobile, enriched in T3E genes, and exhibit high insertion sequence densities, fostering DNA mobility. Resistance to ultraviolet light is common, but not to antimicrobial compounds. These findings highlight the dynamic role of plasmids in spreading adaptive traits, shaping virulence, and driving the evolution of plant pathogenic bacteria.202540273218
935090.9997Genome DNA Sequence Variation, Evolution, and Function in Bacteria and Archaea. Comparative genomics has revealed that variations in bacterial and archaeal genome DNA sequences cannot be explained by only neutral mutations. Virus resistance and plasmid distribution systems have resulted in changes in bacterial and archaeal genome sequences during evolution. The restriction-modification system, a virus resistance system, leads to avoidance of palindromic DNA sequences in genomes. Clustered, regularly interspaced, short palindromic repeats (CRISPRs) found in genomes represent yet another virus resistance system. Comparative genomics has shown that bacteria and archaea have failed to gain any DNA with GC content higher than the GC content of their chromosomes. Thus, horizontally transferred DNA regions have lower GC content than the host chromosomal DNA does. Some nucleoid-associated proteins bind DNA regions with low GC content and inhibit the expression of genes contained in those regions. This form of gene repression is another type of virus resistance system. On the other hand, bacteria and archaea have used plasmids to gain additional genes. Virus resistance systems influence plasmid distribution. Interestingly, the restriction-modification system and nucleoid-associated protein genes have been distributed via plasmids. Thus, GC content and genomic signatures do not reflect bacterial and archaeal evolutionary relationships.201322772895
4383100.9997Importance of Core Genome Functions for an Extreme Antibiotic Resistance Trait. Extreme antibiotic resistance in bacteria is associated with the expression of powerful inactivating enzymes and other functions encoded in accessory genomic elements. The contribution of core genome processes to high-level resistance in such bacteria has been unclear. In the work reported here, we evaluated the relative importance of core and accessory functions for high-level resistance to the aminoglycoside tobramycin in the nosocomial pathogen Acinetobacter baumannii Three lines of evidence establish the primacy of core functions in this resistance. First, in a genome scale mutant analysis using transposon sequencing and validation with 594 individual mutants, nearly all mutations reducing tobramycin resistance inactivated core genes, some with stronger phenotypes than those caused by the elimination of aminoglycoside-inactivating enzymes. Second, the core functions mediating resistance were nearly identical in the wild type and a deletion mutant lacking a genome resistance island that encodes the inactivating enzymes. Thus, most or all of the core resistance determinants important in the absence of the enzymes are also important in their presence. Third, reductions in tobramycin resistance caused by different core mutations were additive, and highly sensitive double and triple mutants (with 250-fold reductions in the MIC) that retained accessory resistance genes could be constructed. Core processes that contribute most strongly to intrinsic tobramycin resistance include phospholipid biosynthesis, phosphate regulation, and envelope homeostasis.IMPORTANCE The inexorable increase in bacterial antibiotic resistance threatens to undermine many of the procedures that transformed medicine in the last century. One strategy to meet the challenge antibiotic resistance poses is the development of drugs that undermine resistance. To identify potential targets for such adjuvants, we identified the functions underlying resistance to an important class of antibiotics for one of the most highly resistant pathogens known.201729233894
9665110.9997Time-calibrated genomic evolution of a monomorphic bacterium during its establishment as an endemic crop pathogen. Horizontal gene transfer is of major evolutionary importance as it allows for the redistribution of phenotypically important genes among lineages. Such genes with essential functions include those involved in resistance to antimicrobial compounds and virulence factors in pathogenic bacteria. Understanding gene turnover at microevolutionary scales is critical to assess the pace of this evolutionary process. Here, we characterized and quantified gene turnover for the epidemic lineage of a bacterial plant pathogen of major agricultural importance worldwide. Relying on a dense geographic sampling spanning 39 years of evolution, we estimated both the dynamics of single nucleotide polymorphism accumulation and gene content turnover. We identified extensive gene content variation among lineages even at the smallest phylogenetic and geographic scales. Gene turnover rate exceeded nucleotide substitution rate by three orders of magnitude. Accessory genes were found preferentially located on plasmids, but we identified a highly plastic chromosomal region hosting ecologically important genes such as transcription activator-like effectors. Whereas most changes in the gene content are probably transient, the rapid spread of a mobile element conferring resistance to copper compounds widely used for the management of plant bacterial pathogens illustrates how some accessory genes can become ubiquitous within a population over short timeframes.202133305421
9862120.9997Comparative Genomic Analysis Uncovered Evolution of Pathogenicity Factors, Horizontal Gene Transfer Events, and Heavy Metal Resistance Traits in Citrus Canker Bacterium Xanthomonas citri subsp. citri. Background: Worldwide citrus production is severely threatened by Asiatic citrus canker which is caused by the proteobacterium Xanthomonas citri subsp. citri. Foliar sprays of copper-based bactericides are frequently used to control plant bacterial diseases. Despite the sequencing of many X. citri strains, the genome diversity and distribution of genes responsible for metal resistance in X. citri subsp. citri strains from orchards with different management practices in Taiwan are not well understood. Results: The genomes of three X. citri subsp. citri strains including one copper-resistant strain collected from farms with different management regimes in Taiwan were sequenced by Illumina and Nanopore sequencing and assembled into complete circular chromosomes and plasmids. CRISPR spoligotyping and phylogenomic analysis indicated that the three strains were located in the same phylogenetic lineages and shared ∼3,000 core-genes with published X. citri subsp. citri strains. These strains differed mainly in the CRISPR repeats and pathogenicity-related plasmid-borne transcription activator-like effector (TALE)-encoding pthA genes. The copper-resistant strain has a unique, large copper resistance plasmid due to an unusual ∼40 kbp inverted repeat. Each repeat contains a complete set of the gene cluster responsible for copper and heavy metal resistance. Conversely, the copper sensitive strains carry no metal resistance genes in the plasmid. Through comparative analysis, the origin and evolution of the metal resistance clusters was resolved. Conclusion: Chromosomes remained constant among three strains collected in Taiwan, but plasmids likely played an important role in maintaining pathogenicity and developing bacterial fitness in the field. The evolution of pathogenicity factors and horizontal gene transfer events were observed in the three strains. These data suggest that agricultural management practices could be a potential trigger for the evolution of citrus canker pathogens. The decrease in the number of CRISPR repeats and pthA genes might be the result of adaptation to a less stressful environment. The metal resistance genes in the copper resistant X. citri strain likely originated from the Mauritian strain not the local copper-resistant X. euvesicatoria strain. This study highlights the importance of plasmids as 'vehicles' for exchanging genetic elements between plant pathogenic bacteria and contributing to bacterial adaptation to the environment.202134557177
6309130.9997Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an "antidefense" protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.201323478446
9664140.9997Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria. The CRISPR-Cas system represents an adaptive immune mechanism found across diverse Archaea and Bacteria, allowing them to defend against invading genetic elements such as viruses and plasmids. Despite its broad distribution, the prevalence and complexity of CRISPR-Cas systems differ significantly between these domains. This study aimed to characterize and compare the genomic distribution, structural features, and functional implications of CRISPR-Cas systems and associated antibiotic resistance genes in 30 archaeal and 30 bacterial genomes. Through bioinformatic analyses of CRISPR arrays, cas gene architectures, direct repeats (DRs), and thermodynamic properties, we observed that Archaea exhibit a higher number and greater complexity of CRISPR loci, with more diverse cas gene subtypes exclusively of Class 1. Bacteria, in contrast, showed fewer CRISPR loci, comprising a mix of Class 1 and Class 2 systems, with Class 1 representing the majority (~75%) of the detected systems. Notably, Bacteria lacking CRISPR-Cas systems displayed a higher prevalence of antibiotic resistance genes, suggesting a possible inverse correlation between the presence of these immune systems and the acquisition of such genes. Phylogenetic and thermodynamic analyses further highlighted domain-specific adaptations and conservation patterns. These findings support the hypothesis that CRISPR-Cas systems play a dual role: first, as a defense mechanism preventing the integration of foreign genetic material-reflected in the higher complexity and diversity of CRISPR loci in Archaea-and second, as a regulator of horizontal gene transfer, evidenced by the lower frequency of antibiotic resistance genes in organisms with active CRISPR-Cas systems. Together, these results underscore the evolutionary and functional diversification of CRISPR-Cas systems in response to environmental and selective pressures.202540572209
260150.9997Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria.201121538255
4377160.9997Pathogenicity and other genomic islands in plant pathogenic bacteria. SUMMARY Pathogenicity islands (PAIs) were first described in uropathogenic E. coli. They are now defined as regions of DNA that contain virulence genes and are present in the genome of pathogenic strains, but absent from or only rarely present in non-pathogenic variants of the same or related strains. Other features include a variable G+C content, distinct boundaries from the rest of the genome and the presence of genes related to mobile elements such as insertion sequences, integrases and transposases. Although PAIs have now been described in a wide range of both plant and animal pathogens it has become evident that the general features of PAIs are displayed by a number of regions of DNA with functions other than pathogenicity, such as symbiosis and antibiotic resistance, and the general term genomic islands has been adopted. This review will describe a range of genomic islands in plant pathogenic bacteria including those that carry effector genes, phytotoxins and the type III protein secretion cluster. The review will also consider some medically important bacteria in order to discuss the range, acquisition and stabilization of genomic islands.200320569400
3811170.9997Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Genes introduced by horizontal gene transfer (HGT) from other species constitute a significant portion of many bacterial genomes, and the evolutionary dynamics of HGTs are important for understanding the spread of antibiotic resistance and the emergence of new pathogenic strains of bacteria. The fitness effects of the transferred genes largely determine the fixation rates and the amount of neutral diversity of newly acquired genes in bacterial populations. Comparative analysis of bacterial genomes provides insight into what genes are commonly transferred, but direct experimental tests of the fitness constraints on HGT are scarce. Here, we address this paucity of experimental studies by introducing 98 random DNA fragments varying in size from 0.45 to 5 kb from Bacteroides, Proteus, and human intestinal phage into a defined position in the Salmonella chromosome and measuring the effects on fitness. Using highly sensitive competition assays, we found that eight inserts were deleterious with selection coefficients (s) ranging from ≈ -0.007 to -0.02 and 90 did not have significant fitness effects. When inducing transcription from a PBAD promoter located at one end of the insert, 16 transfers were deleterious and 82 were not significantly different from the control. In conclusion, a major fraction of the inserts had minor effects on fitness implying that extra DNA transferred by HGT, even though it does not confer an immediate selective advantage, could be maintained at selection-transfer balance and serve as raw material for the evolution of novel beneficial functions.201424536043
9268180.9997The expression of integron arrays is shaped by the translation rate of cassettes. Integrons are key elements in the rise and spread of multidrug resistance in Gram-negative bacteria. These genetic platforms capture cassettes containing promoterless genes and stockpile them in arrays of variable length. In the current integron model, expression of cassettes is granted by the P(c) promoter in the platform and is assumed to decrease as a function of its distance. Here we explored this model using a large collection of 136 antibiotic resistance cassettes and show the effect of distance is in fact negligible. Instead, cassettes have a strong impact in the expression of downstream genes because their translation rate affects the stability of the whole polycistronic mRNA molecule. Hence, cassettes with reduced translation rates decrease the expression and resistance phenotype of cassettes downstream. Our data puts forward an integron model in which expression is contingent on the translation of cassettes upstream, rather than on the distance to the P(c).202439455579
8384190.9997In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Symbiosis is often characterized by co-evolutionary changes in the genomes of the partners involved. An understanding of these changes can provide insight into the nature of the relationship, including the mechanisms that initiate and maintain an association between organisms. In this study we examined the genome sequences of bacteria isolated from the Drosophila melanogaster gut with the objective of identifying genes that are important for function in the host. We compared microbiota isolates with con-specific or closely related bacterial species isolated from non-fly environments. First the phenotype of germ-free Drosophila (axenic flies) was compared to that of flies colonized with specific bacteria (gnotobiotic flies) as a measure of symbiotic function. Non-fly isolates were functionally distinct from bacteria isolated from flies, conferring slower development and an altered nutrient profile in the host, traits known to be microbiota-dependent. Comparative genomic methods were next employed to identify putative symbiosis factors: genes found in bacteria that restore microbiota-dependent traits to gnotobiotic flies, but absent from those that do not. Factors identified include riboflavin synthesis and stress resistance. We also used a phylogenomic approach to identify protein coding genes for which fly-isolate sequences were more similar to each other than to other sequences, reasoning that these genes may have a shared function unique to the fly environment. This method identified genes in Acetobacter species that cluster in two distinct genomic loci: one predicted to be involved in oxidative stress detoxification and another encoding an efflux pump. In summary, we leveraged genomic and in vivo functional comparisons to identify candidate traits that distinguish symbiotic bacteria. These candidates can serve as the basis for further work investigating the genetic requirements of bacteria for function and persistence in the Drosophila gut.201425408687