Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
982601.0000Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Some transformable bacteria have acquired target-mediated antibiotic resistance by horizontal genetic exchange of fragments of chromosomal genes. The resistant strains express variants of the antibiotic target that are metabolically active but exhibit a lowered affinity for the antibiotic. The alleles encoding these resistant proteins are mosaics comprising DNA derived from the host and other bacteria, often members of a different species. Examples include penicillin-resistant penicillin-binding proteins (PBPs) in Streptococcus pneumoniae and the pathogenic Neisseria species and sulfonamide-resistant dihydropterate synthase in Neisseria meningitidis. Distinct mosaic alleles encoding antibiotic resistance have arisen on multiple occasions, indicating the mobility of chromosomal genes in these species. Mosaic genes can arise at any chromosomal locus, and S. pneumoniae organisms with high-level penicillin resistance have acquired mosaic PBP genes at three bacterial bpb loci. Furthermore, horizontal genetic exchange permits movement of alleles among bacterial lineages, increasing the opportunities for the spread of antibiotic resistance.19989710667
931010.9998Bacterial resistance to antibiotics. Effective antibacterial drugs have been available for nearly 50 years. After the introduction of each new such drug, whether chemically synthesized or a naturally occurring antibiotic, bacterial resistance to it has emerged. The genetic mechanisms by which bacteria have acquired resistance were quite unexpected; a new evolutionary pathways has been revealed. Although some antibiotic resistance has resulted from mutational changes in structural proteins--targets for the drugs' action--most has resulted from the acquisition of new, ready-made genes from an external source--that is, from another bacterium. Vectors of the resistance genes are plasmids--heritable DNA molecules that are transmissible between bacterial cells. Plasmids without antibiotic-resistance genes are common in all kinds of bacteria. Resistance plasmids have resulted from the insertion of new DNA sequences into previously existing plasmids. Thus, the spread of antibiotic resistance is at three levels: bacteria between people or animals; plasmids between bacteria; and transposable genes between plasmids.19846319093
983020.9998Mechanisms of Conjugative Transfer and Type IV Secretion-Mediated Effector Transport in Gram-Positive Bacteria. Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens.201729536357
927630.9998In Vitro Assessment of the Fitness of Resistant M. tuberculosis Bacteria by Competition Assay. Bacteria become resistant by a number of different mechanisms, and these include mutation in chromosomal genes (1), acquisition of plasmids (2), insertion of bacteriophage, transposon or insertion sequence DNA (3-5), or gene mosaicism (6). There is a dogma that bacteria that become resistant pay a significant physiological price and that if antimicrobial prescribing is controlled it will result in the eradication of resistant organisms. There are only very few studies that investigate the physiology of resistance acquisition and these do show that a physiological price is paid for this change (7, 8). Once an organism acquires resistance through mutation, acquisition of resistance genes via plasmids, transposons and bacteriophages the initial physiological defect is compensated by the antibiotic selective pressure, which balances the physiological deficit imposed by the resistant mutation or additional DNA (8, 9).200121374423
940840.9998Genomic evidence for antibiotic resistance genes of actinomycetes as origins of antibiotic resistance genes in pathogenic bacteria simply because actinomycetes are more ancestral than pathogenic bacteria. Although in silico analysis have suggested that the antibiotic resistance genes in actinomycetes appear to be the origins of some antibiotic resistance genes, we have shown that recent horizontal transfer of antibiotic resistance genes from actinomycetes to other medically important bacteria have not taken place. Although it has been speculated in Benveniste and Davies' attractive hypothesis that antibiotic resistance genes of actinomycetes are origins of antibiotic resistance genes in pathogenic bacteria because the actinomycetes require mechanisms such as metabolic enzymes (encoded by the antibiotic resistance genes) to degrade the antibiotics they produce or to transport the antibiotics outside the bacterial cells, this hypothesis has never been proven. Both the phylogenetic tree constructed using 16S rRNA gene sequences and that constructed using concatenated amino acid sequences of 15 housekeeping genes extracted from 90 bacterial genomes showed that the actinomycetes is more ancestral to most other bacteria, including the pathogenic Gram-negative bacteria, Gram-positive bacteria, and Chlamydia species. Furthermore, the tetracycline resistance gene of Bifidobacterium longum is more ancestral to those of other pathogenic bacteria and the actinomycetes, which is in line with the ancestral position of B. longum. These suggest that the evolution of antibiotic resistance genes of antibiotic-producing bacteria in general parallels the evolution of the corresponding bacteria. The ancestral position of the antibiotic resistance genes in actinomycetes is probably unrelated to the fact that they produce antibiotics, but simply because actinomycetes are more ancestral than pathogenic bacteria.200616824692
982950.9998Promiscuous transfer of drug resistance in gram-negative bacteria. Bacterial conjugation is a major mechanism for the spread of antibiotic-resistance genes in pathogenic organisms. In gram-negative bacteria, broad-host-range drug-resistance plasmids mediate genetic exchange between many unrelated species. The mechanism of conjugation encoded by the broad-host-range IncP plasmid RK2 has been studied in detail. The location and sequence of the transfer origin of RK2 has been determined. Several barriers limit plasmid transfer between unrelated bacteria: interactions at the cell surface may prevent effective mating contact, restriction systems may degrade foreign DNA, or the plasmid may not replicate in the new host. RK2 has evolved specific mechanisms by which it overcomes these barriers; this plasmid can mediate the transfer of resistance to most gram-negative bacteria.19846143782
931460.9998Phage Transduction of Staphylococcus aureus. Bacteriophage transduction is the major mechanism of horizontal gene transfer (HGT) among many bacteria. In Staphylococcus aureus, the phage-mediated acquisition of mobile genetic elements (MGEs) that encode virulence and antibiotic resistance genes largely contribute to its evolutionary adaptation and genetic plasticity. In molecular biology, generalized transduction is routinely used as a technique to manipulate and construct bacterial strains. Here, we describe optimized protocols for generalized transduction, applicable for the transfer of plasmid or chromosomal deoxyribonucleic acid (DNA) from donor to recipient S. aureus strains.202437966605
931170.9997Various plasmid strategies limit the effect of bacterial restriction-modification systems against conjugation. In bacteria, genes conferring antibiotic resistance are mostly carried on conjugative plasmids, mobile genetic elements that spread horizontally between bacterial hosts. Bacteria carry defence systems that defend them against genetic parasites, but how effective these are against plasmid conjugation is poorly understood. Here, we study to what extent restriction-modification (RM) systems-by far the most prevalent bacterial defence systems-act as a barrier against plasmids. Using 10 different RM systems and 13 natural plasmids conferring antibiotic resistance in Escherichia coli, we uncovered variation in defence efficiency ranging from none to 105-fold protection. Further analysis revealed genetic features of plasmids that explain the observed variation in defence levels. First, the number of RM recognition sites present on the plasmids generally correlates with defence levels, with higher numbers of sites being associated with stronger defence. Second, some plasmids encode methylases that protect against restriction activity. Finally, we show that a high number of plasmids in our collection encode anti-restriction genes that provide protection against several types of RM systems. Overall, our results show that it is common for plasmids to encode anti-RM strategies, and that, as a consequence, RM systems form only a weak barrier for plasmid transfer by conjugation.202439413206
930980.9997Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation.200818193080
940790.9997Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.201931546630
4168100.9997Various pathways leading to the acquisition of antibiotic resistance by natural transformation. Natural transformation can lead to exchange of DNA between taxonomically diverse bacteria. In the case of chromosomal DNA, homology-based recombination with the recipient genome is usually necessary for heritable stability. In our recent study, we have shown that natural transformation can promote the transfer of transposons, IS elements, and integrons and gene cassettes, largely independent of the genetic relationship between the donor and recipient bacteria. Additional results from our study suggest that natural transformation with species-foreign DNA might result in the uptake of a wide range of DNA fragments; leading to changes in the antimicrobial susceptibility profile and contributing to the generation of antimicrobial resistance in bacteria.201223482877
9822110.9997Molecular mechanisms for transposition of drug-resistance genes and other movable genetic elements. Transposition is proposed to be responsible for the rapid evolution of multiply drug-resistant bacterial strains. Transposons, which carry the genes encoding drug resistance, are linear pieces of DNA that range in size from 2.5 to 23 kilobase pairs and always contain at their ends nucleotide sequences repeated in inverse order. In some transposons the terminal inverted repeat sequences are capable of independent movement and are called insertion sequences. Transposons carry a gene that encodes transposase(s), the enzyme(s) responsible for recombination of the transposon into another DNA molecule. Studies on transposable genetic elements in bacteria have not only given insight into the spread of antibiotic resistance but also into the process of DNA movement.19873035697
9279120.9997Differential epigenetic compatibility of qnr antibiotic resistance determinants with the chromosome of Escherichia coli. Environmental bacteria harbor a plethora of genes that, upon their horizontal transfer to new hosts, may confer resistance to antibiotics, although the number of such determinants actually acquired by pathogenic bacteria is very low. The founder effect, fitness costs and ecological connectivity all influence the chances of resistance transfer being successful. We examined the importance of these bottlenecks using the family of quinolone resistance determinants Qnr. The results indicate the epigenetic compatibility of a determinant with the host genome to be of great importance in the acquisition and spread of resistance. A plasmid carrying the widely distributed QnrA determinant was stable in Escherichia coli, whereas the SmQnr determinant was unstable despite both proteins having very similar tertiary structures. This indicates that the fitness costs associated with the acquisition of antibiotic resistance may not derive from a non-specific metabolic burden, but from the acquired gene causing specific changes in bacterial metabolic and regulatory networks. The observed stabilization of the plasmid encoding SmQnr by chromosomal mutations, including a mutant lacking the global regulator H-NS, reinforces this idea. Since quinolones are synthetic antibiotics, and since the origin of QnrA is the environmental bacterium Shewanella algae, the role of QnrA in this organism is unlikely to be that of conferring resistance. Its evolution toward this may have occurred through mutations or because of an environmental change (exaptation). The present results indicate that the chromosomally encoded Qnr determinants of S. algae can confer quinolone resistance upon their transfer to E. coli without the need of any further mutation. These results suggest that exaptation is important in the evolution of antibiotic resistance.201222574114
4423130.9997Inactivation of antibiotics and the dissemination of resistance genes. The emergence of multidrug-resistant bacteria is a phenomenon of concern to the clinician and the pharmaceutical industry, as it is the major cause of failure in the treatment of infectious diseases. The most common mechanism of resistance in pathogenic bacteria to antibiotics of the aminoglycoside, beta-lactam (penicillins and cephalosporins), and chloramphenicol types involves the enzymic inactivation of the antibiotic by hydrolysis or by formation of inactive derivatives. Such resistance determinants most probably were acquired by pathogenic bacteria from a pool of resistance genes in other microbial genera, including antibiotic-producing organisms. The resistance gene sequences were subsequently integrated by site-specific recombination into several classes of naturally occurring gene expression cassettes (typically "integrons") and disseminated within the microbial population by a variety of gene transfer mechanisms. Although bacterial conjugation once was believed to be restricted in host range, it now appears that this mechanism of transfer permits genetic exchange between many different bacterial genera in nature.19948153624
9828140.9997Antibiotic resistance: genetic mechanisms and mobility. Based on the current knowledge, resistance genes seems mainly to originate in the organisms which produce antibiotics (Davies 1994). We lack considerably in the understanding of how these genes were transferred to pathogenic bacteria, and due to the enormous diversity of e.g. the soil flora, it is doubtful that we will ever obtain more that a faint picture of this. In Gram negative bacteria, more and more resistance genes are demonstrated to be located in integrons (e.g. beta-lactamase and streptomycin resistance genes in Salmonella Typhimurium DT104 (Sandvang et al. in press)). Integrons seem primarily to act as insertion sites for resistance genes. The origin of integrons as well as the resistance gene cassettes that are the other essential element of this system, is largely unknown (Hall & Collis 1995). Integrons can be located in the chromosome, in transposons, which have the ability to copy them themselves to other DNA molecules, or on plasmids. The emergence of resistant bacteria normally happens because of selection for a resistant clone of bacteria. Several mechanisms, however, exists by which the resistance genes can be transferred from one bacteria to another. Conjugation, mediated by plasmids or conjugative transposons, is currently the most well established of these mechanisms. Still, however, the selection pressure created by the use of antibiotics determines whether bacteria that have newly acquired a resistance gene expand to dominate in the population or remains a blink in history.199910783713
4134150.9997Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes. In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.201426104453
9308160.9997Integrons: natural tools for bacterial genome evolution. Integrons were first identified as the primary mechanism for antibiotic resistance gene capture and dissemination among Gram-negative bacteria. More recently, their role in genome evolution has been extended with the discovery of larger integron structures, the super-integrons, as genuine components of the genomes of many species throughout the gamma-proteobacterial radiation. The functional platforms of these integrons appear to be sedentary, whereas their gene cassette contents are highly variable. Nevertheless, the gene cassettes for which an activity has been experimentally demonstrated encode proteins related to simple adaptive functions and their recruitment is seen as providing the bacterial host with a selective advantage. The widespread occurrence of the integron system among Gram-negative bacteria is discussed, with special focus on the super-integrons. Some of the adaptive functions encoded by these genes are also reviewed, and implications of integron-mediated genome evolution in the emergence of novel bacterial species are highlighted.200111587934
4133170.9997Importance of integrons in the diffusion of resistance. Horizontal transfer of resistance genes is a successful mechanism for the transmission and dissemination of multiple drug resistance among bacterial pathogens. The impact of horizontally transmitted genetic determinants in the evolution of resistance is particularly evident when resistance genes are physically associated in clusters and transferred en bloc to the recipient cell. Recent advances in the molecular characterisation of antibiotic resistance mechanisms have highlighted the existence of genetic structures. called integrons, involved in the acquisition of resistance genes. These DNA elements have frequently been reported in multi-drug resistant strains isolated from animals and humans, and are located either on the bacterial chromosome or on broad-host-range plasmids. The role of integrons in the development of multiple resistance relies on their unique capacity to cluster and express drug resistance genes. Moreover, the spread of resistance genes among different replicons and their exchange between plasmid and bacterial chromosome are facilitated by the integration of integrons into transposable elements. The association of a highly efficient gene capture and expression system, together with the capacity for vertical and horizontal transmission of resistance genes represents a powerful weapon used by bacteria to combat the assault of antibiotics.200111432416
4835180.9997Genetic and biochemical basis of resistance of Enterobacteriaceae to beta-lactam antibiotics. Resistance to beta-lactam drugs is usually determined by genes mediating the production of beta-lactamases. These genes can be located on resistance plasmids or on the chromosome. Resistance to drugs which have been available for many years is mostly transposable. Although the origin of these genes is not known, it is possible to draw a hypothetical flow diagram of the evolution of resistance genes in general. The mechanism of resistance although mediated in Gram-negative bacteria mostly by beta-lactamases cannot be simply described as the hydrolytic function of the enzyme. It is a complex interaction involving the affinity of the drug for the target and the lactamase, the amount of drug in the periplasmic space, the amount of enzyme and the number of lethal target sites. Usually one of these factors is predominant.19863491818
9827190.9997Evolution of bacterial resistance to antibiotics during the last three decades. Bacterial resistance to antibiotics is often plasmid-mediated and the associated genes encoded by transposable elements. These elements play a central role in evolution by providing mechanisms for the generation of diversity and, in conjunction with DNA transfer systems, for the dissemination of resistances to other bacteria. At the University Hospital of Zaragoza, extensive efforts have been made to define both the dissemination and evolution of antibiotic resistance by studying the transferable R plasmids and transposable elements. Here we describe the research on bacterial resistance to antibiotics in which many authors listed in the references have participated. The aspects of bacterial resistance dealt with are: (i) transferable resistance mediated by R plasmids in Gram-negative bacteria, (ii) R plasmid-mediated resistance to apramycin and hygromycin in clinical strains, (iii) the transposon Tn1696 and the integron In4, (iv) expression of Escherichia coli resistance genes in Haemophilus influenzae, (v) aminoglycoside-modifying-enzymes in the genus Mycobacterium with no relation to resistance, and (vi) macrolide-resistance and new mechanisms developed by Gram-positive bacteria.199810943375