Multi-label classification for multi-drug resistance prediction of Escherichia coli. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
980701.0000Multi-label classification for multi-drug resistance prediction of Escherichia coli. Antimicrobial resistance (AMR) is a global health and development threat. In particular, multi-drug resistance (MDR) is increasingly common in pathogenic bacteria. It has become a serious problem to public health, as MDR can lead to the failure of treatment of patients. MDR is typically the result of mutations and the accumulation of multiple resistance genes within a single cell. Machine learning methods have a wide range of applications for AMR prediction. However, these approaches typically focus on single drug resistance prediction and do not incorporate information on accumulating antimicrobial resistance traits over time. Thus, identifying multi-drug resistance simultaneously and rapidly remains an open challenge. In our study, we could demonstrate that multi-label classification (MLC) methods can be used to model multi-drug resistance in pathogens. Importantly, we found the ensemble of classifier chains (ECC) model achieves accurate MDR prediction and outperforms other MLC methods. Thus, our study extends the available tools for MDR prediction and paves the way for improving diagnostics of infections in patients. Furthermore, the MLC methods we introduced here would contribute to reducing the threat of antimicrobial resistance and related deaths in the future by improving the speed and accuracy of the identification of pathogens and resistance.202235317240
955910.9997CRISPR-Cas Systems in the Fight Against Antimicrobial Resistance: Current Status, Potentials, and Future Directions. BACKGROUND: Antimicrobial resistance (AMR) is a critical global health concern that threatens the efficacy of existing antibiotics and poses significant challenges to public health and the economy worldwide. This review explores the potential of CRISPR-Cas systems as a novel approach to combating AMR and examines current applications, limitations, and prospects. METHODS: A comprehensive literature search was conducted across multiple databases, including PubMed, Google Scholar, Scopus, and Web of Science, covering publications published from 2014 to August 2024. This review focuses on CRISPR-Cas technologies and their applications in AMR. RESULTS: CRISPR-Cas systems have demonstrated efficacy in combating antimicrobial resistance by targeting and eliminating antibiotic-resistance genes. For example, studies have shown that CRISPR-Cas9 can effectively target and eliminate colistin resistance genes in MCR-1 plasmids, restoring susceptibility to carbapenems in bacteria such as E. coli and Klebsiella pneumoniae. Further molecular findings highlight the impact of CRISPR-Cas systems on various bacterial species, such as Enterococcus faecalis, in which CRISPR systems play a crucial role in preventing the acquisition of resistance genes. The effectiveness of CRISPR-Cas in targeting these genes varies due to differences in CRISPR locus formation among bacterial species. For instance, variations in CRISPR loci influence the targeting of resistance genes in E. faecalis, and CRISPR-Cas9 successfully reduces resistance by targeting genes such as tetM and ermB. CONCLUSION: CRISPR-Cas systems are promising for fighting AMR by targeting and eliminating antibiotic-resistant genes, as demonstrated by the effective targeting of colistin resistance genes on MCR-1 plasmids and their similar activities. However, the effectiveness of CRISPR-Cas is affected by variations in the CRISPR loci among bacterial species. Challenges persist, such as optimizing delivery methods and addressing off-target effects to ensure the safety and precision of CRISPR-Cas systems in clinical settings.202439619730
488620.9997Molecular diagnostics for genotypic detection of antibiotic resistance: current landscape and future directions. Antimicrobial resistance (AMR) among bacteria is an escalating public health emergency that has worsened during the COVID-19 pandemic. When making antibiotic treatment decisions, clinicians rely heavily on determination of antibiotic susceptibility or resistance by the microbiology laboratory, but conventional methods often take several days to identify AMR. There are now several commercially available molecular methods that detect antibiotic resistance genes within hours rather than days. While these methods have limitations, they offer promise for optimizing treatment and patient outcomes, and reducing further emergence of AMR. This review provides an overview of commercially available genotypic assays that detect individual resistance genes and/or resistance-associated mutations in a variety of specimen types and discusses how clinical outcomes studies may be used to demonstrate clinical utility of such diagnostics.202336816746
488730.9996Mechanisms of Bacterial Drug Resistance with Special Emphasis on Phenotypic and Molecular Characterization of Extended Spectrum Beta-lactamase. Antibiotics are designed to effectively treat bacterial infections while minimizing harm to the human body. They work by targeting specific components of bacteria or by disrupting essential processes such as cell wall synthesis, membrane function, protein production, and metabolic pathways. However, the misuse and overuse of antibiotics have led to the emergence of drug resistance in humans, animals, and agriculture, contributing to the global spread of this problem. Drug resistance can be either innate or acquired, with acquired resistance involving changes in the bacterial chromosomes or transferable elements. Bacterial species employ various mechanisms of drug resistance, including modifying the antibiotic targets, inactivating the drug, reducing uptake or increasing efflux, overexpressing the target, utilizing alternative pathways, and forming biofilms. One significant concern in the realm of drug resistance revolves around the emergence and proliferation of extended-spectrum beta-lactamases (ESBLs), a gene that is found in most gram-negative bacteria, primarily carried by Escherichia coli and Klebsiella pneumoniae in healthcare settings. ESBL-mediated resistance poses challenges for diagnosis, treatment, infection control, and antibiotic stewardship. Accurate detection of ESBL genes is crucial, and phenotypic methods are commonly used for initial screening. However, these methods have limitations, and confirmatory molecular techniques such as PCR and DNA sequencing are employed to accurately identify ESBL genes. Despite the significant global concerns surrounding ESBLs, they have spread worldwide, mainly facilitated by healthcare settings, inappropriate antimicrobial use, and host susceptibility. Addressing this issue requires implementing comprehensive measures, including enhanced surveillance, strict infection control practices, antibiotic stewardship programs, rapid diagnostic methods, alternative therapies, public education initiatives, and research focused on developing new drugs. Furthermore, collaboration among the healthcare, public health, and research sectors is pivotal in effectively combating the escalating threat posed by ESBL-mediated resistance. Antibiotics have revolutionized medical care by effectively treating bacterial infections. However, the emergence of ESBL gene resistance poses a global challenge that requires an integrated approach to prevent a threatening future.202438700878
956040.9996The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Since 2015, the discovery of colistin resistance genes has been limited to the characterization of new mobile colistin resistance (mcr) gene variants. However, given the complexity of the mechanisms involved, there are many colistin-resistant bacterial strains whose mechanism remains unknown and whose exploitation requires complementary technologies. In this review, through the history of colistin, we underline the methods used over the last decades, both old and recent, to facilitate the discovery of the main colistin resistance mechanisms and how new technological approaches may help to improve the rapid and efficient exploration of new target genes. To accomplish this, a systematic search was carried out via PubMed and Google Scholar on published data concerning polymyxin resistance from 1950 to 2020 using terms most related to colistin. This review first explores the history of the discovery of the mechanisms of action and resistance to colistin, based on the technologies deployed. Then we focus on the most advanced technologies used, such as MALDI-TOF-MS, high throughput sequencing or the genetic toolbox. Finally, we outline promising new approaches, such as omics tools and CRISPR-Cas9, as well as the challenges they face. Much has been achieved since the discovery of polymyxins, through several innovative technologies. Nevertheless, colistin resistance mechanisms remains very complex.202133672663
433050.9996Decolonization of asymptomatic carriage of multi-drug resistant bacteria by bacteriophages? Antimicrobial resistance is a major threat to human and animal health and accounted for up to 4.5 million deaths worldwide in 2019. Asymptomatic colonization of the digestive tract by multidrug resistant (multi-resistant) bacteria such as extended-spectrum beta-lactamase-, or carbapenemase- producing Enterobacterales is (i) a risk factor for infection by these multi-resistant bacteria, (ii) a risk factor of dissemination of these multi-resistant bacteria among patients and in the community, and (iii) allows the exchange of resistance genes between bacteria. Hence, decolonization or reduction of the gastrointestinal tract colonization of these multi-resistant bacteria needs to be urgently explored. Developing new non-antibiotic strategies to limit or eradicate multi-resistant bacteria carriage without globally disrupting the microbiota is considered a priority to fight against antibiotic resistance. Probiotics or Fecal Microbiota Transplantation are alternative strategies to antibiotics that have been considered to decolonize intestinal tract from MDR bacteria but there is currently no evidence demonstrating their efficacy. Lytic bacteriophages are viruses that kill bacteria and therefore could be considered as a promising strategy to combat antibiotic resistance. Successful decolonization by bacteriophages has already been observed clinically. Here, we discuss the current alternative strategies considered to decolonize the digestive tract of multidrug resistant bacteria, briefly describing probiotics and fecal microbiota transplantation approaches, and then detail the in vivo and in vitro studies using bacteriophages, while discussing their limits regarding the animal models used, the characteristics of phages used and their activity in regards of the gut anatomy.202338075897
957260.9996Diagnostic Evasion of Highly-Resistant Microorganisms: A Critical Factor in Nosocomial Outbreaks. Highly resistant microorganisms (HRMOs) may evade screening strategies used in routine diagnostics. Bacteria that have evolved to evade diagnostic tests may have a selective advantage in the nosocomial environment. Evasion of resistance detection can result from the following mechanisms: low-level expression of resistance genes not resulting in detectable resistance, slow growing variants, mimicry of wild-type-resistance, and resistance mechanisms that are only detected if induced by antibiotic pressure. We reviewed reports on hospital outbreaks in the Netherlands over the past 5 years. Remarkably, many outbreaks including major nation-wide outbreaks were caused by microorganisms able to evade resistance detection by diagnostic screening tests. We describe various examples of diagnostic evasion by several HRMOs and discuss this in a broad and international perspective. The epidemiology of hospital-associated bacteria may strongly be affected by diagnostic screening strategies. This may result in an increasing reservoir of resistance genes in hospital populations that is unnoticed. The resistance elements may horizontally transfer to hosts with systems for high-level expression, resulting in a clinically significant resistance problem. We advise to communicate the identification of HRMOs that evade diagnostics within national and regional networks. Such signaling networks may prevent inter-hospital outbreaks, and allow collaborative development of adapted diagnostic tests.201729163416
429270.9996The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. BACKGROUND: The emergence and ongoing spread of antimicrobial-resistant bacteria is a major public health threat. Infections caused by antimicrobial-resistant bacteria are associated with substantially higher rates of morbidity and mortality compared to infections caused by antimicrobial-susceptible bacteria. The emergence and spread of these bacteria is complex and requires incorporating numerous interrelated factors which clinical studies cannot adequately address. METHODS/PRINCIPAL FINDINGS: A model is created which incorporates several key factors contributing to the emergence and spread of resistant bacteria including the effects of the immune system, acquisition of resistance genes and antimicrobial exposure. The model identifies key strategies which would limit the emergence of antimicrobial-resistant bacterial strains. Specifically, the simulations show that early initiation of antimicrobial therapy and combination therapy with two antibiotics prevents the emergence of resistant bacteria, whereas shorter courses of therapy and sequential administration of antibiotics promote the emergence of resistant strains. CONCLUSIONS/SIGNIFICANCE: The principal findings suggest that (i) shorter lengths of antibiotic therapy and early interruption of antibiotic therapy provide an advantage for the resistant strains, (ii) combination therapy with two antibiotics prevents the emergence of resistance strains in contrast to sequential antibiotic therapy, and (iii) early initiation of antibiotics is among the most important factors preventing the emergence of resistant strains. These findings provide new insights into strategies aimed at optimizing the administration of antimicrobials for the treatment of infections and the prevention of the emergence of antimicrobial resistance.200819112501
488580.9996A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible to common clinical antimicrobials, which decreases the effectiveness of medicines used to treat infections caused by these organisms. Carbapenems are an important class of antibiotics due to their broad-spectrum effectiveness in treating infections caused by Gram-positive and Gram-negative organisms. Carbapenem-resistant bacteria have been found not only in healthcare but also in the environment and food supply chain, where they have the potential to spread to pathogens and infect humans and animals. Current methods of detecting AMR genes are expensive and time-consuming. While these methods, like polymerase chain reactions or whole-genome sequencing, are considered the "gold standard" for diagnostics, the development of inexpensive, rapid diagnostic assays is necessary for effective AMR detection and management. Biosensors have shown potential for success in diagnostic testing due to their ease of use, inexpensive materials, rapid results, and portable nature. Biosensors can be combined with nanomaterials to produce sensitive and easily interpretable results. This review presents an overview of carbapenem resistance, current and emerging detection methods of antimicrobial resistance, and the application of biosensors for rapid diagnostic testing for bacterial resistance.202540725449
979790.9996Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. The prevalence of resistance in Gram-positive bacterial infections is rapidly rising, presenting a pressing global challenge for both healthcare systems and economies. The WHO categorizes these bacteria into critical, high, and medium priority groups based on the urgency for developing new antibiotics. While the first priority pathogen list was issued in 2017, the 2024 list remains largely unchanged. Despite six years having passed, the progress that has been made in developing novel treatment approaches remains insufficient, allowing antimicrobial resistance to persist and worsen on a global scale. Various strategies have been implemented to address this growing threat by targeting specific resistance mechanisms. This review evaluates antimicrobial resistance (AMR) in Gram-positive bacteria, highlighting its critical impact on global health due to the rise of multidrug-resistant pathogens. It focuses on the unique cell wall structure of Gram-positive bacteria, which influences their identification and susceptibility to antibiotics. The review explores the mechanisms of AMR, including enzymatic inactivation, modification of drug targets, limiting drug uptake, and increased drug efflux. It also examines the resistance strategies employed by high-priority Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium, as identified in the WHO's 2024 priority list.202439766587
4329100.9996Bacterial resistance: new threats, new challenges. Bacterial resistance remains a major concern. Recently, genetic transfers from saprophytic, non-pathogenic, species to pathogenic S. pneumoniae and N. meningitidis have introduced multiple changes in the penicillin target molecules, leading to rapidly growing penicillin resistance. In enterobacteriaceae, a succession of minute mutations has generated new beta-lactamases with increasingly expanded spectrum, now covering practically all available beta-lactam antibiotics. Resistance emerges in the hospital environment but also, and increasingly, in the community bacteria. Widespread resistance is probably associated with antibiotic use, abuse and misuse but direct causality links are difficult to establish. In some countries as in some hospitals, unusual resistance profiles seem to correspond to unusual antibiotic practices. For meeting the resistance challenge, no simple solutions are available, but combined efforts may help. For improving the situation, the following methods can be proposed. At the world level, a better definition of appropriate antibiotic policies should be sought, together with strong education programmes on the use of antibiotics and the control of cross-infections, plus controls on the strategies used by pharmaceutical companies for promoting antibiotics. At various local levels, accurate guidelines should be adapted to each institution and there should be regularly updated formularies using scientific, and not only economic, criteria; molecular technologies for detecting subtle epidemic variations and emergence of new genes should be developed and regular information on the resistance profiles should be available to all physicians involved in the prevention and therapy of infections.19938149138
9804110.9996Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.202235336016
9809120.9996The gut microbiome: an emerging epicenter of antimicrobial resistance? The human gut is one of the most densely populated microbial environments, home to trillions of microorganisms that live in harmony with the body. These microbes help with digestion and play key roles in maintaining a balanced immune system and protecting us from harmful pathogens. However, the crowded nature of this ecosystem makes it easier for harmful bacteria to acquire antimicrobial resistance (AMR) genes, which can lead to multidrug-resistant (MDR) infections. The rise of MDR infections makes treatments harder, leading to more extended hospital stays, relapses, and worse outcomes for patients, ultimately increasing healthcare costs and environmental strain. Since many MDR infections are challenging to treat, nosocomial infection control protocols and infection prevention programmes are frequently the only measures in our hands to stop the spread of these bacteria. New approaches are therefore urgently required to prevent the colonization of MDR infections. This review aims to explore the current understanding of antimicrobial resistance pathways, focusing on how the gut microbiota contributes to AMR. We have also emphasized the potential strategies to prevent the spread and colonization of MDR infections.202540463440
4299130.9996Antibiotic resistance mechanism and diagnosis of common foodborne pathogens based on genotypic and phenotypic biomarkers. The emergence of antibiotic-resistant bacteria due to the overuse or inappropriate use of antibiotics has become a significant public health concern. The agri-food chain, which serves as a vital link between the environment, food, and human, contributes to the large-scale dissemination of antibiotic resistance, posing a concern to both food safety and human health. Identification and evaluation of antibiotic resistance of foodborne bacteria is a crucial priority to avoid antibiotic abuse and ensure food safety. However, the conventional approach for detecting antibiotic resistance heavily relies on culture-based methods, which are laborious and time-consuming. Therefore, there is an urgent need to develop accurate and rapid tools for diagnosing antibiotic resistance in foodborne pathogens. This review aims to provide an overview of the mechanisms of antibiotic resistance at both phenotypic and genetic levels, with a focus on identifying potential biomarkers for diagnosing antibiotic resistance in foodborne pathogens. Furthermore, an overview of advances in the strategies based on the potential biomarkers (antibiotic resistance genes, antibiotic resistance-associated mutations, antibiotic resistance phenotypes) for antibiotic resistance analysis of foodborne pathogens is systematically exhibited. This work aims to provide guidance for the advancement of efficient and accurate diagnostic techniques for antibiotic resistance analysis in the food industry.202337222539
4300140.9996A review: antimicrobial resistance data mining models and prediction methods study for pathogenic bacteria. Antimicrobials have paved the way for medical and social development over the last century and are indispensable for treating infections in humans and animals. The dramatic spread and diversity of antibiotic-resistant pathogens have significantly reduced the efficacy of essentially all antibiotic classes and is a global problem affecting human and animal health. Antimicrobial resistance is influenced by complex factors such as resistance genes and dosing, which are highly nonlinear, time-lagged and multivariate coupled, and the amount of resistance data is large and redundant, making it difficult to predict and analyze. Based on machine learning methods and data mining techniques, this paper reviews (1) antimicrobial resistance data storage and analysis techniques, (2) antimicrobial resistance assessment methods and the associated risk assessment methods for antimicrobial resistance, and (3) antimicrobial resistance prediction methods. Finally, the current research results on antimicrobial resistance and the development trend are summarized to provide a systematic and comprehensive reference for the research on antimicrobial resistance.202134522024
6678150.9996Bacteriophage Therapy to Combat Microbial Infections and Antimicrobial Resistance. Antimicrobial resistance (AMR) is a global issue; however, in lower resource settings, uncontrolled measures and uncontrolled use of antibiotics in human, animal, and agricultural practices have increased their prevalence in developing countries. Various mechanisms have been implicated to explain the AMR, like the circulation of the plasmid carrying antibiotic resistance genes (ARG), mutation in target genes (intrinsic and plasmid), overexpression of efflux pumps, underexpression of porins, etc. Various therapeutic strategies used to combat AMR exist, such as nonantibiotic approaches (vaccinations or immunotherapy, nano-derived treatments, and bacteriophage therapy), Anti-plasmid and plasmid curing approaches, combinatorial approaches (combination of antibiotics as well as a combination of two different approaches), and plant-based therapeutics. In this focused review, we have discussed the potential use of bacteriophage-based therapy to combat AMR and biofilm formation through multifaceted ways, including lysis of the drug-resistant bacteria, targeting the pili of AMR plasmids conjugation systems, and use of phage-derived lytic proteins. Phages can also be used to decontaminate surfaces in healthcare settings, prevent bacterial contamination in food (meat and dairy), and control bacterial populations in environmental settings, such as water and soil. Therefore, the bacteriophages-based approach served as a dual sword and could not only prevent the spread of infectious diseases but also manage the AMR.202540757460
8168160.9996Understanding antimicrobial resistance (AMR) mechanisms and advancements in AMR diagnostics. The overuse and abuse of antibiotics, which results in the evolution of resistant microorganisms, is the primary cause of the global health catastrophe known as antimicrobial resistance (AMR). The enzymatic breakdown of antibiotics, target site modification, efflux pump overexpression, and the formation of biofilm are some of the mechanisms responsible for acquiring antimicrobial resistance (AMR). These mechanisms enable bacteria to evade or neutralize the effects of antimicrobial agents, complicating treatment options and increasing mortality rates. The rapid dissemination of resistance genes via horizontal gene transfer further exacerbates the problem, necessitating urgent intervention. Advanced AMR diagnostics are transforming the fight against antimicrobial resistance. Biosensors enable rapid, point-of-care detection; Cluster regularly interspaced short palindromic repeat (CRISPR) technologies offer precise identification of resistance genes; and mass spectrometry provides fast, accurate profiling. Automated systems streamline workflows and boost throughput, while flow cytometry delivers real-time, single-cell analysis of phenotypic resistance. Together, these innovations accelerate detection and support targeted antimicrobial stewardship, essential for combating the global AMR threat. This review covers the mechanisms underlying antimicrobial resistance (AMR) and recent advancements in AMR diagnostic technologies.202540544537
9553170.9996A machine learning framework to predict antibiotic resistance traits and yet unknown genes underlying resistance to specific antibiotics in bacterial strains. Recently, the frequency of observing bacterial strains without known genetic components underlying phenotypic resistance to antibiotics has increased. There are several strains of bacteria lacking known resistance genes; however, they demonstrate resistance phenotype to drugs of that family. Although such strains are fewer compared to the overall population, they pose grave emerging threats to an already heavily challenged area of antimicrobial resistance (AMR), where death tolls have reached ~700 000 per year and a grim projection of ~10 million deaths per year by 2050 looms. Considering the fact that development of novel antibiotics is not keeping pace with the emergence and dissemination of resistance, there is a pressing need to decipher yet unknown genetic mechanisms of resistance, which will enable developing strategies for the best use of available interventions and show the way for the development of new drugs. In this study, we present a machine learning framework to predict novel AMR factors that are potentially responsible for resistance to specific antimicrobial drugs. The machine learning framework utilizes whole-genome sequencing AMR genetic data and antimicrobial susceptibility testing phenotypic data to predict resistance phenotypes and rank AMR genes by their importance in discriminating the resistance from the susceptible phenotypes. In summary, we present here a bioinformatics framework for training machine learning models, evaluating their performances, selecting the best performing model(s) and finally predicting the most important AMR loci for the resistance involved.202134015806
9805180.9996Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation.202236561977
8169190.9996Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. Antibiotic resistance is spreading rapidly around the world and seriously impeding efforts to control microbial infections. Although nucleic acid testing is widely deployed for the detection of antibiotic resistant bacteria, the current techniques-mainly based on polymerase chain reaction (PCR)-are time-consuming and laborious. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance (AMR). The CRISPR-Cas system is an adaptive immune system found in many prokaryotes that presents attractive opportunities to target and edit nucleic acids with high precision and reliability. Engineered CRISPR-Cas systems are reported to effectively kill bacteria or even revert bacterial resistance to antibiotics (resensitizing bacterial cells to antibiotics). Strategies for combating antimicrobial resistance using CRISPR (i.e., Cas9, Cas12, Cas13, and Cas14) can be of great significance in detecting bacteria and their resistance to antibiotics. This review discusses the structures, mechanisms, and detection methods of CRISPR-Cas systems and how these systems can be engineered for the rapid and reliable detection of bacteria using various approaches, with a particular focus on nanoparticles. In addition, we summarize the most recent advances in applying the CRISPR-Cas system for virulence modulation of bacterial infections and combating antimicrobial resistance.202134863214