ESBL- and pAmpC-producing Enterobacterales from Swedish dogs and cats 2017-2021: a retrospective study. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
98101.0000ESBL- and pAmpC-producing Enterobacterales from Swedish dogs and cats 2017-2021: a retrospective study. BACKGROUND: Antibiotic resistant bacteria are a threat to both human and animal health. Of special concern are resistance mechanisms that are transmissible between bacteria, such as extended-spectrum beta-lactamases (ESBL) and plasmid-mediated AmpC (pAmpC). ESBL/AmpC resistance is also of importance as it confers resistance to beta-lactam antibiotics including third generation cephalosporins. The Swedish Veterinary Agency (former English name National Veterinary Institute) performs confirmatory testing of suspected ESBL-/pAmpC-producing Enterobacterales. The aim of this study is to describe the clinical background, antibiotic susceptibility, and genetic relationships of confirmed isolates from dogs and cats in Sweden from 2017 to 2021. RESULTS: The study includes 92 isolates of ESBL/pAmpC-producing bacteria from 82 dogs, and 28 isolates from 23 cats. Escherichia coli was the most commonly isolated bacteria, and the most frequent sampling site was the urinary tract. From eight dogs and two cats, ESBL/pAmpC-producing bacteria were isolated on more than one occasion. Multi-resistance was more than twice as common in samples from dogs (50%) than in samples from cats (22%). Among dogs, sequence type (ST) 131 and ST372 were the dominant strains and bla(CMY-2) and bla(CTX-M-15) the dominant genes conferring reduced susceptibility to third-generation cephalosporins. Among cats, ST73 was the dominant strain and bla(CTX-M-15) the dominant gene. CONCLUSIONS: Monitoring the resistance patterns and genetic relationships of bacteria over time is important to follow the results of measures taken to reduce resistance. Knowledge of the appropriate antibiotic usage is also crucial. In this study, a variety of STs and ESBL/pAmpC-genes were detected among the isolates. There were available antibiotics likely effective for treatment in all cases, based on resistance pattern, infection site and host species.202539762972
161110.9999Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones. The increase of extended- spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) in humans and in food-producing animals is of public health concern. The latter could contribute to spreading of these bacteria or their resistance genes to humans. Several studies have reported the isolation of third generation cephalosporin resistant bacteria in livestock animals. However, the number of samples and the methodology used differ considerably between studies limiting comparability and prevalence assessment. In the present study, a total of 564 manure and dust samples were collected from 47 pig farms in Northern Germany and analysed to determine the prevalence of ESBL-E. Molecular typing and characterization of resistance genes was performed for all ESBL-E isolates. ESBL-E isolates were found in 55.3% of the farms. ESBL-Escherichia coli was found in 18.8% of the samples, ESBL-Klebsiella pneumoniae in 0.35%. The most prevalent ESBL genes among E. coli were CTX-M-1 like (68.9%), CTX-M-15 like (16%) and CTX-M-9 group (14.2%). In 20% of the latter two, also the OXA-1 like gene was found resulting in a combination of genes typical for isolates from humans. Genetic relation was found between isolates not only from the same, but also from different farms, with multilocus sequence type (ST) 10 being predominant among the E. coli isolates. In conclusion, we showed possible spread of ESBL-E between farms and the presence of resistance genes and STs previously shown to be associated with human isolates. Follow-up studies are required to monitor the extent and pathways of ESBL-E transmission between farms, animals and humans.201526225428
161220.9999Carriage of antimicrobial resistant Escherichia coli in dogs: Prevalence, associated risk factors and molecular characteristics. Resistance to antimicrobials, in particular that mediated by extended spectrum β-lactamases (ESBL) and AmpC β-lactamases are frequently reported in bacteria causing canine disease as well as in commensal bacteria, which could be a potential health risk for humans they come into contact with. This cross-sectional study aimed to estimate the prevalence and investigate the molecular characteristics of ESBL and plasmid encoded AmpC (pAmpC)-producing E. coli in the mainland UK vet-visiting canine population and, using responses from detailed questionnaires identify factors associated with their carriage. Faecal samples were cultured for antimicrobial resistant (AMR), ESBL and pAmpC-producing E. coli. A subset of ESBL and pAmpC-producing isolates were subjected to multi-locus sequence typing and DNA microarray analyses. Multivariable logistic regression analysis was used to construct models to identify risk factors associated with multidrug resistant (MDR, resistance to three or more antimicrobial classes), fluoroquinolone resistant, ESBL and AmpC-producing E. coli. AMR E.coli were isolated from 44.8% (n=260) of samples, with 1.9% and 7.1% of samples carrying ESBL and pAmpC-producing E. coli, respectively. MDR E. coli were identified in 18.3% of samples. Recent use of antimicrobials and being fed raw poultry were both identified as risk factors in the outcomes investigated. A number of virulence and resistance genes were identified, including genes associated with extra-intestinal and enteropathogenic E. coli genotypes. Considering the close contact that people have with dogs, the high levels of AMR E. coli in canine faeces may be a potential reservoir of AMR bacteria or resistance determinants.201728110781
102030.9999Prevalence and characteristics of Escherichia coli strains producing extended-spectrum β -lactamases in slaughtered animals in the Czech Republic. Resistance of bacteria to antibiotics is a global medical problem requiring close cooperation between veterinary and human physicians. Raw materials and foods of animal origin may be not only a source of pathogenic bacteria causing alimentary tract infections but also a source of bacteria with a dangerous extent of resistance to antibiotics, potentially entering the human food chain. This article presents results of the first study in the Czech Republic detecting the presence of Enterobacteriaceae-producing extended-spectrum b -lactamases (ESBLs) in swabs collected in slaughterhouses from surfaces of healthy animal carcasses. In 2012, swabs taken from pig (n = 166) and cattle (n = 140) carcass surfaces were analyzed. In 17 % of 53 studied slaughterhouses, ESBL-producing Escherichia coli strains were isolated. ESBLs were found in 11 and 4 % of porcine and bovine samples, respectively. Swabs collected from pigs yielded 18 ESBL-producing E. coli strains. The bla genes were found to encode production of CTX-M-1 group enzymes in 16 strains, SHV in one case, and both CTX-M-1-like and TEM in another case. In swabs taken from cattle, five ESBL-producing E. coli strains were isolated. In three cases, the bla genes for CTX-M-1-like production were identified; in two cases, genes for both CTX-M-1-like and TEM production were found. The similarity/identity of ESBL-positive isolates was compared by pulsed-field gel electrophoresis. This is the first report and characterization of the presence and nature of ESBL-producing E. coli in swabs collected from surfaces of healthy pig and cattle carcasses in slaughterhouses in the Czech Republic.201324112579
101940.9999First Report of OXA-48 and IMP Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Diarrheic Calves in Tunisia. Antimicrobial resistance is one of the most serious threats to human and animal health. Evidence suggests that the overuse of antimicrobial agents in animal production has led to the emergence and dissemination of multidrug-resistant isolates. The objective of this study was to assess the rate of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in calf feces and to characterize their resistance genes for antibiotics like beta-lactams and colistin, but also to determine their virulence genes. Fecal samples were collected from 100 diarrheic calves in the region of Bizerte, Tunisia. After isolation, E. coli isolates were screened for antimicrobial resistance against 21 antibiotics by the disc diffusion method. Characterization of β-lactamase genes and determination of associated resistance genes were performed by polymerase chain reaction. Among 71 E. coli isolates, 26 (36.6%) strains were ESBL-producing. Most of these isolates were multidrug-resistant (92.3%) and the most prevalent beta-lactamase genes detected were bla(CTX-M) (n = 26), bla(SHV) (n = 11), and bla(TEM) (n = 8), whereas only 1 isolate carried the bla(CMY) gene. In addition, resistance to carbapenems was detected in two isolates; one of them harbored both bla(OXA-48) and bla(IMP) genes and the other isolate carried only the bla(IMP) gene. Several resistance genes were identified for the first time in Tunisia from cases of diarrheic calves. Furthermore, to the best of our knowledge, this is the first report of detection and identification of carbapenem resistance genes and virulence genes from calves in North Africa. A high occurrence of antimicrobial resistance of E. coli recovered from fecal samples of calves with diarrhea was observed, highlighting the need for prudent use of antimicrobial agents in veterinary medicine to decrease the incidence of multidrug-resistant bacteria for both animals and humans.202336695709
98250.9999Seven-year surveillance of the prevalence of antimicrobial-resistant Escherichia coli isolates, with a focus on ST131 clones, among healthy people in Osaka, Japan. OBJECTIVES: Escherichia coli (E. coli) is an indicator of antimicrobial resistance, and some strains of E. coli cause infectious diseases. E. coli sequence type 131 (ST131) - a global antimicrobial-resistant pandemic E. coli clone - is frequently detected in clinical specimens. Antimicrobial-resistant bacteria are monitored via national surveillance in clinical settings; however, monitoring information in non-clinical settings is limited. This study elucidated antimicrobial resistance trends of E. coli and dissemination of ST131 among healthy people in non-clinical settings. METHODS: This study collected 517 E. coli isolates from healthy people in Osaka, Japan, between 2013 and 2019. It analysed antimicrobial susceptibility of the isolates and detected the bla and mcr genes in ampicillin-resistant and colistin-resistant isolates, respectively, and the ST131 clone. RESULTS: Antimicrobial resistance rates of the bacteria isolated from healthy people in non-clinical settings were lower than for those in clinical settings. The resistance of the isolates to cefotaxime (4.4%) and ciprofloxacin (13.5%) gradually increased during the study period. In 23 cefotaxime-resistant isolates, the most frequent bla genes belonged to the bla(CTX-M-9) group, followed by bla(CTX-M-1) goup, bla(TEM) and bla(CMY-2). One mcr-1-harbouring colistin-resistant isolate was detected in 2016. The incidence of the E. coli O25b-ST131 clone was approximately 5% until 2015 and 10% after 2016. CONCLUSION: Both ciprofloxacin resistance and O25b-ST131 clone frequency increased during the study period. Antimicrobial-resistant bacteria gradually spread in healthy people in non-clinical settings; one reason behind this spread was dissemination of global antimicrobial-resistant pandemic clones.202133556490
101860.9999Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. (1) Background: there has been a growing concern about pet-spread bacterial zoonosis in recent years. This study aimed to investigate the trend in drug-resistance of canine Escherichia coli isolates in northeast China between 2012-2021 and the differences in drug-resistance of E. coli of different origins in 2021. (2) Methods: E. coli were isolated from feces or anal swab samples from dogs and cats, and their antibiotic susceptibility profiles and phylogenetic grouping were identified. PCR was applied on the extended spectrum β-lactamase (ESBL) E. coli for antibiotic resistance genes. (3) Results: five hundred and fifty-four E. coli isolates were detected in 869 samples (63.75%). The multidrug resistance (MDR) rates of E. coli in pet dogs showed a decreasing trend, but working dogs showed the opposite trend. Resistance genes bla(CTX-M) and bla(CTX-M+TEM) were dominant among the ESBL producers (n = 219). The consistency between the resistance phenotypes and genes was high except for fluoroquinolone-resistant ESBL E. coli. All ESBL E. coli-carrying bla(NDM) were isolated from working dogs, and one of the strains carried mcr-1 and bla(NDM-4). Phylogroup B2 was the dominant group in pet cats, and more than half of the isolates from companion cats were ESBL E. coli. (4) Conclusions: the measures taken to reduce resistance in China were beginning to bear fruit. Companion cats may be more susceptible to colonization by ESBL E. coli. The problem of resistant bacteria in working dogs and pet cats warrants concern.202236358160
98070.9999Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase, Plasmid-Mediated- AmpC, and Carbapenemase-Producing Enterobacteriaceae Isolated from Companion and Production Animals in Brazil. The crisis of bacterial resistance is an emerging One Health challenge, driven by the overuse of antimicrobials in medical and agricultural settings. This study aimed to investigate extended-spectrum β-lactamase (ESBL), Ampicillinase (AmpC), and carbapenemase production, and the presence of genes encoding these enzymes in Escherichia coli, Klebsiella spp., and Proteus spp., major contributors to infections and resistance isolates from animals. From 2016 to 2021, 130 multidrug-resistant (MDR) or extensively drug-resistant (XDR) isolates were recovered from the secretions, excretions, and organs of companion and production animals with active infections. Antibacterial sensitivity tests, along with phenotypic and genotypic detection of resistance enzymes, were performed. To the best of our knowledge, this is the first study in Brazil to estimate the prevalence of XDR Enterobacteriales isolated from companion and production animals, which accounted for 13.8% of the strains. Statistically significant differences (P < 0.05) in resistant bacteria between different classes and within the same class of antibacterial bacteria were found. The statistical probability between genotypic detection of ESBL (OR = 3.1) and phenotypic tests for AmpC (OR = 2.3) was also established. Approximately 32.3%, 17.6%, and 16.8% of the strains had positive phenotypic tests for ESBL, AmpC, and carbapenemases, respectively. Genetic analysis revealed the presence of bla(CTX-M) (60.0%), bla(AmpC) (9.18%), bla(KPC-2) (0.76%), and bla(NDM) (1.52%). AmpC genes were identified in 8.46% of the samples, with bla(CMY) being the most frequent (6.92%), followed by bla(DHA) (0.77%), and bla(FOX) (0.77%). The sequenced amplicons were deposited in NCBI. This study reveals critical data on Enterobacteriaceae with antibacterial resistance genes isolated from animals and may pose a significant threat to One health.202539903315
161080.9999Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BACKGROUND: The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation. RESULTS: In sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the bla(NDM-1) and bla(VIM-2) genes, respectively and were able to transmit imipenem resistance through conjugation. CONCLUSION: Our findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria.202033256594
100690.9998Prevalence, incidence and risk factors for acquisition and colonization of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae from dogs attended at a veterinary hospital in Spain. The last 10 years have seen a progressive increase in antibiotic resistance rates in bacteria isolated from companion animals. Exposure of individuals to resistant bacteria from companion animals, such as extended-spectrum beta-lactamase- (ESBL) and carbapenemase- (CPE) producing Enterobacteriaceae, can be propitiated. Few studies evaluate the incidence and risk factors associated with colonization by multidrug-resistant bacteria in dogs. This work aims to estimate the prevalence, incidence and risk factors associated with colonization of ESBL-E and CPE-E in 44 canine patients hospitalized in a veterinary hospital. The antimicrobial susceptibility of Enterobacteriaceae strains was analyzed and the molecular detection of resistant genes was performed. A prevalence of 25.0% and an incidence of ESBL-E of 45.5% were observed in dogs colonized by Enterobacteriaceae at hospital admission and release, respectively. Escherichia coli, Klebsiella pneumoniae, Citrobacter koseri and Morganella morganii were identified as ESBL-producing bacterial species. Resistance genes were detected for ESBL-producing strains. No CPE isolates were obtained on the CPE-selective medium. The administration of corticosteroids prior to hospitalization and the presence of concomitant diseases were associated with colonization by these bacteria in dogs. Considering that one-quarter of the patients evaluated were colonized by ESBL-E, companion animals should be considered as potential transmission vehicles and ESBL-E reservoirs for humans. Special care should be taken in animals attended at veterinary hospitals, as the length of stay in the hospital could increase the risks.202336509030
1012100.9998Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century.202032266079
979110.9998Integrative phenotypic and genomic analysis of extended-spectrum Beta-lactamase (ESBL) and carbapenemase genes in Enterobacteriaceae and Pseudomonaceae strains isolated from animals in a Spanish Veterinary Teaching Hospital. Antimicrobial resistance (AMR) is a major global health threat, exacerbated by globalization which facilitates the spread of resistant bacteria. Addressing this issue requires a One Health perspective, involving humans, animals, and the environment. This study aims to compare the phenotypic resistance profiles of 69 clinical bacterial isolates (Enterobacteriaceae and Pseudomonaceae) from a Veterinary Teaching Hospital in Spain with their genotypic resistance profiles based on the presence of Extended-Spectrum Beta-Lactamases (ESBLs), AmpC and carbapenemases -enconding genes. For the genotypical analysis, whole genome sequencing (WGS) was used. Phenotypic characterization revealed that 37 isolates (53.6 %) grew on ESBL-selective medium. Phenotypic confirmatory tests showed that 12 strains (17.4 %) had some type of ESBL and 21 (30.4 %) could have an AmpC. Also, 24 isolates (34.8 %) grew in selective media for carbapenemases-producing bacteria, and 2 of these had a class A carbapenemase based on the KPC&MBL&OXA-48 disc kit. The genotypic analysis revealed 20 isolates (29 %) had bla(TEM), 8 (11.6 %) had bla(CTX-M) and 7 (10.1 %) bla(SHV). 27 (39.1 %) isolates had class C beta-lactamase genes. 35 isolates (50.7 %) had bla(OXA), class D beta-lactamase. 37 strains (53.6 %) had an Inc. plasmid replicon associated with the spread of AMR genes, including beta-lactamases and carbapenemases. This study emphasizes the value of combining phenotypic and genomic analyses to better understand and address antibiotic resistance, especially in veterinary contexts. Integrating these approaches enhances diagnostic accuracy by identifying strains with resistance genes that may not show phenotypically, helping clinicians in anticipating resistance under selective pressure.202539808975
1017120.9998Evaluation of canine raw food products for the presence of extended-spectrum beta-lactamase- and carbapenemase-producing bacteria of the order Enterobacterales. OBJECTIVE: To assess the potential contamination of commercial raw dog food products with bacteria of the Enterobacterales order that produce extended spectrum beta-lactamase (ESBL) and carbapenemase enzymes, determine risk factors for contamination, and understand isolate genetic diversity. SAMPLES: A total of 200 canine raw food products. METHODS: Products were cultured on selective chromogenic agar following enrichment steps. Whole-genome sequencing was performed for isolates that were confirmed to produce an ESBL. Isolates were characterized by antimicrobial resistance genes, and multilocus sequences typing, and compared to other isolates in the NCBI database for clonality. Preservation method and protein sources were assessed as potential risk factors for contamination with ESBL and carbapenemase-producing bacteria of the Enterobacterales order. RESULTS: No carbapenemase-producing Enterobacterales (CPE) were identified, but ESBL-producing Enterobacterales bacteria were isolated from 20/200 products (10.0%; 95% CI, 7.3 to 16.5%), all of which were frozen. Pork-derived protein source products were 8.1 times (P = .001; 95% CI, 2.53 to 26.2) more likely to carry ESBL-producing Enterobacterales bacteria than other protein sources. WGS analysis confirmed the presence of ESBL genes in a total of 25 distinct isolates (19 Escherichia coli, 5 Klebsiella pneumoniae, and 1 Citrobacter braakii). Genes encoding CTX-M type ESBL enzymes were the most common (24/25 isolates, 96.0%) with blaCTX-M-27 being the most common allele (8/25, 32.0%). CLINICAL RELEVANCE: Frozen, raw food products may serve as a route of transmission of ESBL-producing Enterobacterales bacteria to companion animals. Veterinarians should advise owners about the risks of raw food diets, including potential exposure to antimicrobial-resistant bacteria.202235895774
1039130.9998Genetic Investigation of Beta-Lactam Associated Antibiotic Resistance Among Escherichia Coli Strains Isolated from Water Sources. BACKGROUND: Antimicrobial resistance is an important factor threatening human health. It is widely accepted that antibiotic resistant bacteria such as Escherichia coli (E. coli) released from humans and animals into the water sources, can introduce their resistance genes into the natural bacterial community. OBJECTIVE: The aim of this study was to investigate the prevalence of bla(TEM), bla(CTX), bla(SHV), bla(OXA) and bla(VEB) associated-antibiotic resistance among E. coli bacteria isolated from different water resources in Iran. METHODS: The study contained all E. coli strains segregated from different surface water sources. The Kirby-Bauer method and combined discs method was determined in this study for testing antimicrobial susceptibility and strains that produced Extended-Spectrum Beta Lactamases (ESBL), respectively. DNA extraction kit was applied for genomic and plasmid DNA derivation. Finally the frequency of resistant genes including bla(TEM), bla(CTX), bla(SHV), bla(OXA) and bla(VEB) in ESBL producing isolates were studied by PCR. RESULTS: One hundred E. coli strains were isolated and entered in the study. The highest antibiotic resistance was observed on clindamycin (96%). Moreover, 38.5% isolates were ESBL producers. The frequency of different ESBLs genes were 37%, 27%, 27%, and 25% for bla(TEM), bla(CTX), bla(SHV), and bla(OXA) , respectively. The bla(VEB) wasn't found in any isolates. CONCLUSION: The study revealed a high prevalence of CTX-M, TEM, SHV and OXA genes among E. coli strains in surface water resources. In conclusion, these results raised a concern regarding the presence and distribution of these threatening factors in surface water sources and its subsequent outcomes.201729151997
1608140.9998Low prevalence of zoonotic multidrug-resistant bacteria in veterinarians in a country with prudent use of antimicrobials in animals. The occurrence of multidrug-resistant zoonotic bacteria in animals has been increasing worldwide. Working in close contact with livestock increases the risk of carriage of these bacteria. We investigated the occurrence of extended-spectrum beta-lactamase (ESBL) and plasmidic AmpC beta-lactamase producing Enterobacteriaceae (ESBL/pAmpC-PE) and livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Finnish veterinarians (n = 320). In addition to microbiological samples, background information was collected. Bacterial whole genome sequencing was performed to deduce sequence types (STs), spa types and resistance genes of the isolates. In total, 3.0% (9/297) of the veterinarians carried ESBL producing Escherichia coli, with one ESBL producing E. coli isolate producing also AmpC. Seven different STs, sequences of several different plasmid groups as well as several different bla(ESBL/pAmpC) genes existed in different combinations. No carbapenemase or colistin resistance genes were detected. MRSA was detected in 0.3% (1/320) of the samples. The strain belonged to LA-MRSA clonal complex (CC) 398 (ST398, spa type 011, lacking Panton-Valentine leukocidin genes). In conclusion, this study shows low carriage of multidrug-resistant zoonotic bacteria in Finnish veterinarians. However, finding LA-MRSA for the first time in a sample from a veterinarian in a country with prudent use of animal antimicrobials and regarding the recent rise of LA-MRSA on Finnish pig farms, a strong recommendation to protect people working in close contact with animals carrying LA-MRSA CC398 is given. Further studies are needed to explain why the prevalence of LA-MRSA in veterinarians is lower in Finland than in other European countries.201931232511
1016150.9998Investigation of CTX-M Type Extended-Spectrum β-Lactamase, Carbapenem and Colistin Resistance in Enterobacterales Isolated From Dairy Cattle in Turkey. BACKGROUND: The increasing prevalence of antimicrobial resistance in animals, particularly the spread of multidrug-resistant Enterobacterales, poses a significant zoonotic and public health risk. OBJECTIVE: The aim of this study was to investigate extended-spectrum β-lactamase (ESBL), carbapenem and colistin resistance among Enterobacterales in faecal swabs of dairy cattle. METHODS: A total of 400 samples were cultured on Mac Conkey screening media for ESBL, carbapenem and colistin resistance. The grown Enterobacterales were identified by MALDI-TOF-MS, followed by ceftriaxone, cefotaxime and ceftazidime resistance and double disk synergy. ESBL resistance genes were identified by polymerase chain reaction (PCR) and Sanger sequencing. Bacteria grown on colistin screening media were investigated for colistin resistance by EUCAST microbroth dilution method. RESULTS: A total of 89 (22.25%) of the bacteria grown from 400 samples were identified as potential ESBL-producing Enterobacterales members. A number of 53 (59.5%) of them were identified as ESBL blaCTX-M as a result of PCR, and 10 of them were identified as blaCTX-M-15/28/36/66 as a result of sequencing. None of the samples cultured on carbapenem medium grew. A total of 18 samples grown in colistin medium were found to be colistin sensitive by broth microdilution. Genotypes were not included in the study. All isolated bacteria were identified as Escherichia coli. SOLUTION: In this study, blaCTX-M-15 and its derivatives, which are common in humans, were also found to be the predominant ESBL type in animals. Monitoring resistance in animals together with resistance in human infections may provide more important data on the spread of resistance.202540704983
2641160.9998Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe. BACKGROUND: Extended spectrum β-lactamases (ESBLs), a group of enzymes conferring resistance to third generation cephalosporins have rapidly increased in Enterobacteriacae and pose a major challenge to human health care. Resistant isolates are common in domestic animals and clinical settings, but prevalence and genotype distribution varies on a geographical scale. Although ESBL genes are frequently detected in bacteria isolated from wildlife samples, ESBL dissemination of resistant bacteria to the environment is largely unknown. To address this, we used three closely related gull species as a model system and collected more than 3000 faecal samples during breeding times in nine European countries. Samples were screened for ESBL-producing bacteria, which were characterized to the level of ESBL genotype groups (SHV, TEM), or specific genotypes (CTX-M). RESULTS: ESBL-producing bacteria were frequently detected in gulls (906 of 3158 samples, 28.7 %), with significant variation in prevalence rates between countries. Highest levels were found in Spain (74.8 %), The Netherlands (37.8 %) and England (27.1 %). Denmark and Poland represented the other extreme with no, or very few positive samples. Genotyping of CTX-M isolates identified 13 different variants, with bla CTX-M-1 and bla CTX-M-14 as the most frequently detected. In samples from England, Spain and Portugal, bla CTX-M-14 dominated, while in the rest of the sampled countries bla CTX-M-1 (except Sweden where bla CTX-M-15 was dominant) was the most frequently detected genotype, a pattern similar to what is known from studies of human materials. CONCLUSIONS: CTX-M type ESBLs are common in the faecal microbiota from gulls across Europe. The gull ESBL genotype distribution was in large similar to published datasets from human and food-production animals in Europe. The data suggests that the environmental dissemination of ESBL is high from anthropogenic sources, and widespread occurrence of resistant bacteria in common migratory bird species utilizing urban and agricultural areas suggests that antibiotic resistance genes may also be spread through birds.201526526188
2638170.9998Prevalence and mechanisms of extended-spectrum cephalosporin resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. There is little information on the genetic basis of resistance to the critically important extended-spectrum cephalosporins (ESCs) in Enterobacteriaceae from dogs in Canada. This study assessed the frequency of ESC resistance in Enterobacteriaceae isolated from dogs in Ontario and the distribution of major ESC resistance genes in these bacteria. A total of 542 Enterobacteriaceae were isolated from 506 clinical samples from two diagnostic laboratories in Ontario. Eighty-eight ESC-resistant Enterobacteriaceae and 217 Escherichia coli were isolated from 234 fecal samples from dogs collected at leash-free dog parks. These fecal isolates were tested for ESC resistance along with the clinical isolates. Isolates with reduced ESC susceptibility were screened for bla(CMY), bla(CTX-M), and bla(SHV), and all CTX-M-positive isolates underwent whole-genome sequencing. The prevalence of ESC resistance in clinical Enterobacteriaceae was 10.4%. The average frequency of fecal carriage of ESC-resistant Enterobacteriaceae in healthy dogs was 26.5%. The majority of ESC-resistant isolates were E. coli and the other major Enterobacteriaceae carrying ESC resistance genes were Klebsiella pneumoniae and Proteus mirabilis. The results show that the same ESC resistance genes can be found in clinical and fecal Enterobacteriaceae in dogs. The identified E. coli sequence types (including ST131 and ST648) and CTX-M variants (including CTX-M-14, -15, and -27) support the hypothesis of transfer of resistant bacteria between humans and dogs. CTX-M-1 was frequently found in canine fecal Enterobacteriaceae, while it is still rare in human Enterobacteriaceae in Canada, thus suggesting transfer of resistant bacteria to dogs from food animals or other sources.201829292008
993180.9998Multidrug-resistant Enterobacteriaceae colonising the gut of adult rural population in South India. BACKGROUND: Multidrug-resistant (MDR) colonisers act as a reservoir for transmission of antibiotic resistance and are a source of infection. Exposure to antibiotics by the commensal flora renders them resistant. Antibiotic consumption and hospitalisation are two major factors influencing this. We studied, antibiotic-resistant bacteria colonising rural adult population who had restricted access to health care and presumably had low consumption of antibiotics. AIM: Detection of multidrug resistance genes of extended spectrum β-lactamase (ESBL-CTX-M), AmpC β-Lactamase (CIT), Klebsiella pneumoniae carbapenemase (KPC) and New Delhi Metallo β-lactamase (NDM) in Enterobacteriaceae colonising the gut of adult population in a South Indian rural community. METHODOLOGY: Faecal samples of 154 healthy volunteers were screened for Enterobacteriaceae resistant to commonly used antibiotics by standard methods, followed by phenotypic detection of ESBL by double disk synergy method, AmpC by spot inoculation and carbapenemases by imipenem and ethylenediaminetetraacetic acid + imipenem combined E-test strips and modified Hodge test. Polymerase chain reaction was done to detect bla(CTX-M,)bla(CIT,)bla(KPC-1) and bla(NDM-1) genes coding for ESBL, AmpC, KPC and NDM, respectively. RESULTS: Colonisation rate of enteric bacteria with MDR genes in the community was 30.1%. However, phenotypically, only ESBL (3.2%) and NDM (0.65%) were detected. While the genes coding for ESBL, AmpC and NDM were detected in 35.6%, 17.8% and 4.4% of the MDR isolates, respectively. CONCLUSIONS: Carriage of MDR strains with a potential to express multidrug resistance poses a threat of dissemination in the community. Awareness for restricted use of antibiotics and proper sanitation can contain the spread of resistant bacteria.201830880694
989190.9998Development of a Method for the Fast Detection of Extended-Spectrum β-Lactamase- and Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Dogs and Cats in the USA. Antibiotic resistance, such as resistance to beta-lactams and the development of resistance mechanisms, is associated with multifactorial phenomena and not only with the use of third-generation cephalosporins. Many methods have been recommended for the detection of ESBL and pAmpC β-lactamase production but they are very subjective and the appropriate facilities are not available in most laboratories, especially not in clinics. Therefore, for fast clinical antimicrobial selection, we need to rapidly detect ESBL- and pAmpC β-lactamase-producing bacteria using a simple method with samples containing large amounts of bacteria. For the detection of ESBL- and pAmpC phenotypes and genes, the disk diffusion test, DDST and multiplex PCR were conducted. Of the 109 samples, 99 (90.8%) samples were grown in MacConkey broth containing cephalothin, and 71 samples were grown on MacConkey agar containing ceftiofur. Of the 71 samples grown on MacConkey agar containing ceftiofur, 58 Escherichia coli and 19 Klebsiella pneumoniae isolates, in particular, harbored β-lactamase genes. Of the 38 samples that did not grow in MacConkey broth containing cephalothin or on MacConkey agar containing ceftiofur, 32 isolates were identified as E. coli, and 10 isolates were identified as K. pneumoniae; β-lactamase genes were not detected in these E. coli and K. pneumoniae isolates. Of the 78 ESBL- and pAmpC β-lactamase-producing E. coli and K. pneumoniae, 55 (70.5%) isolates carried one or more ESBL genes and 56 (71.8%) isolates carried one or more pAmpC β-lactamase genes. Our method is a fast, and low-cost tool for the screening of frequently encountered ESBL- and pAmpC β-lactamase-producing bacteria and it would assist in diagnosis and improve therapeutic treatment in animal hospitals.202336830436