Emerging antibiotic resistance: carbapenemase-producing enterobacteria. Bad new bugs, still no new drugs. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
979001.0000Emerging antibiotic resistance: carbapenemase-producing enterobacteria. Bad new bugs, still no new drugs. Antimicrobial resistance (AMR) is a global health security threat requiring actions across government sectors and society. Many factors are involved in this phenomenon, being overuse of antibiotics, incorrect antibiotic prophylaxis, and use of antibiotics for zootechnic reasons the main causes of the increasing rate of multi-drug resistant (MDR) bacteria. The impact of resistance to antimicrobials is an important threat due also to the emergence of MDR Gram-negative bacteria resistant to carbapenems, and the lack of the research for new active molecules. The production of extended spectrum beta-lactamase enzymes has been the first threatening mechanism for Gram-negative resistance to antibiotics, which prompted the development of new classes of antibiotics such as carbapenems. Unfortunately, resistance to carbapenems developed because of multiple mechanisms including efflux pumps, porin mutations and enzyme production, being the latter particularly relevant in terms of diffusion due to the genes located within plasmids that drive their horizontal diffusion. In this scenario, antimicrobial stewardship programs (ASP) are a mandatory resource in fighting the resistance spread. The reduction of total amount of antibiotics administration in the hospital setting and guiding prescribers in the correct administration of antibiotics for the smallest period possible, at the correct dosage, can be defined as the first goals of an ASP. Anyway, in an efficacious ASP, apart from antibiotic administration, efforts must been made in ensuring the lowest probability of spreading of MDR by efficacious measures of isolation of carriers, and by offering tools for a rapid diagnosis of viral infections avoiding the administration of unnecessary antibiotics. A continuous audit of the ASP programs and a correct assessment of the allergy to drugs such as penicillin have to complete the program. Currently, only a few options are available for patients with an infection sustained by Gram-negative MDR bacteria. All the options actually available are based on the administration of colystin, an old drug whose real efficacy is reduced due to its relevant toxicity, or on the administration of recently proposed drugs such as ceftolozane-tazobactam, ceftazidime-avibactam and meropenem-vaborbactam. All these new drugs do not have a novel mechanism of action and have limited spectrum in term of activity against MDR bacteria. In conclusion, antimicrobial resistance is a global emergence and AMP is the most powerful tool actually available. Few limited options are available to treat infections due to Carbapenem Resistant Enterobacteria. Antimicrobial molecules with true novel mechanism of action are needed to win the fight against antimicrobial resistance.201931846984
488710.9999Mechanisms of Bacterial Drug Resistance with Special Emphasis on Phenotypic and Molecular Characterization of Extended Spectrum Beta-lactamase. Antibiotics are designed to effectively treat bacterial infections while minimizing harm to the human body. They work by targeting specific components of bacteria or by disrupting essential processes such as cell wall synthesis, membrane function, protein production, and metabolic pathways. However, the misuse and overuse of antibiotics have led to the emergence of drug resistance in humans, animals, and agriculture, contributing to the global spread of this problem. Drug resistance can be either innate or acquired, with acquired resistance involving changes in the bacterial chromosomes or transferable elements. Bacterial species employ various mechanisms of drug resistance, including modifying the antibiotic targets, inactivating the drug, reducing uptake or increasing efflux, overexpressing the target, utilizing alternative pathways, and forming biofilms. One significant concern in the realm of drug resistance revolves around the emergence and proliferation of extended-spectrum beta-lactamases (ESBLs), a gene that is found in most gram-negative bacteria, primarily carried by Escherichia coli and Klebsiella pneumoniae in healthcare settings. ESBL-mediated resistance poses challenges for diagnosis, treatment, infection control, and antibiotic stewardship. Accurate detection of ESBL genes is crucial, and phenotypic methods are commonly used for initial screening. However, these methods have limitations, and confirmatory molecular techniques such as PCR and DNA sequencing are employed to accurately identify ESBL genes. Despite the significant global concerns surrounding ESBLs, they have spread worldwide, mainly facilitated by healthcare settings, inappropriate antimicrobial use, and host susceptibility. Addressing this issue requires implementing comprehensive measures, including enhanced surveillance, strict infection control practices, antibiotic stewardship programs, rapid diagnostic methods, alternative therapies, public education initiatives, and research focused on developing new drugs. Furthermore, collaboration among the healthcare, public health, and research sectors is pivotal in effectively combating the escalating threat posed by ESBL-mediated resistance. Antibiotics have revolutionized medical care by effectively treating bacterial infections. However, the emergence of ESBL gene resistance poses a global challenge that requires an integrated approach to prevent a threatening future.202438700878
979120.9999Beta-lactam resistance and the effectiveness of antimicrobial peptides against KPC-producing bacteria. Bacterial resistance is a problem that is giving serious cause for concern because bacterial strains such as Acinetobacter baumannii and Pseudomonas aeruginosa are difficult to treat and highly opportunistic. These bacteria easily acquire resistance genes even from other species, which confers greater persistence and tolerance towards conventional antibiotics. These bacteria have the highest death rate in hospitalized intensive care patients, so strong measures must be taken. In this review, we focus on the use of antimicrobial peptides (AMPs) as an alternative to traditional drugs, due to their rapid action and lower risk of generating resistance by microorganisms. We also present an overview of beta-lactams and explicitly explain the activity of AMPs against carbapenemase-producing bacteria as potential alternative agents for infection control.202236042694
489030.9999Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.202033081121
432940.9999Bacterial resistance: new threats, new challenges. Bacterial resistance remains a major concern. Recently, genetic transfers from saprophytic, non-pathogenic, species to pathogenic S. pneumoniae and N. meningitidis have introduced multiple changes in the penicillin target molecules, leading to rapidly growing penicillin resistance. In enterobacteriaceae, a succession of minute mutations has generated new beta-lactamases with increasingly expanded spectrum, now covering practically all available beta-lactam antibiotics. Resistance emerges in the hospital environment but also, and increasingly, in the community bacteria. Widespread resistance is probably associated with antibiotic use, abuse and misuse but direct causality links are difficult to establish. In some countries as in some hospitals, unusual resistance profiles seem to correspond to unusual antibiotic practices. For meeting the resistance challenge, no simple solutions are available, but combined efforts may help. For improving the situation, the following methods can be proposed. At the world level, a better definition of appropriate antibiotic policies should be sought, together with strong education programmes on the use of antibiotics and the control of cross-infections, plus controls on the strategies used by pharmaceutical companies for promoting antibiotics. At various local levels, accurate guidelines should be adapted to each institution and there should be regularly updated formularies using scientific, and not only economic, criteria; molecular technologies for detecting subtle epidemic variations and emergence of new genes should be developed and regular information on the resistance profiles should be available to all physicians involved in the prevention and therapy of infections.19938149138
980650.9999Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.202032586045
432860.9999Bugs for the next century: the issue of antibiotic resistance. OBJECTIVE: To address the issue of emerging antibiotic resistance and examine which organisms will continue to pose problems in the new century. METHODS: Review of articles pertaining to bacteria recognised for increasing resistance. RESULTS: Changing resistance patterns are correlated with patterns of antibiotic use. This results in fewer effective drugs against "old" established bacteria e.g. gram-positives such as Streptococcus pneumoniae and Staphylococcus aureus. Resistance in gram-negative bacteria is also steadily increasing. Nosocomial gram-negative bacteria are capable of many different resistance mechanisms, often rendering them multiply-resistant. Antibiotic resistance results in morbidity and mortality from treatment failures and increased health care costs. CONCLUSION: Despite extensive research and enormous resources spent, the pace of drug development has not kept up with the development of resistance. As resistance spreads, involving more and more organisms, there is concern that we may be nearing the end of the antimicrobial era. Measures that can and should be taken to counter this threat of antimicrobial resistance include co-ordinated surveillance, rational antibiotic usage, better compliance with infection control and greater use of vaccines.200111379419
979770.9999Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. The prevalence of resistance in Gram-positive bacterial infections is rapidly rising, presenting a pressing global challenge for both healthcare systems and economies. The WHO categorizes these bacteria into critical, high, and medium priority groups based on the urgency for developing new antibiotics. While the first priority pathogen list was issued in 2017, the 2024 list remains largely unchanged. Despite six years having passed, the progress that has been made in developing novel treatment approaches remains insufficient, allowing antimicrobial resistance to persist and worsen on a global scale. Various strategies have been implemented to address this growing threat by targeting specific resistance mechanisms. This review evaluates antimicrobial resistance (AMR) in Gram-positive bacteria, highlighting its critical impact on global health due to the rise of multidrug-resistant pathogens. It focuses on the unique cell wall structure of Gram-positive bacteria, which influences their identification and susceptibility to antibiotics. The review explores the mechanisms of AMR, including enzymatic inactivation, modification of drug targets, limiting drug uptake, and increased drug efflux. It also examines the resistance strategies employed by high-priority Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium, as identified in the WHO's 2024 priority list.202439766587
488580.9999A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible to common clinical antimicrobials, which decreases the effectiveness of medicines used to treat infections caused by these organisms. Carbapenems are an important class of antibiotics due to their broad-spectrum effectiveness in treating infections caused by Gram-positive and Gram-negative organisms. Carbapenem-resistant bacteria have been found not only in healthcare but also in the environment and food supply chain, where they have the potential to spread to pathogens and infect humans and animals. Current methods of detecting AMR genes are expensive and time-consuming. While these methods, like polymerase chain reactions or whole-genome sequencing, are considered the "gold standard" for diagnostics, the development of inexpensive, rapid diagnostic assays is necessary for effective AMR detection and management. Biosensors have shown potential for success in diagnostic testing due to their ease of use, inexpensive materials, rapid results, and portable nature. Biosensors can be combined with nanomaterials to produce sensitive and easily interpretable results. This review presents an overview of carbapenem resistance, current and emerging detection methods of antimicrobial resistance, and the application of biosensors for rapid diagnostic testing for bacterial resistance.202540725449
488990.9998The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.202337630472
9800100.9998Regulation of beta-lactamase induction in gram-negative bacteria: a key to understanding the resistance puzzle. Infections caused by drug-resistant microorganisms have posed a medical challenge since the advent of antimicrobial therapy. With the emergence of resistant strains, new antibiotics were available and introduced with great success until this decade. The appearance of multiresistant microorganisms pose a real and immediate public health concern. Are we entering into the post-antibiotic era? Will we return to pre-antimicrobial-era conditions, with morbidity and mortality resulting from untreatable infectious complications? The race to stay ahead of multiresistance involves not only continued drug development and selective use but elucidation of bacterial regulation of resistance. One way to ensure continued success of antimicrobial therapy is the identification of new bacterial targets--genes and their products involved in regulating or mediating resistance. Discussion will focus on one well-defined resistance mechanism in Gram-negative bacteria, the chromosomally located amp operon, responsible for one mechanism of beta-lactam resistance.19947723996
4317110.9998Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade.200111524705
9792120.9998Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. The emergence of antibiotic resistant bacteria in the healthcare is a serious concern. In the Healthcare premises precisely intensive care unit are major sources of microbial diversity. Recent findings have demonstrated not only microbial diversity but also drug resistant microbes largely habitat in ICU. Pseudomonas aeruginosa found as a part of normal intestinal flora and a significant pathogen responsible for wide range of ICU acquired infection in critically ill patients. Nosocomial infection associated with this organism including gastrointestinal infection, urinary tract infections and blood stream infection. Infection caused by this organism are difficult to treat because of the presence of its innate resistance to many antibiotics (β-lactam and penem group of antibiotics), and its ability to acquire further resistance mechanism to multiple class of antibiotics, including Beta-lactams, aminoglycosides and fluoroquinolones. In the molecular evolution microbes adopted several mechanism to maintain genomic plasticity. The tool microbe use for its survival is mainly biofilm formation, quorum sensing, and horizontal gene transfer and enzyme promiscuity. Such genomic plasticity provide an ideal habitat to grow and survive in hearse environment mainly antibiotics pressure. This review focus on infection caused by Pseudomonas aeruginosa, its mechanisms of resistance and available treatment options. The present study provides a systemic review on major source of Pseudomonas aeruginosa in ICU. Further, study also emphasizes virulence gene/s associated with Pseudomonas aeruginosa genome for extended drug resistance. Study gives detailed overview of antibiotic drug resistance mechanism.201931194018
4332130.9998Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals.201728258227
4858140.9998Successful interventions for gram-negative resistance to extended-spectrum beta-lactam antiobiotics. Antibiotic resistance among nosocomial pathogens in this country's hospitals adds significantly to patient morbidity and mortality, and the cost of health care. Optimism for identifying antimicrobial agents that would "solve the problem" of resistance has been replaced by a much more guarded and realistic view of the battle between humans and pathogenic microorganisms. Efforts now are more appropriately directed toward limiting, rather than completely eliminating, resistance, generally by either infection control or antibiotic control measures, and sometime combinations of the two. Methicillin-oxacillin resistance in Staphylococcus aureus (MRSA) results from the expression of an acquired penicillin-binding protein (PBP 2a) that is not transferable in vitro. In most hospitals, even those with high percentages of MRSA, relatively few resistant clones are identified, suggesting transmission of individual strains throughout the hospital population. Because person-to-person spread is so important in transmission of MRSA, strategies aimed at preventing transmission of the resistant strains are remarkably effective when strictly enforced. Ceftazidime resistance in Enterobacteriaceae results from point mutations within genes that encode widely prevalent and often transferable plasmid-mediated enzymes. In addition, mutations of these genes that allow hydrolysis of cephalosporins usually result in decreased activity against other drugs, including the penicillins and beta-lactamase inhibitors. Effective measures to control ceftazidime-resistant Enterobacteriaceae have as their cornerstone limiting administration of antibiotics that select for the emergence and spread of these mutations, especially ceftazidime. The importance of infection-control techniques in limiting the prevalence of ceftazidime-resistant Enterobacteriaceae is less well established. Methods that are informed by a detailed understanding of the molecular mechanisms of resistance and resistance spread offer the best hope for limiting dissemination of antibiotic-resistant bacteria in a cost-effective manner.199910456609
4879150.9998Prevalence of polymyxin resistance through the food chain, the global crisis. Antimicrobial resistance is one of the vital challenges facing global health today. Multi-drug resistant (MDR) infections are often treated with the narrow-spectrum drugs, colistin (polymyxin E) or polymyxin B, which are last-resort antibiotics for human therapeutics that are effective against Gram-negative bacteria. Unfortunately, resistance to these polymyxins has occurred because of selective pressure caused by the inappropriate use of those antibiotics, especially in farming. The mechanisms of resistance to polymyxins are mediated through intrinsic, mutational, or genetic alteration in chromosomal genes. The mechanism includes the regulatory network controlling chemical modifications of lipid A moiety of lipopolysaccharide, reducing the negative charge of lipid A and its affinity for polymyxins. Additionally, the unique mobile colistin/polymyxin B resistance (mcr) gene reported in Enterobacteriales is responsible for the horizontal dissemination of resistance to polymyxins via the food chain. There is now an urgent need to increase surveillance for detecting resistance to polymyxins. Therefore, this review presents an overview of presently available scientific literature on the mechanism of resistance to polymyxins, with their associated gene variants, evaluation methods, resistance transmission through the food chain via food bacteria, and related risk factors. We further focus on the significant implications of polymyxins usage in India and future views for food safety to preserve polymyxin activity.202235079146
4886160.9998Molecular diagnostics for genotypic detection of antibiotic resistance: current landscape and future directions. Antimicrobial resistance (AMR) among bacteria is an escalating public health emergency that has worsened during the COVID-19 pandemic. When making antibiotic treatment decisions, clinicians rely heavily on determination of antibiotic susceptibility or resistance by the microbiology laboratory, but conventional methods often take several days to identify AMR. There are now several commercially available molecular methods that detect antibiotic resistance genes within hours rather than days. While these methods have limitations, they offer promise for optimizing treatment and patient outcomes, and reducing further emergence of AMR. This review provides an overview of commercially available genotypic assays that detect individual resistance genes and/or resistance-associated mutations in a variety of specimen types and discusses how clinical outcomes studies may be used to demonstrate clinical utility of such diagnostics.202336816746
9789170.9998Nosocomial antibiotic resistance in multiple gram-negative species: experience at one hospital with squeezing the resistance balloon at multiple sites. Increased use of antibiotics has led to the isolation of multidrug-resistant bacteria, especially in intensive care units and long-term care facilities. Resistance in specific gram-negative bacteria, including Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, is of great concern, because a growing number of reports have documented mechanisms whereby these microorganisms have become resistant to all available antibacterial agents used in therapy. Reduction in the selection of these multidrug-resistant bacteria can be accomplished by a combination of several strategies. These include having an understanding of the genetics of both innate and acquired characteristics of bacteria; knowing resistance potentials for specific antibacterials; monitoring resistance trends in bacteria designated as problematic organisms within a particular institution on a routine basis; modifying antibiotic formularies when and where needed; creating institutional education programs; and enforcing strict infection-control practices. Strategies appropriate for primary prevention of nosocomial resistance may differ from those required for control of existing epidemic or endemic resistance.200211797177
9801180.9998Problems and changing patterns of resistance with gram-negative bacteria. Throughout the antibiotic era, the emergence of drug-resistant bacteria has paralleled the development of new antimicrobial agents. As a result of selection pressures and invasive techniques that prolong the lives of seriously ill hospital patients, gram-negative bacilli have become the dominant causes of nosocomial infection. These microorganisms produce a diversity of antibiotic-inactivating enzymes. Moreover, the cell envelope of gram-negative bacteria provides a series of barriers that keep antibiotics from reaching their targets. Resistance factors can be transmitted among bacteria of different genera and species, thus conferring multidrug resistance. These problems continue to challenge scientists to better understand resistance mechanisms and to develop new compounds to circumvent them.19853909311
4868190.9998Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.201322667455