Porphyromonas gingivalis resistance and virulence: An integrated functional network analysis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
976101.0000Porphyromonas gingivalis resistance and virulence: An integrated functional network analysis. BACKGROUND: The gram-negative bacteria Porphyromonas gingivalis (PG) is the most prevalent cause of periodontal diseases and multidrug-resistant (MDR) infections. Periodontitis and MDR infections are severe due to PG's ability to efflux antimicrobial and virulence factors. This gives rise to colonisation, biofilm development, evasion, and modulation of the host defence system. Despite extensive studies on the MDR efflux pump in other pathogens, little is known about the efflux pump and its association with the virulence factor in PG. Prolonged infection of PG leads to complete loss of teeth and other systemic diseases. This necessitates the development of new therapeutic interventions to prevent and control MDR. OBJECTIVE: The study aims to identify the most indispensable proteins that regulate both resistance and virulence in PG, which could therefore be used as a target to fight against the MDR threat to antibiotics. METHODS: We have adopted a hierarchical network-based approach to construct a protein interaction network. Firstly, individual networks of four major efflux pump proteins and two virulence regulatory proteins were constructed, followed by integrating them into one. The relationship between proteins was investigated using a combination of centrality scores, k-core network decomposition, and functional annotation, to computationally identify the indispensable proteins. RESULTS: Our study identified four topologically significant genes, PG_0538, PG_0539, PG_0285, and PG_1797, as potential pharmacological targets. PG_0539 and PG_1797 were identified to have significant associations between the efflux pump and virulence genes. This type of underpinning research may help in narrowing the drug spectrum used for treating periodontal diseases, and may also be exploited to look into antibiotic resistance and pathogenicity in bacteria other than PG.202235835406
975710.9996Effects of different mechanisms on antimicrobial resistance in Pseudomonas aeruginosa: a strategic system for evaluating antibiotics against gram-negative bacteria. Our previous studies constructed a strategic system for testing antibiotics against specific resistance mechanisms using Klebsiella pneumoniae and Acinetobacter baumannii. However, it lacked resistance mechanisms specifically expressed only in Pseudomonas species. In this study, we constructed this system using Pseudomonas aeruginosa. In-frame deletion, site-directed mutagenesis, and plasmid transformation were used to generate genetically engineered strains with various resistance mechanisms from two fully susceptible P. aeruginosa strains. Antimicrobial susceptibility testing was used to test the efficacy of antibiotics against these strains in vitro. A total of 31 engineered strains with various antimicrobial resistance mechanisms from P. aeruginosa KPA888 and ATCC 27853 were constructed, and the same antibiotic resistance mechanism showed a similar effect on the MICs of the two strains. Compared to the parental strains, the engineered strains lacking porin OprD or lacking the regulator genes of efflux pumps all showed a ≥4-fold increase on the MICs of some of the 19 antibiotics tested. Mechanisms due to GyrA/ParC mutations and β-lactamases also contributed to their corresponding resistance as previously published. The strains constructed in this study possess well-defined resistance mechanisms and can be used to screen and evaluate the effectiveness of antibiotics against specific resistance mechanisms in P. aeruginosa. Building upon our previous studies on K. pneumoniae and A. baumannii, this strategic system, including a P. aeruginosa panel, has been expanded to cover almost all the important antibiotic resistance mechanisms of gram-negative bacteria that are in urgent need of new antibiotics.IMPORTANCEIn this study, an antibiotic assessment system for P. aeruginosa was developed, and the system can be expanded to include other key pathogens and resistance mechanisms. This system offers several benefits: (i) compound design: aid in the development of compounds that can bypass or counteract resistance mechanisms, leading to more effective treatments against specific resistant strains; (ii) combination therapies: facilitate the exploration of combination therapies, where multiple antibiotics may work synergistically to overcome resistance and enhance treatment efficacy; and (iii) targeted treatments: enable healthcare providers to prescribe more targeted treatments, reducing unnecessary antibiotic use and helping to slow the spread of antibiotic resistance. In summary, this system could streamline the development process, reduce costs, increase the success rate of new antibiotics, and help prevent and control antimicrobial resistance.202540042282
975420.9996The Resilience of Pseudomonas aeruginosa to Antibiotics and the Designing of Antimicrobial Peptides to Overcome Microbial Resistance. Pseudomonas aeruginosa (P. aeruginosa) is a bacterium of medical concern known for its potential to persist in diverse environments due to its metabolic capacity. Its survival ability is linked to its relatively large genome of 5.5-7 Mbp, from which several genes are employed in overcoming conventional antibiotic treatments and promoting resistance. The worldwide prevalence of antibiotic-resistant clones of P. aeruginosa necessitates novel approaches to researching their multiple resistance mechanisms, such as the use of antimicrobial peptides (AMPs). In this review, we briefly discuss the epidemiology of the resistant strains of P. aeruginosa and then describe their resistance mechanisms. Next, we explain the biology of AMPs, enlist the present database platforms that describe AMPs, and discuss their usefulness and limitations in treating P. aeruginosa strains. Finally, we present 13 AMPs with theoretical action against P. aeruginosa, all of which we evaluated in silico in this work. Our results suggest that the AMPs we evaluated have a carpet-like mode of action with a membranolytic function in Gram-positive and Gramnegative bacteria, with a clear potential of synthesis for in vitro evaluation.202236082872
975630.9996Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. The emergence of antimicrobial drug resistance is of enormous public concern due to the increased risk of delayed treatment of infections, the increased length of hospital stays, the substantial increase in the cost of care, and the high risk of fatal outcomes. A prerequisite for the development of effective therapy alternatives is a detailed understanding of the diversity of bacterial mechanisms that underlie drug resistance, especially for problematic gram-negative bacteria such as Pseudomonas aeruginosa. This pathogen has impressive chromosomally encoded mechanisms of intrinsic resistance, as well as the potential to mutate, gaining resistance to current antibiotics. In this study we have screened the comprehensive nonredundant Harvard PA14 library for P. aeruginosa mutants that exhibited either increased or decreased resistance against 19 antibiotics commonly used in the clinic. This approach identified several genes whose inactivation sensitized the bacteria to a broad spectrum of different antimicrobials and uncovered novel genetic determinants of resistance to various classes of antibiotics. Knowledge of the enhancement of bacterial susceptibility to existing antibiotics and of novel resistance markers or modifiers of resistance expression may lay the foundation for effective therapy alternatives and will be the basis for the development of new strategies in the control of problematic multiresistant gram-negative bacteria.200919332674
975540.9996Phages for treatment Pseudomonas aeruginosa infection. Pseudomonas aeruginosa is denoted as one of the highly threatening bacteria to the public health. It has acquired many virulent factors and resistant genes that make it difficult to control with conventional antibiotics. Thus, bacteriophage therapy (phage therapy) is a proposed alternative to antibiotics to fight against multidrug-resistant P. aeruginosa. Many phages have been isolated that exhibit a broad spectrum of activity against P. aeruginosa. In this chapter, the common virulent factors and the prevalence of antibiotic-resistance genes in P. aeruginosa were reported. In addition, recent efforts in the field of phage therapy against P. aeruginosa were highlighted, including wild-type phages, genetically modified phages, phage cocktails, and phage in combination with antibiotics against P. aeruginosa in the planktonic and biofilm forms. Recent regulations on phage therapy were also covered in this chapter.202337770166
885750.9996Colistin-phage combinations decrease antibiotic resistance in Acinetobacter baumannii via changes in envelope architecture. Multidrug-resistant bacterial infections are becoming increasingly common, with only few last-resort antibiotics such as colistin available for clinical therapy. An alternative therapeutic strategy gaining momentum is phage therapy, which has the advantage of not being affected by bacterial resistance to antibiotics. However, a major challenge in phage therapy is the rapid emergence of phage-resistant bacteria. In this work, our main aim was to understand the mechanisms of phage-resistance used by the top priority pathogen Acinetobacter baumannii. We isolated the novel phage Phab24, capable of infecting colistin-sensitive and -resistant strains of A. baumannii. After co-incubating Phab24 with its hosts, we obtained phage-resistant mutants which were characterized on both genotypic and phenotypic levels. Using whole genome sequencing, we identified phage-resistant strains that displayed mutations in genes that alter the architecture of the bacterial envelope at two levels: the capsule and the outer membrane. Using an adsorption assay, we confirmed that phage Phab24 uses the bacterial capsule as its primary receptor, with the outer membrane possibly serving as the secondary receptor. Interestingly, the phage-resistant isolates were less virulent compared to the parental strains in a Galleria mellonella infection model. Most importantly, we observed that phage-resistant bacteria that evolved in the absence of antibiotics exhibited an increased sensitivity to colistin, even though the antibiotic resistance mechanism per se remained unaltered. This increase in antibiotic sensitivity is a direct consequence of the phage-resistance mechanism, and could potentially be exploited in the clinical setting.202134736365
440360.9996Multidrug efflux pumps of Gram-positive bacteria. Gram-positive organisms are responsible for some of the most serious of human infections. Resistance to front-line antimicrobial agents can complicate otherwise curative therapy. These organisms possess multiple drug resistance mechanisms, with drug efflux being a significant contributing factor. Efflux proteins belonging to all five transporter families are involved, and frequently can transport multiple structurally unrelated compounds resulting in a multidrug resistance (MDR) phenotype. In addition to clinically relevant antimicrobial agents, MDR efflux proteins can transport environmental biocides and disinfectants which may allow persistence in the healthcare environment and subsequent acquisition by patients or staff. Intensive research on MDR efflux proteins and the regulation of expression of their genes is ongoing, providing some insight into the mechanisms of multidrug recognition and transport. Inhibitors of many of these proteins have been identified, including drugs currently being used for other indications. Structural modifications guided by structure-activity studies have resulted in the identification of potent compounds. However, lack of broad-spectrum pump inhibition combined with potential toxicity has hampered progress. Further work is required to gain a detailed understanding of the multidrug recognition process, followed by application of this knowledge in the design of safer and more highly potent inhibitors.201627449594
961070.9996The evolutionary rate of antibacterial drug targets. BACKGROUND: One of the major issues in the fight against infectious diseases is the notable increase in multiple drug resistance in pathogenic species. For that reason, newly acquired high-throughput data on virulent microbial agents attract the attention of many researchers seeking potential new drug targets. Many approaches have been used to evaluate proteins from infectious pathogens, including, but not limited to, similarity analysis, reverse docking, statistical 3D structure analysis, machine learning, topological properties of interaction networks or a combination of the aforementioned methods. From a biological perspective, most essential proteins (knockout lethal for bacteria) or highly conserved proteins (broad spectrum activity) are potential drug targets. Ribosomal proteins comprise such an example. Many of them are well-known drug targets in bacteria. It is intuitive that we should learn from nature how to design good drugs. Firstly, known antibiotics are mainly originating from natural products of microorganisms targeting other microorganisms. Secondly, paleontological data suggests that antibiotics have been used by microorganisms for million years. Thus, we have hypothesized that good drug targets are evolutionary constrained and are subject of evolutionary selection. This means that mutations in such proteins are deleterious and removed by selection, which makes them less susceptible to random development of resistance. Analysis of the speed of evolution seems to be good approach to test this hypothesis. RESULTS: In this study we show that pN/pS ratio of genes coding for known drug targets is significantly lower than the genome average and also lower than that for essential genes identified by experimental methods. Similar results are observed in the case of dN/dS analysis. Both analyzes suggest that drug targets tend to evolve slowly and that the rate of evolution is a better predictor of drugability than essentiality. CONCLUSIONS: Evolutionary rate can be used to score and find potential drug targets. The results presented here may become a useful addition to a repertoire of drug target prediction methods. As a proof of concept, we analyzed GO enrichment among the slowest evolving genes. These may become the starting point in the search for antibiotics with a novel mechanism.201323374913
885080.9996Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.201829795541
440890.9996Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Acinetobacter baumannii is an opportunistic pathogen which play the more and more greater role in the pathogenicity of the human. It is often attached with the hospital environment, in which is able easily to survive for many days even in adverse conditions. Acinetobacter baumannii is the species responsible for a serious nosocomial infections, especially in the intensive care units. Option of surviving in natural niches, and in the hospital environment could also be associated with the efflux pump mechanisms. Mechanisms of efflux universally appear in all cells (eukaryotic and prokaryotic) and play the physiological important role. In prokaryote, the main functions are evasion of such naturally produced molecules, removal of metabolic products and toxins. These pumps could also be involved in an early stage of infection, such as adhesion to host cells and the colonization. Importantly, they remove commonly used antibiotics from the cell in therapy of infections caused by these bacteria. Efflux pumps exemplify a unique phenomenon in drug resistance: a single mechanism causing resistance against several different classes of antibiotics. In Acinetobacter baumannii, the AdeABC efflux pump, a member of the resistance-nodulation-cell division family (RND), has been well characterized. Aminoglicosides, tetracyclines, erythromycin, chloramphenicol, trimethoprim, fluoroquinolones, some beta-lactams, and also recently tigecycline, were found to be substrates for this pump. Drugs, as substrates for the AdeABC pump, can increase the expression of the AdeABC genes, leading to multidrug resistance (MDR). From this reason, treatment failure and death caused by Acinetobacter baumannii infections or underlying diseases are common. Because the AdeABC pump is widespread in Acinetobacter baumannii, similarly to other pumps in Gram-negative and Gram-positive bacteria, exists a need of searching a new therapeutic solutions. Specific efflux inhibitors of pumps (EPIs), including AdeABC inhibitors, could be suppress the activity of pumps and restore the sensitivity of such important bacteria as Acinetobacter baumannii to commonly used antibiotic.200819056528
217100.9996A Small RNA Transforms the Multidrug Resistance of Pseudomonas aeruginosa to Drug Susceptibility. Bacteria with multiple drug resistance (MDR) have become a global issue worldwide, and hundreds of thousands of people's lives are threatened every year. The emergence of novel MDR strains and insufficient development of new antimicrobial agents are the major reasons that limit the choice of antibiotics for the treatment of bacterial infection. Thus, preserving the clinical value of current antibiotics could be one of the effective approaches to resolve this problem. Here we identified numerous novel small RNAs that were downregulated in the MDR clinical isolates of Pseudomonas aeruginosa (P. aeru), and we demonstrated that overexpression of one of these small RNAs (sRNAs), AS1974, was able to transform the MDR clinical strain to drug hypersusceptibility. AS1974 is the master regulator to moderate the expression of several drug resistance pathways, including membrane transporters and biofilm-associated antibiotic-resistant genes, and its expression is regulated by the methylation sites located at the 5' UTR of the gene. Our findings unravel the sRNA that regulates the MDR pathways in clinical isolates of P. aeru. Moreover, transforming bacterial drug resistance to hypersusceptibility using sRNA could be the potential approach for tackling MDR bacteria in the future.201930901580
4249110.9995Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis. Although the emergence and spread of antimicrobial resistance in major bacterial pathogens for the past decades poses a growing challenge to public health, discovery of novel antimicrobial agents from natural products or modification of existing antibiotics cannot circumvent the problem of antimicrobial resistance. The recent development of bacterial genomics and the availability of genome sequences allow the identification of potentially novel antimicrobial agents. The cellular targets of new antimicrobial agents must be essential for the growth, replication, or survival of the bacterium. Conserved genes among different bacterial genomes often turn out to be essential (1, 2). Thus, the combination of comparative genomics and the gene knock-out procedure can provide effective ways to identify the essential genes of bacterial pathogens (3). Identification of essential genes in bacteria may be utilized for the development of new antimicrobial agents because common essential genes in diverse pathogens could constitute novel targets for broad-spectrum antimicrobial agents.200818392984
4897120.9995Rapid diagnosis of tuberculosis. Detection of drug resistance mechanisms. Tuberculosis is still a serious public health problem, with 10.8 million new cases and 1.8 million deaths worldwide in 2015. The diversity among members of the Mycobacterium tuberculosis complex, the causal agent of tuberculosis, is conducive to the design of different methods for rapid diagnosis. Mutations in the genes involved in resistance mechanisms enable the bacteria to elude the treatment. We have reviewed the methods for the rapid diagnosis of M. tuberculosis complex and the detection of susceptibility to drugs, both of which are necessary to prevent the onset of new resistance and to establish early, appropriate treatment.201728318570
4821130.9995Enterobacter hormaechei replaces virulence with carbapenem resistance via porin loss. Pathogenic Enterobacter species are of increasing clinical concern due to the multidrug-resistant nature of these bacteria, including resistance to carbapenem antibiotics. Our understanding of Enterobacter virulence is limited, hindering the development of new prophylactics and therapeutics targeting infections caused by Enterobacter species. In this study, we assessed the virulence of contemporary clinical Enterobacter hormaechei isolates in a mouse model of intraperitoneal infection and used comparative genomics to identify genes promoting virulence. Through mutagenesis and complementation studies, we found two porin-encoding genes, ompC and ompD, to be required for E. hormaechei virulence. These porins imported clinically relevant carbapenems into the bacteria, and thus loss of OmpC and OmpD desensitized E. hormaechei to the antibiotics. Our genomic analyses suggest porin-related genes are frequently mutated in E. hormaechei, perhaps due to the selective pressure of antibiotic therapy during infection. Despite the importance of OmpC and OmpD during infection of immunocompetent hosts, we found the two porins to be dispensable for virulence in a neutropenic mouse model. Moreover, porin loss provided a fitness advantage during carbapenem treatment in an ex vivo human whole blood model of bacteremia. Our data provide experimental evidence of pathogenic Enterobacter species gaining antibiotic resistance via loss of porins and argue antibiotic therapy during infection of immunocompromised patients is a conducive environment for the selection of porin mutations enhancing the multidrug-resistant profile of these pathogens.202539977318
8856140.9995The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Bacteriophage therapy is currently being evaluated as a critical complement to traditional antibiotic treatment. However, the emergence of phage resistance is perceived as a major hurdle to the sustainable implementation of this antimicrobial strategy. By combining comprehensive genomics and microbiological assessment, we show that the receptor-modification resistance to capsule-targeting phages involves either escape mutation(s) in the capsule biosynthesis cluster or qualitative changes in exopolysaccharides, converting clones to mucoid variants. These variants introduce cross-resistance to phages specific to the same receptor yet sensitize to phages utilizing alternative ones. The loss/modification of capsule, the main Klebsiella pneumoniae virulence factor, did not dramatically impact population fitness, nor the ability to protect bacteria against the innate immune response. Nevertheless, the introduction of phage drives bacteria to expel multidrug resistance clusters, as observed by the large deletion in K. pneumoniae 77 plasmid containing bla(CTX-M) , ant(3″), sul2, folA, mph(E)/mph(G) genes. The emerging bacterial resistance to viral infection steers evolution towards desired population attributes and highlights the synergistic potential for combined antibiotic-phage therapy against K. pneumoniae.202133754440
4402150.9995Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Introduction: Stenotrophomonas maltophilia is a prototype of bacteria intrinsically resistant to antibiotics. The reduced susceptibility of this microorganism to antimicrobials mainly relies on the presence in its chromosome of genes encoding efflux pumps and antibiotic inactivating enzymes. Consequently, the therapeutic options for treating S. maltophilia infections are limited.Areas covered: Known mechanisms of intrinsic, acquired and phenotypic resistance to antibiotics of S. maltophilia and the consequences of such resistance for treating S. maltophilia infections are discussed. Acquisition of some genes, mainly those involved in co-trimoxazole resistance, contributes to acquired resistance. Mutation, mainly in the regulators of chromosomally-encoded antibiotic resistance genes, is a major cause for S. maltophilia acquisition of resistance. The expression of some of these genes is triggered by specific signals or stressors, which can lead to transient phenotypic resistance.Expert opinion: Treatment of S. maltophilia infections is difficult because this organism presents low susceptibility to antibiotics. Besides, it can acquire resistance to antimicrobials currently in use. Particularly problematic is the selection of mutants overexpressing efflux pumps since they present a multidrug resistance phenotype. The use of novel antimicrobials alone or in combination, together with the development of efflux pumps' inhibitors may help in fighting S. maltophilia infections.202032052662
4407160.9995A Simple Method for Assessment of MDR Bacteria for Over-Expressed Efflux Pumps. It is known that bacteria showing a multi-drug resistance phenotype use several mechanisms to overcome the action of antibiotics. As a result, this phenotype can be a result of several mechanisms or a combination of thereof. The main mechanisms of antibiotic resistance are: mutations in target genes (such as DNA gyrase and topoisomerase IV); over-expression of efflux pumps; changes in the cell envelope; down regulation of membrane porins, and modified lipopolysaccharide component of the outer cell membrane (in the case of Gram-negative bacteria). In addition, adaptation to the environment, such as quorum sensing and biofilm formation can also contribute to bacterial persistence. Due to the rapid emergence and spread of bacterial isolates showing resistance to several classes of antibiotics, methods that can rapidly and efficiently identify isolates whose resistance is due to active efflux have been developed. However, there is still a need for faster and more accurate methodologies. Conventional methods that evaluate bacterial efflux pump activity in liquid systems are available. However, these methods usually use common efflux pump substrates, such as ethidium bromide or radioactive antibiotics and therefore, require specialized instrumentation, which is not available in all laboratories. In this review, we will report the results obtained with the Ethidium Bromide-agar Cartwheel method. This is an easy, instrument-free, agar based method that has been modified to afford the simultaneous evaluation of as many as twelve bacterial strains. Due to its simplicity it can be applied to large collections of bacteria to rapidly screen for multi-drug resistant isolates that show an over-expression of their efflux systems. The principle of the method is simple and relies on the ability of the bacteria to expel a fluorescent molecule that is substrate for most efflux pumps, ethidium bromide. In this approach, the higher the concentration of ethidium bromide required to produce fluorescence of the bacterial mass, the greater the efflux capacity of the bacterial cells. We have tested and applied this method to a large number of Gram-positive and Gram-negative bacteria to detect efflux activity among these multi-drug resistant isolates. The presumptive efflux activity detected by the Ethidium Bromide-agar Cartwheel method was subsequently confirmed by the determination of the minimum inhibitory concentration for several antibiotics in the presence and absence of known efflux pump inhibitors.201323589748
9521170.9995Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Resistance against nearly all antibiotics used clinically have been documented in bacteria. There is an ever-increasing danger caused by multidrug-resistant Gram-negative bacteria in both hospital and community settings. In Gram-negative bacteria, intrinsic resistance to currently available antibiotics is mainly due to overexpressed efflux pumps which are constitutively present and also presence of protective outer membrane. Combination therapy, i.e., use of two or more antibiotics, was thought to be an effective strategy because it took advantage of the additive effects of multiple antimicrobial mechanisms, lower risk of resistance development and lower mortality and improved clinical outcome. However, none of the benefits were seen in in vivo studies. Antibiotic hybrids are being used to challenge the growing drug resistance threat and increase the usefulness of current antibiotic arsenal. Antibiotic hybrids are synthetic constructs of two molecules which are covalently linked. These could be two antibiotics or antibiotic with an adjuvant (efflux pump inhibitor, siderophore, etc.) which increases the access of the antibiotics to the target. The concepts, developments and challenges in the future use of antibiotic hybrids are discussed here. Majority of the studies have been conducted on fluoroquinolones and aminoglycosides molecules. The antibiotic tobramycin has the property to enhance the action of antimicrobial agents against which the multidrug-resistant Gram-negative bacteria were earlier resistant, and thus potentiating the action of legacy antibiotics. Antibiotic hybrids may have a role as the silver bullet in Gram-negative bacteria to overcome drug resistance as well as extend the spectrum of existing antibiotics.201931219074
8855180.9995Transposon Insertion Sequencing Elucidates Novel Gene Involvement in Susceptibility and Resistance to Phages T4 and T7 in Escherichia coli O157. Experiments using bacteriophage (phage) to infect bacterial strains have helped define some basic genetic concepts in microbiology, but our understanding of the complexity of bacterium-phage interactions is still limited. As the global threat of antibiotic resistance continues to increase, phage therapy has reemerged as an attractive alternative or supplement to treating antibiotic-resistant bacterial infections. Further, the long-used method of phage typing to classify bacterial strains is being replaced by molecular genetic techniques. Thus, there is a growing need for a complete understanding of the precise molecular mechanisms underpinning phage-bacterium interactions to optimize phage therapy for the clinic as well as for retrospectively interpreting phage typing data on the molecular level. In this study, a genomics-based fitness assay (TraDIS) was used to identify all host genes involved in phage susceptibility and resistance for a T4 phage infecting Shiga-toxigenic Escherichia coli O157. The TraDIS results identified both established and previously unidentified genes involved in phage infection, and a subset were confirmed by site-directed mutagenesis and phenotypic testing of 14 T4 and 2 T7 phages. For the first time, the entire sap operon was implicated in phage susceptibility and, conversely, the stringent starvation protein A gene (sspA) was shown to provide phage resistance. Identifying genes involved in phage infection and replication should facilitate the selection of bespoke phage combinations to target specific bacterial pathogens.IMPORTANCE Antibiotic resistance has diminished treatment options for many common bacterial infections. Phage therapy is an alternative option that was once popularly used across Europe to kill bacteria within humans. Phage therapy acts by using highly specific viruses (called phages) that infect and lyse certain bacterial species to treat the infection. Whole-genome sequencing has allowed modernization of the investigations into phage-bacterium interactions. Here, using E. coli O157 and T4 bacteriophage as a model, we have exploited a genome-wide fitness assay to investigate all genes involved in defining phage resistance or susceptibility. This knowledge of the genetic determinants of phage resistance and susceptibility can be used to design bespoke phage combinations targeted to specific bacterial infections for successful infection eradication.201830042196
4394190.9995Signatures of Selection at Drug Resistance Loci in Mycobacterium tuberculosis. Tuberculosis (TB) is the leading cause of death by an infectious disease, and global TB control efforts are increasingly threatened by drug resistance in Mycobacterium tuberculosis. Unlike most bacteria, where lateral gene transfer is an important mechanism of resistance acquisition, resistant M. tuberculosis arises solely by de novo chromosomal mutation. Using whole-genome sequencing data from two natural populations of M. tuberculosis, we characterized the population genetics of known drug resistance loci using measures of diversity, population differentiation, and convergent evolution. We found resistant subpopulations to be less diverse than susceptible subpopulations, consistent with ongoing transmission of resistant M. tuberculosis. A subset of resistance genes ("sloppy targets") were characterized by high diversity and multiple rare variants; we posit that a large genetic target for resistance and relaxation of purifying selection contribute to high diversity at these loci. For "tight targets" of selection, the path to resistance appeared narrower, evidenced by single favored mutations that arose numerous times in the phylogeny and segregated at markedly different frequencies in resistant and susceptible subpopulations. These results suggest that diverse genetic architectures underlie drug resistance in M. tuberculosis and that combined approaches are needed to identify causal mutations. Extrapolating from patterns observed for well-characterized genes, we identified novel candidate variants involved in resistance. The approach outlined here can be extended to identify resistance variants for new drugs, to investigate the genetic architecture of resistance, and when phenotypic data are available, to find candidate genetic loci underlying other positively selected traits in clonal bacteria. IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a significant burden on global health. Antibiotic treatment imposes strong selective pressure on M. tuberculosis populations. Identifying the mutations that cause drug resistance in M. tuberculosis is important for guiding TB treatment and halting the spread of drug resistance. Whole-genome sequencing (WGS) of M. tuberculosis isolates can be used to identify novel mutations mediating drug resistance and to predict resistance patterns faster than traditional methods of drug susceptibility testing. We have used WGS from natural populations of drug-resistant M. tuberculosis to characterize effects of selection for advantageous mutations on patterns of diversity at genes involved in drug resistance. The methods developed here can be used to identify novel advantageous mutations, including new resistance loci, in M. tuberculosis and other clonal pathogens.201829404424