Recent Review on Subclass B1 Metallo-β-lactamases Inhibitors: Sword for Antimicrobial Resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
979301.0000Recent Review on Subclass B1 Metallo-β-lactamases Inhibitors: Sword for Antimicrobial Resistance. An emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations, posing a global threat to human health. The production of the metalloβ-lactamase enzyme is the most powerful strategy of bacteria to produce resistance. An efficient way to combat this global health threat is the development of broad/non-specific type of metalloβ-lactamase inhibitors, which can inhibit the different isoforms of the enzyme. Till date, there are no clinically active drugs against metallo- β-lactamase. The lack of efficient drug molecules against MBLs carrying bacteria requires continuous research efforts to overcome the problem of multidrug-resistance bacteria. The present review will discuss the clinically potent molecules against different variants of B1 metalloβ-lactamase.201930556502
980610.9998Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.202032586045
433220.9998Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals.201728258227
487830.9998Bacteria carrying mobile colistin resistance genes and their control measures, an updated review. The plasmid encoded mobile colistin resistance (MCRs) enzyme poses a significant challenge to the clinical efficacy of colistin, which is frequently employed as a last resort antibiotic for treating infections caused by multidrug resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A of the outer membrane of gram-negative bacteria, thereby facilitating the acquired colistin resistance. This review aims to summarize and critically discuss recent advancements in the distribution and pathogenesis of mcr-positive bacteria, as well as the various control measures available for treating these infections. In addition, the ecology of mcr genes, colistin-resistance mechanism, co-existence with other antibiotic resistant genes, and their impact on clinical treatment are also analyzed to address the colistin resistance crisis. These insights provide a comprehensive perspective on MCRs and serve as a valuable reference for future therapeutic approaches to effectively combat mcr-positive bacterial infections.202439516398
980540.9998Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation.202236561977
975250.9998Engineered Phages and Engineered and Recombinant Endolysins Against Carbapenem-Resistant Gram-Negative Bacteria: A Focused Review on Novel Antibacterial Strategies. Antibiotic resistance has escalated globally, affecting not only commonly used antibiotics but also last-resort agents such as carbapenems and colistin. The rise of antibiotic-resistant bacteria has prompted microbiologists to devise new strategies, with bacteriophages emerging as one of the most promising options. Nevertheless, certain mechanisms have been identified in bacteria that confer resistance to phages. While phage resistance is currently less widespread than antibiotic resistance, challenges such as biofilm formation, newly emerging resistance mechanisms against phages, and the natural limitations of unmodified phages have driven the advancement of engineered phages. This study aims to examine the efficacy of engineered phages and both engineered and recombinant endolysins against carbapenem-resistant Gram-negative bacteria (CR-GNB). We performed a literature review through PubMed, Scopus, Web of Science, and Google Scholar, concentrating on studies that utilized these agents against carbapenem-resistant Gram-negative bacteria (CR-GNB). Reviewed studies indicate potential antibacterial activity of these agents against CR-GNB. By engineering and modifying phages, these agents exhibit improved antimicrobial efficacy, temperature stability, and membrane permeability. Furthermore, they demonstrate the ability to eliminate bacteria with multidrug-resistant (MDR) and extensively drug-resistant (XDR) profiles. These findings suggest the promising potential of engineered phages and endolysins for future clinical applications against CR-GNB.202540696543
980060.9997Regulation of beta-lactamase induction in gram-negative bacteria: a key to understanding the resistance puzzle. Infections caused by drug-resistant microorganisms have posed a medical challenge since the advent of antimicrobial therapy. With the emergence of resistant strains, new antibiotics were available and introduced with great success until this decade. The appearance of multiresistant microorganisms pose a real and immediate public health concern. Are we entering into the post-antibiotic era? Will we return to pre-antimicrobial-era conditions, with morbidity and mortality resulting from untreatable infectious complications? The race to stay ahead of multiresistance involves not only continued drug development and selective use but elucidation of bacterial regulation of resistance. One way to ensure continued success of antimicrobial therapy is the identification of new bacterial targets--genes and their products involved in regulating or mediating resistance. Discussion will focus on one well-defined resistance mechanism in Gram-negative bacteria, the chromosomally located amp operon, responsible for one mechanism of beta-lactam resistance.19947723996
487970.9997Prevalence of polymyxin resistance through the food chain, the global crisis. Antimicrobial resistance is one of the vital challenges facing global health today. Multi-drug resistant (MDR) infections are often treated with the narrow-spectrum drugs, colistin (polymyxin E) or polymyxin B, which are last-resort antibiotics for human therapeutics that are effective against Gram-negative bacteria. Unfortunately, resistance to these polymyxins has occurred because of selective pressure caused by the inappropriate use of those antibiotics, especially in farming. The mechanisms of resistance to polymyxins are mediated through intrinsic, mutational, or genetic alteration in chromosomal genes. The mechanism includes the regulatory network controlling chemical modifications of lipid A moiety of lipopolysaccharide, reducing the negative charge of lipid A and its affinity for polymyxins. Additionally, the unique mobile colistin/polymyxin B resistance (mcr) gene reported in Enterobacteriales is responsible for the horizontal dissemination of resistance to polymyxins via the food chain. There is now an urgent need to increase surveillance for detecting resistance to polymyxins. Therefore, this review presents an overview of presently available scientific literature on the mechanism of resistance to polymyxins, with their associated gene variants, evaluation methods, resistance transmission through the food chain via food bacteria, and related risk factors. We further focus on the significant implications of polymyxins usage in India and future views for food safety to preserve polymyxin activity.202235079146
433080.9997Decolonization of asymptomatic carriage of multi-drug resistant bacteria by bacteriophages? Antimicrobial resistance is a major threat to human and animal health and accounted for up to 4.5 million deaths worldwide in 2019. Asymptomatic colonization of the digestive tract by multidrug resistant (multi-resistant) bacteria such as extended-spectrum beta-lactamase-, or carbapenemase- producing Enterobacterales is (i) a risk factor for infection by these multi-resistant bacteria, (ii) a risk factor of dissemination of these multi-resistant bacteria among patients and in the community, and (iii) allows the exchange of resistance genes between bacteria. Hence, decolonization or reduction of the gastrointestinal tract colonization of these multi-resistant bacteria needs to be urgently explored. Developing new non-antibiotic strategies to limit or eradicate multi-resistant bacteria carriage without globally disrupting the microbiota is considered a priority to fight against antibiotic resistance. Probiotics or Fecal Microbiota Transplantation are alternative strategies to antibiotics that have been considered to decolonize intestinal tract from MDR bacteria but there is currently no evidence demonstrating their efficacy. Lytic bacteriophages are viruses that kill bacteria and therefore could be considered as a promising strategy to combat antibiotic resistance. Successful decolonization by bacteriophages has already been observed clinically. Here, we discuss the current alternative strategies considered to decolonize the digestive tract of multidrug resistant bacteria, briefly describing probiotics and fecal microbiota transplantation approaches, and then detail the in vivo and in vitro studies using bacteriophages, while discussing their limits regarding the animal models used, the characteristics of phages used and their activity in regards of the gut anatomy.202338075897
486890.9997Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.201322667455
4331100.9997Infectious drug resistance. The emergence of antibiotic-resistant bacteria is a serious threat to public health. Infectious drug resistance, the transmission of resistant determinants from antibiotic-resistant bacteria to antibiotic-sensitive bacterial populations, creates clinical problems that must be addressed. Adequate knowledge of the mechanisms responsible for bacteria resistance is important for ensuring the benefits of antimicrobial therapy.19853981648
9797110.9997Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. The prevalence of resistance in Gram-positive bacterial infections is rapidly rising, presenting a pressing global challenge for both healthcare systems and economies. The WHO categorizes these bacteria into critical, high, and medium priority groups based on the urgency for developing new antibiotics. While the first priority pathogen list was issued in 2017, the 2024 list remains largely unchanged. Despite six years having passed, the progress that has been made in developing novel treatment approaches remains insufficient, allowing antimicrobial resistance to persist and worsen on a global scale. Various strategies have been implemented to address this growing threat by targeting specific resistance mechanisms. This review evaluates antimicrobial resistance (AMR) in Gram-positive bacteria, highlighting its critical impact on global health due to the rise of multidrug-resistant pathogens. It focuses on the unique cell wall structure of Gram-positive bacteria, which influences their identification and susceptibility to antibiotics. The review explores the mechanisms of AMR, including enzymatic inactivation, modification of drug targets, limiting drug uptake, and increased drug efflux. It also examines the resistance strategies employed by high-priority Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium, as identified in the WHO's 2024 priority list.202439766587
9795120.9997Antibiotic resistance: how it arises, the current position and strategies for the future. After 70 years of antibiotic therapy, the threat of untreatable infections is again a reality with resistance to antibiotics increasing in both Gram positive and Gram negative bacteria. Antibiotic-resistant bacteria cause both community and healthcare associated infections, presenting challenges in treatment and management. The development of new and novel antibiotics, particularly for Gram negative bacteria, is worryingly lacking. This article reviews the current situation and examines future strategies to tackle the continued threat of bacterial resistance.200919835196
4881130.9997Investigating colistin drug resistance: The role of high-throughput sequencing and bioinformatics. Bacterial infections involving antibiotic-resistant gram-negative bacteria continue to increase and represent a major global public health concern. Resistance to antibiotics in these bacteria is mediated by chromosomal and/or acquired resistance mechanisms, these give rise to multi-drug resistant (MDR), extensive-drug resistant (XDR) or pan-drug resistant (PDR) bacterial strains. Most recently, plasmid-mediated resistance to colistin, an antibiotic that had been set apart as the last resort antibiotic in the treatment of infections involving MDR, XDR and PDR gram-negative bacteria has been reported. Plasmid-mediated colistin resistant gram-negative bacteria have been described to be PDR, implying a state devoid of alternative antibiotic therapeutic options. This review concisely describes the evolution of antibiotic resistance to plasmid-mediated colistin resistance and discusses the potential role of high-throughput sequencing technologies, genomics, and bioinformatics towards improving antibiotic resistance surveillance, the search for novel drug targets and precision antibiotic therapy focused at combating colistin resistance, and antibiotic resistance as a whole.201931354944
9804140.9997Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.202235336016
4890150.9997Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.202033081121
4253160.9997Molecular mechanisms of polymyxin resistance and detection of mcr genes. Antibiotic resistance is an ever-increasing global problem. Major commercial antibiotics often fail to fight common bacteria, and some pathogens have become multi-resistant. Polymyxins are potent bactericidal antibiotics against gram-negative bacteria. Known resistance to polymyxin includes intrinsic, mutational and adaptive mechanisms, with the recently described horizontally acquired resistance mechanisms. In this review, we present several strategies for bacteria to develop enhanced resistance to polymyxins, focusing on changes in the outer membrane, efflux and other resistance determinants. Better understanding of the genes involved in polymyxin resistance may pave the way for the development of new and effective antimicrobial agents. We also report novel in silico tested primers for PCR assay that may be able distinguish colistin-resistant isolates carrying the plasmid-encoded mcr genes and will assist in combating the spread of colistin resistance in bacteria.201930439931
4313170.9997Molecular epidemiology of clinically significant antibiotic resistance genes. Antimicrobials were first introduced into medical practice a little over 60 years ago and since that time resistant strains of bacteria have arisen in response to the selective pressure of their use. This review uses the paradigm of the evolution and spread of beta-lactamases and in particular beta-lactamases active against antimicrobials used to treat Gram-negative infections. The emergence and evolution particularly of CTX-M extended-spectrum beta-lactamases (ESBLs) is described together with the molecular mechanisms responsible for both primary mutation and horizontal gene transfer. Reference is also made to other significant antibiotic resistance genes, resistance mechanisms in Gram-negative bacteria, such as carbepenamases, and plasmid-mediated fluoroquinolone resistance. The pathogen Staphylococcus aureus is reviewed in detail as an example of a highly successful Gram-positive bacterial pathogen that has acquired and developed resistance to a wide range of antimicrobials. The role of selective pressures in the environment as well as the medical use of antimicrobials together with the interplay of various genetic mechanisms for horizontal gene transfer are considered in the concluding part of this review.200818311156
6617180.9997Mechanisms in colistin-resistant superbugs transmissible from veterinary, livestock and animal food products to humans. In the era of antibiotic resistance, where multidrug-resistant (MDR), extensively drug resistant (XDR), and pan-drug resistant (PDR) Gram-negative infections are prevalent, it is crucial to identify the primary sources of antibiotic resistance, understand resistant mechanisms, and develop strategies to combat these mechanisms. The emergence of resistance to last-resort antibiotics like colistin has sparked a war between humanity and resistant bacteria, leaving humanity struggling to find effective countermeasures. Although colistin is used as a highly toxic antibiotic in infections that are not treated with routine antibiotics, its widespread use in animal breeding and veterinary medicine has contributed to the spread of colistin-resistant bacteria, plasmid-borne colistin resistance genes (mcr), and antibiotic residues in livestock and animal-derived foods. These sources can potentially transmit colistin resistance to humans through various routes. Therefore, managing the use of colistin in livestock and animal foods, implementing strict monitoring, and establishing guidelines for its proper use are essential to prevent the escalation of colistin resistance. This review article discusses the latest mechanisms of colistin antibiotic resistance, particularly biofilm production as a public health threat, the livestock and animal food sources of this resistance, and the routes of transmission to humans.202540386099
9794190.9997Antibiotic resistance in developing countries. During the past decade there have been major changes in the susceptibility of bacteria that cause various infections. Resistance to anti-infective agents, including antibiotics, is worldwide, both in developed and developing countries. Almost all bacterial species can develop resistance to anti-infective agents and resistance can readily be transferred among bacteria by transmissible elements (plasmids). Measures to prevent the emergence of resistance must be implemented urgently. A multiplicity of factors drive antibiotic resistance and solutions require the collaboration of governmental agencies, pharmaceutical companies, healthcare providers and consumers. Knowledge of resistance patterns and of the ways by which resistance is overcome is vital to the future of antimicrobial chemotherapy.200111434528