# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9828 | 0 | 1.0000 | Antibiotic resistance: genetic mechanisms and mobility. Based on the current knowledge, resistance genes seems mainly to originate in the organisms which produce antibiotics (Davies 1994). We lack considerably in the understanding of how these genes were transferred to pathogenic bacteria, and due to the enormous diversity of e.g. the soil flora, it is doubtful that we will ever obtain more that a faint picture of this. In Gram negative bacteria, more and more resistance genes are demonstrated to be located in integrons (e.g. beta-lactamase and streptomycin resistance genes in Salmonella Typhimurium DT104 (Sandvang et al. in press)). Integrons seem primarily to act as insertion sites for resistance genes. The origin of integrons as well as the resistance gene cassettes that are the other essential element of this system, is largely unknown (Hall & Collis 1995). Integrons can be located in the chromosome, in transposons, which have the ability to copy them themselves to other DNA molecules, or on plasmids. The emergence of resistant bacteria normally happens because of selection for a resistant clone of bacteria. Several mechanisms, however, exists by which the resistance genes can be transferred from one bacteria to another. Conjugation, mediated by plasmids or conjugative transposons, is currently the most well established of these mechanisms. Still, however, the selection pressure created by the use of antibiotics determines whether bacteria that have newly acquired a resistance gene expand to dominate in the population or remains a blink in history. | 1999 | 10783713 |
| 9309 | 1 | 0.9999 | Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. | 2008 | 18193080 |
| 4134 | 2 | 0.9999 | Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes. In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes. | 2014 | 26104453 |
| 9310 | 3 | 0.9998 | Bacterial resistance to antibiotics. Effective antibacterial drugs have been available for nearly 50 years. After the introduction of each new such drug, whether chemically synthesized or a naturally occurring antibiotic, bacterial resistance to it has emerged. The genetic mechanisms by which bacteria have acquired resistance were quite unexpected; a new evolutionary pathways has been revealed. Although some antibiotic resistance has resulted from mutational changes in structural proteins--targets for the drugs' action--most has resulted from the acquisition of new, ready-made genes from an external source--that is, from another bacterium. Vectors of the resistance genes are plasmids--heritable DNA molecules that are transmissible between bacterial cells. Plasmids without antibiotic-resistance genes are common in all kinds of bacteria. Resistance plasmids have resulted from the insertion of new DNA sequences into previously existing plasmids. Thus, the spread of antibiotic resistance is at three levels: bacteria between people or animals; plasmids between bacteria; and transposable genes between plasmids. | 1984 | 6319093 |
| 4133 | 4 | 0.9998 | Importance of integrons in the diffusion of resistance. Horizontal transfer of resistance genes is a successful mechanism for the transmission and dissemination of multiple drug resistance among bacterial pathogens. The impact of horizontally transmitted genetic determinants in the evolution of resistance is particularly evident when resistance genes are physically associated in clusters and transferred en bloc to the recipient cell. Recent advances in the molecular characterisation of antibiotic resistance mechanisms have highlighted the existence of genetic structures. called integrons, involved in the acquisition of resistance genes. These DNA elements have frequently been reported in multi-drug resistant strains isolated from animals and humans, and are located either on the bacterial chromosome or on broad-host-range plasmids. The role of integrons in the development of multiple resistance relies on their unique capacity to cluster and express drug resistance genes. Moreover, the spread of resistance genes among different replicons and their exchange between plasmid and bacterial chromosome are facilitated by the integration of integrons into transposable elements. The association of a highly efficient gene capture and expression system, together with the capacity for vertical and horizontal transmission of resistance genes represents a powerful weapon used by bacteria to combat the assault of antibiotics. | 2001 | 11432416 |
| 4417 | 5 | 0.9998 | Genetic mobility and distribution of tetracycline resistance determinants. Since 1953, tetracycline-resistant bacteria have been found increasingly in humans, animals, food and the environment. Tetracycline resistance is normally due to the acquisition of new genes and is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from its action. Gram-negative efflux genes are frequently associated with conjugative plasmids, whereas Gram-positive efflux genes are often found on small mobilizable plasmids or in the chromosome. The ribosomal protection genes are generally associated with conjugative transposons which have a preference for the chromosome. Recently, tetracycline resistance genes have been found in the genera Mycobacterium, Nocardia, Streptomyces and Treponema. The Tet M determinant codes for a ribosomal protection protein which can be found in Gram-positive, Gram-negative, cell-wall-free, aerobic, anaerobic, pathogenic, opportunistic and normal flora species. This promiscuous nature may be correlated with its location on a conjugative transposon and its ability to cross most biochemical and physical barriers found in bacteria. The Tet B efflux determinant is unlike other efflux gene products because it confers resistance to tetracycline, doxycycline and minocycline and has the widest host range of all Gram-negative efflux determinants. We have hypothesized that mobility and the environment of the bacteria may help influence the ultimate host range of specific tet genes. If we are to reverse the trend towards increasingly antibiotic-resistant pathogenic bacteria, we will need to change how antibiotics are used in both human and animal health as well as food production. | 1997 | 9189643 |
| 9827 | 6 | 0.9998 | Evolution of bacterial resistance to antibiotics during the last three decades. Bacterial resistance to antibiotics is often plasmid-mediated and the associated genes encoded by transposable elements. These elements play a central role in evolution by providing mechanisms for the generation of diversity and, in conjunction with DNA transfer systems, for the dissemination of resistances to other bacteria. At the University Hospital of Zaragoza, extensive efforts have been made to define both the dissemination and evolution of antibiotic resistance by studying the transferable R plasmids and transposable elements. Here we describe the research on bacterial resistance to antibiotics in which many authors listed in the references have participated. The aspects of bacterial resistance dealt with are: (i) transferable resistance mediated by R plasmids in Gram-negative bacteria, (ii) R plasmid-mediated resistance to apramycin and hygromycin in clinical strains, (iii) the transposon Tn1696 and the integron In4, (iv) expression of Escherichia coli resistance genes in Haemophilus influenzae, (v) aminoglycoside-modifying-enzymes in the genus Mycobacterium with no relation to resistance, and (vi) macrolide-resistance and new mechanisms developed by Gram-positive bacteria. | 1998 | 10943375 |
| 4423 | 7 | 0.9998 | Inactivation of antibiotics and the dissemination of resistance genes. The emergence of multidrug-resistant bacteria is a phenomenon of concern to the clinician and the pharmaceutical industry, as it is the major cause of failure in the treatment of infectious diseases. The most common mechanism of resistance in pathogenic bacteria to antibiotics of the aminoglycoside, beta-lactam (penicillins and cephalosporins), and chloramphenicol types involves the enzymic inactivation of the antibiotic by hydrolysis or by formation of inactive derivatives. Such resistance determinants most probably were acquired by pathogenic bacteria from a pool of resistance genes in other microbial genera, including antibiotic-producing organisms. The resistance gene sequences were subsequently integrated by site-specific recombination into several classes of naturally occurring gene expression cassettes (typically "integrons") and disseminated within the microbial population by a variety of gene transfer mechanisms. Although bacterial conjugation once was believed to be restricted in host range, it now appears that this mechanism of transfer permits genetic exchange between many different bacterial genera in nature. | 1994 | 8153624 |
| 4418 | 8 | 0.9998 | Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Tetracycline has been a widely used antibiotic because of its low toxicity and broad spectrum of activity. However, its clinical usefulness has been declining because of the appearance of an increasing number of tetracycline-resistant isolates of clinically important bacteria. Two types of resistance mechanisms predominate: tetracycline efflux and ribosomal protection. A third mechanism of resistance, tetracycline modification, has been identified, but its clinical relevance is still unclear. For some tetracycline resistance genes, expression is regulated. In efflux genes found in gram-negative enteric bacteria, regulation is via a repressor that interacts with tetracycline. Gram-positive efflux genes appear to be regulated by an attenuation mechanism. Recently it was reported that at least one of the ribosome protection genes is regulated by attenuation. Tetracycline resistance genes are often found on transmissible elements. Efflux resistance genes are generally found on plasmids, whereas genes involved in ribosome protection have been found on both plasmids and self-transmissible chromosomal elements (conjugative transposons). One class of conjugative transposon, originally found in streptococci, can transfer itself from streptococci to a variety of recipients, including other gram-positive bacteria, gram-negative bacteria, and mycoplasmas. Another class of conjugative transposons has been found in the Bacteroides group. An unusual feature of the Bacteroides elements is that their transfer is enhanced by preexposure to tetracycline. Thus, tetracycline has the double effect of selecting for recipients that acquire a resistance gene and stimulating transfer of the gene. | 1992 | 1423217 |
| 4835 | 9 | 0.9998 | Genetic and biochemical basis of resistance of Enterobacteriaceae to beta-lactam antibiotics. Resistance to beta-lactam drugs is usually determined by genes mediating the production of beta-lactamases. These genes can be located on resistance plasmids or on the chromosome. Resistance to drugs which have been available for many years is mostly transposable. Although the origin of these genes is not known, it is possible to draw a hypothetical flow diagram of the evolution of resistance genes in general. The mechanism of resistance although mediated in Gram-negative bacteria mostly by beta-lactamases cannot be simply described as the hydrolytic function of the enzyme. It is a complex interaction involving the affinity of the drug for the target and the lactamase, the amount of drug in the periplasmic space, the amount of enzyme and the number of lethal target sites. Usually one of these factors is predominant. | 1986 | 3491818 |
| 9829 | 10 | 0.9998 | Promiscuous transfer of drug resistance in gram-negative bacteria. Bacterial conjugation is a major mechanism for the spread of antibiotic-resistance genes in pathogenic organisms. In gram-negative bacteria, broad-host-range drug-resistance plasmids mediate genetic exchange between many unrelated species. The mechanism of conjugation encoded by the broad-host-range IncP plasmid RK2 has been studied in detail. The location and sequence of the transfer origin of RK2 has been determined. Several barriers limit plasmid transfer between unrelated bacteria: interactions at the cell surface may prevent effective mating contact, restriction systems may degrade foreign DNA, or the plasmid may not replicate in the new host. RK2 has evolved specific mechanisms by which it overcomes these barriers; this plasmid can mediate the transfer of resistance to most gram-negative bacteria. | 1984 | 6143782 |
| 9308 | 11 | 0.9998 | Integrons: natural tools for bacterial genome evolution. Integrons were first identified as the primary mechanism for antibiotic resistance gene capture and dissemination among Gram-negative bacteria. More recently, their role in genome evolution has been extended with the discovery of larger integron structures, the super-integrons, as genuine components of the genomes of many species throughout the gamma-proteobacterial radiation. The functional platforms of these integrons appear to be sedentary, whereas their gene cassette contents are highly variable. Nevertheless, the gene cassettes for which an activity has been experimentally demonstrated encode proteins related to simple adaptive functions and their recruitment is seen as providing the bacterial host with a selective advantage. The widespread occurrence of the integron system among Gram-negative bacteria is discussed, with special focus on the super-integrons. Some of the adaptive functions encoded by these genes are also reviewed, and implications of integron-mediated genome evolution in the emergence of novel bacterial species are highlighted. | 2001 | 11587934 |
| 4165 | 12 | 0.9998 | A modular master on the move: the Tn916 family of mobile genetic elements. The Tn916 family is a group of mobile genetic elements that are widespread among many commensal and pathogenic bacteria. These elements are found primarily, but not exclusively, in the Firmicutes. They are integrated into the bacterial genome and are capable of conjugative transfer to a new host and, often, intracellular transposition to a different genomic site - hence their name: 'conjugative transposons', or 'integrative conjugative elements'. An increasing variety of Tn916 relatives are being reported from different bacteria, harbouring genes coding for resistance to various antibiotics and the potential to encode other functions, such as lantibiotic immunity. This family of mobile genetic elements has an extraordinary ability to acquire accessory genes, making them important vectors in the dissemination of various traits among environmental, commensal and clinical bacteria. These elements are also responsible for genome rearrangements, providing considerable raw material on which natural selection can act. Therefore, the study of this family of mobile genetic elements is essential for a better understanding and control of the current rise of antibiotic resistance among pathogenic bacteria. | 2009 | 19464182 |
| 4427 | 13 | 0.9998 | Mechanisms of quinolone action and microbial response. Over the years, chromosomal mapping of the bacterial genome of Escherichia coli has demonstrated that many loci are associated with quinolone resistance, which is mainly a result of chromosomal mutation or alteration of the quantity or type of porins in the outer membrane of Gram-negative bacteria. There has been one report of a small and confined episode of plasmid-mediated resistance to fluoroquinolones, which did not appear to persist. With the increasingly widespread use of an expanding range of fluoroquinolone antibiotics, a range and mix in individual bacterial isolates of the different mechanisms of resistance to fluoroquinolones will undoubtedly be encountered amongst clinically significant bacteria. Currently, transferable resistance is extremely rare and most resistant bacteria arise from clonal expansion of mutated strains. However, it is conceivable that in the future, horizontal gene transfer may become a more important means of conferring resistance to fluoroquinolones. | 2003 | 12702701 |
| 3837 | 14 | 0.9998 | Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance. | 2016 | 26668183 |
| 4175 | 15 | 0.9998 | Resistance gene transfer in anaerobes: new insights, new problems. Investigations of antibiotic-resistance gene transfer elements in Bacteroides species have generated some new insights into how bacteria transfer resistance genes and what environmental conditions foster gene transfer. Integrated gene transfer elements, called conjugative transposons, appear to be responsible for much of the transfer of resistance genes among Bacteroides species. Conjugative transposons not only transfer themselves but also mobilize coresident plasmids and excise and mobilize unlinked integrated elements. Less is known about resistance gene transfer elements of the gram-positive anaerobes, but there are some indications that similar elements may be found in them as well. An unusual feature of the Bacteroides conjugative transposons is that transfer of many of them is stimulated considerably by low concentrations of antibiotics. Thus, antibiotics not only select for resistant strains but also can stimulate transfer of the resistance gene in the first place. This finding raises questions about whether use of low-dose tetracycline therapy may have a greater effect on the resident microflora than had been previously thought. Finally, investigations of resistance genes in Bacteroides species and other genera of bacteria have begun to provide evidence that the resident microflora of the human body does indeed act as a reservoir for resistance genes, which may be acquired from and passed on the transient colonizers of the site. | 1996 | 8953105 |
| 9307 | 16 | 0.9998 | Integrons. Integrons are genetic elements able to acquire and rearrange open reading frames (ORFs) embedded in gene cassette units and convert them to functional genes by ensuring their correct expression. They were originally identified as a mechanism used by Gram-negative bacteria to collect antibiotic resistance genes and express multiple resistance phenotypes in synergy with transposons. More recently, their role has been broadened with the discovery of chromosomal integron (CI) structures in the genomes of hundreds of bacterial species. This review focuses on the resources carried in these elements, on their unique recombination mechanisms, and on the different mechanisms controlling the cassette dynamics. We discuss the role of the toxin/antitoxin (TA) cassettes for the stabilization of the large cassette arrays carried in the larger CIs, known as superintegrons. Finally, we explore the central role played by single-stranded DNA in the integron cassette dynamics in light of the recent discovery that the integron integrase expression is controlled by the SOS response. | 2010 | 20707672 |
| 4168 | 17 | 0.9998 | Various pathways leading to the acquisition of antibiotic resistance by natural transformation. Natural transformation can lead to exchange of DNA between taxonomically diverse bacteria. In the case of chromosomal DNA, homology-based recombination with the recipient genome is usually necessary for heritable stability. In our recent study, we have shown that natural transformation can promote the transfer of transposons, IS elements, and integrons and gene cassettes, largely independent of the genetic relationship between the donor and recipient bacteria. Additional results from our study suggest that natural transformation with species-foreign DNA might result in the uptake of a wide range of DNA fragments; leading to changes in the antimicrobial susceptibility profile and contributing to the generation of antimicrobial resistance in bacteria. | 2012 | 23482877 |
| 9824 | 18 | 0.9998 | Transposons: the agents of antibiotic resistance in bacteria. Transposons are a group of mobile genetic elements that are defined as a DNA sequence. Transposons can jump into different places of the genome; for this reason, they are called jumping genes. However, some transposons are always kept at the insertion site in the genome. Most transposons are inactivated and as a result, cannot move. Transposons are divided into two main groups: retrotransposons (class І) and DNA transposons (class ІІ). Retrotransposons are often found in eukaryotes. DNA transposons can be found in both eukaryotes and prokaryotes. The bacterial transposons belong to the DNA transposons and the Tn family, which are usually the carrier of additional genes for antibiotic resistance. Transposons can transfer from a plasmid to other plasmids or from a DNA chromosome to plasmid and vice versa that cause the transmission of antibiotic resistance genes in bacteria. The treatment of bacterial infectious diseases is difficult because of existing antibiotic resistance that part of this antibiotic resistance is caused by transposons. Bacterial infectious diseases are responsible for the increasing rise in world mortality rate. In this review, transposons and their roles have been studied in bacterial antibiotic resistance, in detail. | 2018 | 30113080 |
| 4152 | 19 | 0.9998 | Quinolone resistance: much more than predicted. Since quinolones are synthetic antibiotics, it was predicted that mutations in target genes would be the only mechanism through which resistance could be acquired, because there will not be quinolone-resistance genes in nature. Contrary to this prediction, a variety of elements ranging from efflux pumps, target-protecting proteins, and even quinolone-modifying enzymes have been shown to contribute to quinolone resistance. The finding of some of these elements in plasmids indicates that quinolone resistance can be transferable. As a result, there has been a developing interest on the reservoirs for quinolone-resistance genes and on the potential risks associated with the use of these antibiotics in non-clinical environments. As a matter of fact, plasmid-encoded, quinolone-resistance qnr genes originated in the chromosome of aquatic bacteria. Thus the use of quinolones in fish-farming might constitute a risk for the emergence of resistance. Failure to predict the development of quinolone resistance reinforces the need of taking into consideration the wide plasticity of biological systems for future predictions. This plasticity allows pathogens to deal with toxic compounds, including those with a synthetic origin as quinolones. | 2011 | 21687414 |