Exogenous adenosine counteracts tigecycline resistance in tet(X3)-harboring Escherichia coli. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
977001.0000Exogenous adenosine counteracts tigecycline resistance in tet(X3)-harboring Escherichia coli. The rapid spread of antibiotic resistance poses a global health crisis. Tigecycline is a last-resort antibiotic, but the recent emergence of the plasmid-borne tet(X3) gene conferring high-level tigecycline resistance is deeply concerning. Here, we report a metabolomics-guided approach to overcome tet(X3)-mediated resistance. Using untargeted metabolomics, we identified adenosine as a key metabolic biomarker associated with tet(X3) expression. Remarkably, supplementation with exogenous adenosine was able to restore tigecycline susceptibility in tet(X3)-positive Escherichia coli both in vitro and in vivo. Our mechanistic investigations reveal that adenosine enhances the bactericidal effects of tigecycline by inducing oxidative stress, DNA/RNA damage, and cell membrane disruption in resistant bacteria. This study establishes a powerful metabolomics-driven strategy to potentiate antibiotic efficacy against drug-resistant pathogens. The adenosine-based adjuvant therapy represents a promising approach to combat the global crisis of antibiotic resistance.IMPORTANCEThe emergence and widespread dissemination of the high-level tigecycline resistance gene tet(X3) have posed a significant challenge to the efficacy of tigecycline, which serves as the "last line of defense" against antimicrobial-resistant bacteria. Although tigecycline has not been approved for veterinary clinical use, constant detection of tet(X3) genes and new subtypes in livestock farming environments poses a substantial threat to public health safety. While developing novel antibiotics is an effective approach to eradicate resistance genes/bacteria, it entails considerable costs and a lengthy timeframe. This study discovered that exogenous adenosine can effectively restore the sensitivity of tet(X3)-positive Escherichia coli to tigecycline through metabolic reprogramming based on a non-targeted metabolomics strategy. The findings are highly significant for exploring comprehensive mechanisms underlying bacterial multidrug resistance, utilizing metabolic reprogramming strategies to curb the spread of novel resistant genes, and treating clinical infections caused by tet(X3)-positive bacteria.202540622216
994010.9998Resensitizing tigecycline- and colistin-resistant Escherichia coli using an engineered conjugative CRISPR/Cas9 system. Tigecycline and colistin were referred to as the "last resort" antibiotics in defending against carbapenem-resistant, Gram-negative bacterial infections, and are currently widely used in clinical treatment. However, the emergence and prevalence of plasmid-mediated tet(X4) and mcr-1 genes pose a serious threat to the therapeutic application of tigecycline and colistin, respectively. In this research, a tigecycline- and colistin-resistant bacteria resensitization system was developed based on efficient and specific DNA damage caused by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Associated Protein 9 (Cas9) nucleases. A conjugation method was used to deliver the resensitization system, which harbors two single-guide RNAs targeting tet(X4) and mcr-1 genes and constitutively expressed Cas9. The conjugation efficiency was nearly 100% after conjugation condition optimization in vitro, and the resensitivity efficiency for clinical isolates was over 90%. In addition, when performing resensitization in vivo, the resistance marker was replaced with a glutamate-based, chromosomal, plasmid-balanced lethal system to prevent the introduction of additional resistance genes in clinical settings, making this strategy a therapeutic approach to combat the in vivo spread of antibiotic resistance genes (ARGs) among bacterial pathogens. As a proof of concept, this resensitive system can significantly decrease the counts of tigecycline- and colistin-resistant bacteria to 1% in vivo. Our study demonstrates the efficacy and adaptability of CRISPR-Cas systems as powerful and programmable antimicrobials in resensitizing tet(X4)- and mcr-1-mediated, tigecycline- and colistin-resistant strains, and opens up new pathways for the development of CRISPR-based tools for selective bacterial pathogen elimination and precise microbiome composition change. IMPORTANCE: The emergence of plasmid-encoded tet(X4) and mcr-1 isolated from human and animal sources has affected the treatment of tigecycline and colistin, and has posed a significant threat to public health. Tigecycline and colistin are considered as the "last line of defense" for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections, so there is an urgent need to find a method that can resensitize tet(X4)-mediated tigecycline-resistant and mcr-1-mediated colistin-resistant bacteria. In this study, we developed a glutamate-based, chromosomal, plasmid-balanced lethal conjugative CRISPR/Cas9 system, which can simultaneously resensitize tet(X4)-mediated tigecycline-resistant and mcr-1-mediated colistin-resistant Escherichia coli. The counts of tigecycline- and colistin-resistant bacteria decreased to 1% in vivo after the resensitization system was administered. This study opens up new pathways for the development of CRISPR-based tools for selective bacterial pathogen elimination and precise microbiome composition change.202438385691
431920.9997Threat and Control of tet(X)-Mediated Tigecycline-Resistant Acinetobacter sp. Bacteria. Tigecycline is regarded as one of the last-resort antibiotics against multidrug-resistant (MDR) Acinetobacter sp. bacteria. Recently, the tigecycline-resistant Acinetobacter sp. isolates mediated by tet(X) genes have emerged as a class of global pathogens for humans and food-producing animals. However, the genetic diversities and treatment options were not systematically discussed in the era of One Health. In this review, we provide a detailed illustration of the evolution route, distribution characteristics, horizontal transmission, and rapid detection of tet(X) genes in diverse Acinetobacter species. We also detail the application of chemical drugs, plant extracts, phages, antimicrobial peptides (AMPs), and CRISPR-Cas technologies for controlling tet(X)-positive Acinetobacter sp. pathogens. Despite excellent activities, the antibacterial spectrum and application safety need further evaluation and resolution. It is noted that deep learning is a promising approach to identify more potent antimicrobial compounds.202541097540
487930.9997Prevalence of polymyxin resistance through the food chain, the global crisis. Antimicrobial resistance is one of the vital challenges facing global health today. Multi-drug resistant (MDR) infections are often treated with the narrow-spectrum drugs, colistin (polymyxin E) or polymyxin B, which are last-resort antibiotics for human therapeutics that are effective against Gram-negative bacteria. Unfortunately, resistance to these polymyxins has occurred because of selective pressure caused by the inappropriate use of those antibiotics, especially in farming. The mechanisms of resistance to polymyxins are mediated through intrinsic, mutational, or genetic alteration in chromosomal genes. The mechanism includes the regulatory network controlling chemical modifications of lipid A moiety of lipopolysaccharide, reducing the negative charge of lipid A and its affinity for polymyxins. Additionally, the unique mobile colistin/polymyxin B resistance (mcr) gene reported in Enterobacteriales is responsible for the horizontal dissemination of resistance to polymyxins via the food chain. There is now an urgent need to increase surveillance for detecting resistance to polymyxins. Therefore, this review presents an overview of presently available scientific literature on the mechanism of resistance to polymyxins, with their associated gene variants, evaluation methods, resistance transmission through the food chain via food bacteria, and related risk factors. We further focus on the significant implications of polymyxins usage in India and future views for food safety to preserve polymyxin activity.202235079146
429240.9997The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. BACKGROUND: The emergence and ongoing spread of antimicrobial-resistant bacteria is a major public health threat. Infections caused by antimicrobial-resistant bacteria are associated with substantially higher rates of morbidity and mortality compared to infections caused by antimicrobial-susceptible bacteria. The emergence and spread of these bacteria is complex and requires incorporating numerous interrelated factors which clinical studies cannot adequately address. METHODS/PRINCIPAL FINDINGS: A model is created which incorporates several key factors contributing to the emergence and spread of resistant bacteria including the effects of the immune system, acquisition of resistance genes and antimicrobial exposure. The model identifies key strategies which would limit the emergence of antimicrobial-resistant bacterial strains. Specifically, the simulations show that early initiation of antimicrobial therapy and combination therapy with two antibiotics prevents the emergence of resistant bacteria, whereas shorter courses of therapy and sequential administration of antibiotics promote the emergence of resistant strains. CONCLUSIONS/SIGNIFICANCE: The principal findings suggest that (i) shorter lengths of antibiotic therapy and early interruption of antibiotic therapy provide an advantage for the resistant strains, (ii) combination therapy with two antibiotics prevents the emergence of resistance strains in contrast to sequential antibiotic therapy, and (iii) early initiation of antibiotics is among the most important factors preventing the emergence of resistant strains. These findings provide new insights into strategies aimed at optimizing the administration of antimicrobials for the treatment of infections and the prevention of the emergence of antimicrobial resistance.200819112501
992150.9997Identification of Multiple Low-Level Resistance Determinants and Coselection of Motility Impairment upon Sub-MIC Ceftriaxone Exposure in Escherichia coli. Resistance to third-generation cephalosporins among Gram-negative bacteria is a rapidly growing public health threat. Among the most commonly used third-generation cephalosporins is ceftriaxone. Bacterial exposure to sublethal or sub-MIC antibiotic concentrations occurs widely, from environmental residues to intermittently at the site of infection. Quality of ceftriaxone is also a concern, especially in low- and middle-income countries, with medicines having inappropriate active pharmaceutical ingredient (API) content or concentration. While focus has been largely on extended-spectrum β-lactamases and high-level resistance, there are limited data on specific chromosomal mutations and other pathways that contribute to ceftriaxone resistance under these conditions. In this work, Escherichia coli cells were exposed to a broad range of sub-MICs of ceftriaxone and mutants were analyzed using whole-genome sequencing. Low-level ceftriaxone resistance emerged after as low as 10% MIC exposure, with the frequency of resistance development increasing with concentration. Genomic analyses of mutants revealed multiple genetic bases. Mutations were enriched in genes associated with porins (envZ, ompF, ompC, and ompR), efflux regulation (marR), and the outer membrane and metabolism (galU and pgm), but none were associated with the ampC β-lactamase. We also observed selection of mgrB mutations. Notably, pleiotropic effects on motility and cell surface were selected for in multiple independent genes, which may have important consequences. Swift low-level resistance development after exposure to low ceftriaxone concentrations may result in reservoirs of bacteria with relevant mutations for survival and increased resistance. Thus, initiatives for broader surveillance of low-level antibiotic resistance and genomic resistance determinants should be pursued when resources are available. IMPORTANCE Ceftriaxone is a widely consumed antibiotic used to treat bacterial infections. Bacteria, however, are increasingly becoming resistant to ceftriaxone. Most work has focused on known mechanisms associated with high-level ceftriaxone resistance. However, bacteria are extensively exposed to low antibiotic concentrations, and there are limited data on the evolution of ceftriaxone resistance under these conditions. In this work, we observed that bacteria quickly developed low-level resistance due to both novel and previously described mutations in multiple different genes upon exposure to low ceftriaxone concentrations. Additionally, exposure also led to changes in motility and the cell surface, which can impact other processes associated with resistance and infection. Notably, low-level-resistant bacteria would be missed in the clinic, which uses set breakpoints. While they may require increased resources, this work supports continued initiatives for broader surveillance of low-level antibiotic resistance or their resistance determinants, which can serve as predictors of higher risk for clinical resistance.202134787446
977160.9997A Broad-Spectrum Horizontal Transfer Inhibitor Prevents Transmission of Plasmids Carrying Multiple Antibiotic Resistance Genes. The dissemination of antimicrobial resistance (AMR) severely degrades the performance of antibiotics and constantly paralyzes the global health system. In particular, plasmid-mediated transfer of antibiotic resistance genes (ARGs) across bacteria is recognized as the primary driver. Therefore, antiplasmid transfer approaches are urgently warranted to resolve this intractable problem. Herein, we demonstrated the potential of azidothymidine (AZT), an FDA-approved anti-HIV drug, as a broad-spectrum horizontal transfer inhibitor to effectively prevent the transmission of multiple ARGs, including mcr-1, bla (NDM-5), and tet(X4), both in vitro and in vivo. It was also noteworthy that the inhibitory effect of AZT was proved to be valid within and across bacterial genera under different mating conditions. Mechanistic studies revealed that AZT dissipated bacterial proton motive force, which was indispensable for ATP synthesis and flagellar motility. In addition, AZT downregulated bacterial secretion systems involving general and type IV secretion systems (T4SS). Furthermore, the thymidine kinase, which is associated with DNA synthesis, turned out to be the potential target of AZT. Collectively, our work demonstrates the broad inhibitory effect of AZT in preventing ARGs transmission, opening new horizons for controlling AMR.202440303018
991670.9997Collateral sensitivity associated with antibiotic resistance plasmids. Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR.202133470194
976980.9997A promising metabolite, 9-aminominocycline, restores the sensitivity of tigecycline against tet(X4)-positive Escherichia coli. The emergence and widespread of tigecycline resistance undoubtedly poses a serious threat to public health globally. The exploration of combination therapies has become preferred antibacterial strategies to alleviate this global burden. In this study, tigecycline-resistant tet(X4)-positive Escherichia coli were selected for adjuvant screening. Interestingly, 9-aminominocycline (9-AMC), one of the tigecycline metabolites, exhibits synergistic antibacterial activity with tigecycline using checkerboard assay. The efficacy in vitro and in vivo was evaluated, and the synergistic mechanism was further explored. The results suggested that 9-AMC combined with tigecycline could inhibit the growth of antibiotic resistant bacteria, efficiently retard the evolution of tet(X4) gene and narrow the drug mutant selection window. In addition, the combination of tigecycline and 9-AMC could destroy the normal membrane structure of bacteria, inhibit the formation of biofilm, remarkably reduce the level of intracellular ATP level, and accelerate the oxidative damage of bacteria. Furthermore, 9-AMC is more stable in the bind of Tet(X4) inactivating enzyme. The transcriptomics analysis revealed that the genes related to the 9-AMC and tigecycline were mainly enriched in ABC transporters. Collectively, the results reveal the potentiation effects on tigecycline and the probability of 9-AMC as a novel tigecycline adjuvant against tet(X4)-positive Escherichia coli, which provides new insights for adjuvant screening.202439044954
429190.9997Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Disinfectants are used to reduce the concentration of pathogenic microorganisms to a safe level and help to prevent the transmission of infectious diseases. However, bacteria have a tremendous ability to respond to chemical stress caused by biocides, where overuse and improper use of disinfectants can be reflected in a reduced susceptibility of microorganisms. This review aims to describe whether mutations and thus decreased susceptibility to disinfectants occur in bacteria during disinfectant exposure. A systematic literature review following PRISMA guidelines was conducted with the databases PubMed, Science Direct and Web of Science. For the final analysis, 28 sources that remained of interest were included. Articles describing reduced susceptibility or the resistance of bacteria against seven different disinfectants were identified. The important deviation of the minimum inhibitory concentration was observed in multiple studies for disinfectants based on triclosan and chlorhexidine. A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing. Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance.202134946151
9803100.9997Combating antibiotic resistance in bacteria. Combinations of certain antibiotics select against resistant strains of bacteria. This finding may provide a strategy of combating antibiotic resistant bacteria.200723100665
9914110.9997Identification of host genetic factors modulating β-lactam resistance in Escherichia coli harbouring plasmid-borne β-lactamase through transposon-sequencing. Since β-lactam antibiotics are widely used, emergence of bacteria with resistance to them poses a significant threat to society. In particular, acquisition of genes encoding β-lactamase, an enzyme that degrades β-lactam antibiotics, has been a major contributing factor in the emergence of bacteria that are resistant to β-lactam antibiotics. However, relatively few genetic targets for killing these resistant bacteria have been identified to date. Here, we used a systematic approach called transposon-sequencing (Tn-Seq), to screen the Escherichia coli genome for host genetic factors that, when mutated, affect resistance to ampicillin, one of the β-lactam antibiotics, in a strain carrying a plasmid that encodes β-lactamase. This approach enabled not just the isolation of genes previously known to affect β-lactam resistance, but the additional loci skp, gshA, phoPQ and ypfN. Individual mutations in these genes modestly but consistently affected antibiotic resistance. We have identified that these genes are not only implicated in β-lactam resistance by itself but also play a crucial role in conditions associated with the expression of β-lactamase. GshA and phoPQ appear to contribute to β-lactam resistance by regulating membrane integrity. Notably, the overexpression of the uncharacterized membrane-associated protein, ypfN, has been shown to significantly enhance β-lactam resistance. We applied the genes identified from the screening into Salmonella Typhimurium and Pseudomonas aeruginosa strains, both critical human pathogens with antibiotic resistance, and observed their significant impact on β-lactam resistance. Therefore, these genes can potentially be utilized as therapeutic targets to control the survival of β-lactamase-producing bacteria.202540231449
9676120.9997CRISPR-Cas inhibits plasmid transfer and immunizes bacteria against antibiotic resistance acquisition in manure. The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system CRISPR-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural Enterococcus faecalis strains and its anti-plasmid efficacy in an agricultural niche - manure. Analyzing 1,986 E. faecalis genomes from human and animal hosts, we show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural E. faecalis strains. Using plasmid conjugation assays, we found that CRISPR-Cas is a significant barrier against resistance plasmid transfer in manure. Finally, we used a CRISPR-based antimicrobial approach to cure resistant E. faecalis of erythromycin resistance, but this was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that E. faecalis CRISPR-Cas is prevalent and effective in an agricultural setting and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a One Health approach.202437808752
9757130.9996Effects of different mechanisms on antimicrobial resistance in Pseudomonas aeruginosa: a strategic system for evaluating antibiotics against gram-negative bacteria. Our previous studies constructed a strategic system for testing antibiotics against specific resistance mechanisms using Klebsiella pneumoniae and Acinetobacter baumannii. However, it lacked resistance mechanisms specifically expressed only in Pseudomonas species. In this study, we constructed this system using Pseudomonas aeruginosa. In-frame deletion, site-directed mutagenesis, and plasmid transformation were used to generate genetically engineered strains with various resistance mechanisms from two fully susceptible P. aeruginosa strains. Antimicrobial susceptibility testing was used to test the efficacy of antibiotics against these strains in vitro. A total of 31 engineered strains with various antimicrobial resistance mechanisms from P. aeruginosa KPA888 and ATCC 27853 were constructed, and the same antibiotic resistance mechanism showed a similar effect on the MICs of the two strains. Compared to the parental strains, the engineered strains lacking porin OprD or lacking the regulator genes of efflux pumps all showed a ≥4-fold increase on the MICs of some of the 19 antibiotics tested. Mechanisms due to GyrA/ParC mutations and β-lactamases also contributed to their corresponding resistance as previously published. The strains constructed in this study possess well-defined resistance mechanisms and can be used to screen and evaluate the effectiveness of antibiotics against specific resistance mechanisms in P. aeruginosa. Building upon our previous studies on K. pneumoniae and A. baumannii, this strategic system, including a P. aeruginosa panel, has been expanded to cover almost all the important antibiotic resistance mechanisms of gram-negative bacteria that are in urgent need of new antibiotics.IMPORTANCEIn this study, an antibiotic assessment system for P. aeruginosa was developed, and the system can be expanded to include other key pathogens and resistance mechanisms. This system offers several benefits: (i) compound design: aid in the development of compounds that can bypass or counteract resistance mechanisms, leading to more effective treatments against specific resistant strains; (ii) combination therapies: facilitate the exploration of combination therapies, where multiple antibiotics may work synergistically to overcome resistance and enhance treatment efficacy; and (iii) targeted treatments: enable healthcare providers to prescribe more targeted treatments, reducing unnecessary antibiotic use and helping to slow the spread of antibiotic resistance. In summary, this system could streamline the development process, reduce costs, increase the success rate of new antibiotics, and help prevent and control antimicrobial resistance.202540042282
9768140.9996Inosine monophosphate overcomes the coexisting resistance of mcr-1 and bla(NDM-1) in Escherichia coli. INTRODUCTION: The rise of antibiotic-resistant bacteria, particularly those harboring mcr-1 and bla(NDM-1), threatens public health by reducing the efficacy of colistin and carbapenems. Recently, the co-spread of mcr-1 and bla(NDM-1) has been reported, and the emergence of dual-resistant Enterobacteriaceae severely exacerbates antimicrobial resistance. OBJECTIVES: This study aims to investigate the impact of mcr-1 and bla(NDM-1) expression on metabolism in Escherichia coli and to identify potential antimicrobial agents capable of overcoming the resistance conferred by these genes. METHODS: We employed non-targeted metabolomics to profile the metabolic perturbations of E. coli strains harboring mcr-1 and bla(NDM-1). The bactericidal effects of the differential metabolite, inosine monophosphate (IMP), were assessed both in vitro using time-killing assays and in vivo using a mouse infection model. The antimicrobial mechanism of IMP was elucidated through transcriptomic analysis and biochemical approaches. RESULTS: Metabolic profiling revealed significant alterations in the purine pathway, with IMP demonstrating potent bactericidal activity against E. coli strains carrying both resistance genes. IMP increased membrane permeability, disrupted proton motive force, reduced ATP levels, induced oxidative damage by promoting reactive oxygen species and inhibiting bacterial antioxidant defenses, and improved the survival rate of infected mice. CONCLUSION: Our findings suggest that IMP could be a promising candidate for combating mcr-1 and bla(NDM-1)-mediated resistance and provide a novel approach for discovering antimicrobial agents against colistin- and carbapenem-resistant bacteria.202540139526
4880150.9996Molecular mechanisms of tigecycline-resistance among Enterobacterales. The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.202438655285
9751160.9996Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review. Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.202439355778
4393170.9996Mechanisms of Staphylococcus aureus Antibiotics Resistance Revealed by Adaptive Laboratory Evolution. Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria. To identify mutations that confer resistance to anti-S. aureus drugs, we established a laboratory-based adaptive evolution system and performed 10 rounds of evolution experiments against 15 clinically used antibiotics. We discovered a panel of known and novel resistance-associated sites after performing whole-genome sequencing. Furthermore, we found that the resistance evolved at distinct rates. For example, streptomycin, rifampicin, fusidic acid and novobiocin all developed significant resistance quickly in the second round of evolution. Intriguingly, the cross-resistance experiment reveals that nearly all drug-resistant strains have varying degrees of increased sensitivity to fusidic acid, pointing to a novel approach to battle AMR. In addition, the in silico docking analysis shows that the evolved mutants affect the interaction of rifampcin-rpoB, as well as the novobiocin-gyrB. Moreover, for the genes we got in the laboratory evolution, mutant genes of clinical isolates of human had significant differences from the environmental isolates and animal isolates. We believe that the strategy and data set in this research will be helpful for battling AMR issue of S. aureus, and adaptable to other pathogenic microbes.202539762552
4262180.9996Fitness cost of antibiotic susceptibility during bacterial infection. Advances in high-throughput DNA sequencing allow for a comprehensive analysis of bacterial genes that contribute to virulence in a specific infectious setting. Such information can yield new insights that affect decisions on how to best manage major public health issues such as the threat posed by increasing antimicrobial drug resistance. Much of the focus has been on the consequences of the selective advantage conferred on drug-resistant strains during antibiotic therapy. It is thought that the genetic and phenotypic changes that confer resistance also result in concomitant reductions in in vivo fitness, virulence, and transmission. However, experimental validation of this accepted paradigm is modest. Using a saturated transposon library of Pseudomonas aeruginosa, we identified genes across many functional categories and operons that contributed to maximal in vivo fitness during lung infections in animal models. Genes that bestowed both intrinsic and acquired antibiotic resistance provided a positive in vivo fitness advantage to P. aeruginosa during infection. We confirmed these findings in the pathogenic bacteria Acinetobacter baumannii and Vibrio cholerae using murine and rabbit infection models, respectively. Our results show that efforts to confront the worldwide increase in antibiotic resistance might be exacerbated by fitness advantages that enhance virulence in drug-resistant microbes.201526203082
9915190.9996Comparative Analysis of Transcriptome and Proteome Revealed the Common Metabolic Pathways Induced by Prevalent ESBL Plasmids in Escherichia coli. Antibiotic resistance has emerged as one of the most significant threats to global public health. Plasmids, which are highly efficient self-replicating genetic vehicles, play a critical role in the dissemination of drug-resistant genes. Previous studies have mainly focused on drug-resistant genes only, often neglecting the complete functional role of multidrug-resistant (MDR) plasmids in bacteria. In this study, we conducted a comprehensive investigation of the transcriptomes and proteomes of Escherichia coli J53 transconjugants harboring six major MDR plasmids of different incompatibility (Inc) groups, which were clinically isolated from patients. The RNA-seq analysis revealed that MDR plasmids influenced the gene expression in the bacterial host, in particular, the genes related to metabolic pathways. A proteomic analysis demonstrated the plasmid-induced regulation of several metabolic pathways including anaerobic respiration and the utilization of various carbon sources such as serine, threonine, sialic acid, and galactarate. These findings suggested that MDR plasmids confer a growth advantage to bacterial hosts in the gut, leading to the expansion of plasmid-carrying bacteria over competitors without plasmids. Moreover, this study provided insights into the versatility of prevalent MDR plasmids in moderating the cellular gene network of bacteria, which could potentially be utilized in therapeutics development for bacteria carrying MDR plasmids.202337762311