# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 975 | 0 | 1.0000 | Clonal diversity, antimicrobial resistance, and genome features among nonfermenting gram-negative bacteria isolated from patients with cystic fibrosis in Russia. Nonfermenting gram-negative (NFGN) bacteria were isolated from cystic fibrosis (CF) patients and subjected to susceptibility testing and whole-genome sequencing. Among 170 enrolled CF patients, 112 (65.9%) were colonized with at least 1 key NFGN species. The species-specific infection rate was highest for Pseudomonas aeruginosa (40.6%) followed by Stenotrophomonas maltophilia (14.1%), Achromobacter spp. (9.4%), and Burkholderia cepacia complex (Bcc, 8.2%) demonstrating a significant age-dependent increase for P. aeruginosa and Achromobacter spp., but not for S. maltophilia or Bcc. P. aeruginosa sequence types (STs) related to high-risk epidemic and global CF clones were carried by 12 (7.1%) and 13 (7.6%) patients, respectively. In total, 47% NFGN isolates, predominantly P. aeruginosa, harbored at least 1 plasmid-borne resistance gene; 5 ST235 isolates carried bla(VIM2). Pathogenicity island-borne virulence genes were harbored by 9% NFGN isolates. These findings in conjunction with frequent early colonization by Bcc raised serious concerns regarding infection control in Russian CF centers. | 2024 | 37984108 |
| 2153 | 1 | 0.9997 | Molecular Characterization and Epidemiology of Antibiotic Resistance Genes of β-Lactamase Producing Bacterial Pathogens Causing Septicemia from Tertiary Care Hospitals. Septicemia is a systematic inflammatory response and can be a consequence of abdominal, urinary tract and lung infections. Keeping in view the importance of Gram-negative bacteria as one of the leading causes of septicemia, the current study was designed with the aim to determine the antibiotic susceptibility pattern, the molecular basis for antibiotic resistance and the mutations in selected genes of bacterial isolates. In this study, clinical samples (n = 3389) were collected from potentially infected male (n = 1898) and female (n = 1491) patients. A total of 443 (13.07%) patients were found to be positive for bacterial growth, of whom 181 (40.8%) were Gram-positive and 262 (59.1%) were Gram-negative. The infected patients included 238 males, who made up 12.5% of the total number tested, and 205 females, who made up 13.7%. The identification of bacterial isolates revealed that 184 patients (41.5%) were infected with Escherichia coli and 78 (17.6%) with Pseudomonas aeruginosa. The clinical isolates were identified using Gram staining biochemical tests and were confirmed using polymerase chain reaction (PCR), with specific primers for E. coli (USP) and P. aeruginosa (oprL). Most of the isolates were resistant to aztreonam (ATM), cefotaxime (CTX), ampicillin (AMP) and trimethoprim/sulfamethoxazole (SXT), and were sensitive to tigecycline (TGC), meropenem (MEM) and imipenem (IPM), as revealed by high minimum inhibitory concentration (MIC) values. Among the antibiotic-resistant bacteria, 126 (28.4%) samples were positive for ESBL, 105 (23.7%) for AmpC β-lactamases and 45 (10.1%) for MBL. The sequencing and mutational analysis of antibiotic resistance genes revealed mutations in TEM, SHV and AAC genes. We conclude that antibiotic resistance is increasing; this requires the attention of health authorities and clinicians for proper management of the disease burden. | 2023 | 36978484 |
| 923 | 2 | 0.9997 | Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention. | 2025 | 40066541 |
| 936 | 3 | 0.9997 | Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Acinetobacter baumannii and Pseudomonas aeruginosa are the most relevant Gram-negative bacteria associated with hospital and opportunistic infections. This study aimed to evaluate the dynamics of drug-resistant A. baumannii and P. aeruginosa and biofilm formers from two public hospitals in northeastern Brazil. One hundred isolates (35 from A. baumannii and 65 from P. aeruginosa) were identified using the automated Vitek(®)2 Compact method (bioMérieux) and confirmed using the MALDI-TOF (MS) mass spectrometry technique. Molecular experiments were performed by polymerase chain reaction (PCR) to detect the frequency of bla(KPC), bla(IMP), bla(VIM), and bla(SHV) genes. The biofilm formation potential was evaluated using crystal violet in Luria Bertani Miller and trypticase soy broth culture media under the following conditions: at standard concentration, one quarter (25%) of the standard concentration and supplemented with 1% glucose. In addition, the genetic diversity of the isolates was verified by the ERIC-PCR technique. Isolates presented distinct resistance profiles with a high level of beta-lactam resistance. The highest index of genes detected was bla(KPC) (60%), followed by bla(SHV) (39%), bla(VIM) (8%), and bla(IMP) (1%). All the isolates were sensitive to the polymyxins tested and formed biofilms at different intensities. Twelve clones of A. baumannii and eight of P. aeruginosa were identified, of which few were indicative of intra- and interhospital dissemination. This study reveals the dispersion dynamics of these isolates in the hospital environment. The results demonstrate the importance of monitoring programs to combat the spread of these pathogens. | 2020 | 31916896 |
| 872 | 4 | 0.9996 | Genomic Characterization of Carbapenem-Resistant Bacteria from Beef Cattle Feedlots. Carbapenems are considered a last resort for the treatment of multi-drug-resistant bacterial infections in humans. In this study, we investigated the occurrence of carbapenem-resistant bacteria in feedlots in Alberta, Canada. The presumptive carbapenem-resistant isolates (n = 116) recovered after ertapenem enrichment were subjected to antimicrobial susceptibility testing against 12 different antibiotics, including four carbapenems. Of these, 72% of the isolates (n = 84) showed resistance to ertapenem, while 27% of the isolates (n = 31) were resistant to at least one other carbapenem, with all except one isolate being resistant to at least two other drug classes. Of these 31 isolates, 90% were carbapenemase positive, while a subset of 36 ertapenem-only resistant isolates were carbapenemase negative. The positive isolates belonged to three genera; Pseudomonas, Acinetobacter, and Stenotrophomonas, with the majority being Pseudomonas aeruginosa (n = 20) as identified by 16S rRNA gene sequencing. Whole genome sequencing identified intrinsic carbapenem resistance genes, including blaOXA-50 and its variants (P. aeruginosa), blaOXA-265 (A. haemolyticus), blaOXA-648 (A. lwoffii), blaOXA-278 (A. junii), and blaL1 and blaL2 (S. maltophilia). The acquired carbapenem resistance gene (blaPST-2) was identified in P. saudiphocaensis and P. stutzeri. In a comparative genomic analysis, clinical P. aeruginosa clustered separately from those recovered from bovine feces. In conclusion, despite the use of selective enrichment methods, finding carbapenem-resistant bacteria within a feedlot environment was a rarity. | 2023 | 37370279 |
| 924 | 5 | 0.9996 | Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. INTRODUCTION: Researching carbapenem-resistant isolates enables the identification of carbapenemase-producing bacteria and prevents their spread. METHODS: P. aeruginosa isolates were recovered from Medicine Faculty of Recep Tayyip Erdoğan University and identified by conventional methods and the automated Vitek 2 Compact system. Antimicrobial susceptibility experiments were performed in accordance with CLSI criteria and the automated Vitek 2 Compact system. The PCR method was investigated for the presence of β-lactamase resistance genes. PFGE typing was performed to show clonal relation among samples. RESULTS: Seventy P. aeruginosa isolates were isolated from seventy patients. Of the patients, 67.1% had contact with the health service in the last 90 days and 75.7% of the patients had received antimicrobial therapy in the previous 90 days. Twenty-four isolates were carbapenem resistant, 2 isolates were multidrug-resistant except colistin, and none of the samples had colistin resistance. The gene encoding β-lactamase or metallo-β-lactamase was found in a total of 36 isolates. The bla (VEB) and bla (PER) genes were identified in 1 and 5 isolates alone or 17 and 13 isolates in combination with other resistance genes, respectively. The bla (NDM) was the most detected metallo-β-lactamase encoding gene (n=18), followed by bla (KPC) (n=12). bla (IMP) and bla (VIM) were detected in 5 and 1 isolates, respectively. Also, the association of bla (VEB)-bla (PER) and bla (VEB)-bla (KPC)-bla (NDM) was found to be very high. Much more resistance genes and co-occurrence were detected in hospital-acquired samples than community-acquired samples. No difference was found between the community and hospital-associated isolates according to PFGE results. Simultaneously from 6 patients, other microorganisms were also isolated and 5 of them died. CONCLUSION: The average length of stay (days) was found to be significantly higher in HAI group than CAI group. The death of 5 patients with fewer or no resistance genes showed that the co-existence of other microorganisms in addition to resistance genes was important on death. | 2021 | 33907430 |
| 2165 | 6 | 0.9996 | Distribution and analysis of the resistance profiles of bacteria isolated from blood cultures in the intensive care unit. PURPOSE: To investigate the distribution characteristics and drug resistance of pathogenic bacteria in bloodstream infections, providing a basis for rational clinical treatment. PATIENTS AND METHODS: Retrospective analysis of 1,282 pathogenic strains isolated from blood cultures in the intensive care unit (ICU) of the Second Affiliated Hospital of Xi'an Jiaotong University from January 1, 2019, to December 31, 2022. RESULTS: Gram-positive bacteria (52.0%) slightly predominated over gram-negative bacteria (48.0%). The top three gram-positive bacteria were Coagulase-negative Staphylococcus (28.0%), Enterococcus faecium (7.4%), and Staphylococcus aureus (6.6%). Staphylococci exhibited a high resistance rate to penicillin, oxacillin, and erythromycin; no strains resistant to vancomycin or linezolid were found. Among the Enterococci, Enterococcus faecium had a high resistance rate to penicillin, ampicillin, and erythromycin. Two strains of Enterococcus faecalis were resistant to linezolid, but none to vancomycin. The top three gram-negative bacteria were Escherichia coli (14.7%), Klebsiella pneumoniae (14.0%), and Acinetobacter baumannii (4.8%). The resistance rate of Escherichia coli to carbapenems increased from 0.0 to 2.3%. Acinetobacter baumannii reached 100% carbapenem resistance (up from 75.0%), while Klebsiella pneumoniae demonstrated 21.1-80.4% resistance to various carbapenems. CONCLUSION: The isolation rate of gram-positive bacteria in patients with bloodstream infection in the ICU of the Second Affiliated Hospital of Xi'an Jiaotong University was slightly higher than that of gram-negative bacteria. The alarming carbapenem resistance among gram-negative pathogens and emerging linezolid resistance in Enterococci demand urgent clinical interventions, including enhanced surveillance, antimicrobial stewardship, and novel therapeutic strategies. | 2025 | 40727562 |
| 933 | 7 | 0.9996 | Molecular characterization and diversity of carbapenemases in Gram-negative bacteria in Libyan hospitals. INTRODUCTION: Antimicrobial resistance has become a major threat to public health, especially in developing countries, due to the uncontrolled consumption of antibiotics. This study aims to characterize antibiotic resistance genes in different bacteria recovered in different healthcare facilities in Libya. METHODOLOGY: 379 samples were recovered from various sources from different sites. 210 samples were able to grow on culture media. 133 Gram-negative carbapenem-resistant strains were recovered from clinical specimens (n = 64), and hospital environments (n = 69). Antibiotic susceptibility tests were performed to select carbapenem-resistant strains. Colistin resistance was tested by the UMIC method to determine the minimum inhibitory concentration. RT-PCR was conducted to detect the incidence of carbapenemases-encoding genes. RESULTS: Gram-negative bacteria showed a low susceptibility to carbapenems. Molecular investigations indicated that NDM-1 was the most prevalent in Enterobacteriaceae isolated from patients and hospital environment (n = 26, n = 41), followed by blaOXA-48 (n = 16, n = 15) and blaVIM (n = 3) from patients and blaKPC (n = 1) from hospital environment. Concerning A. baumannii, blaOXA-23 was detected in strains isolated from patients (n = 8) and hospital environment (n = 6), followed by blaNDM (n = 9) from patients and one from hospital environment. Carbapenem resistance in P. aeruginosa was encoded by modification in OprD encoding gene, such as IS (ISpa26), polymorphism, and a premature stop codon. CONCLUSIONS: Several carbapenem resistant Gram-negative bacteria were identified by the expression of different carbapenemases and the alteration of OprD. | 2025 | 40720466 |
| 2152 | 8 | 0.9996 | Immunological and molecular detection of biofilm formation and antibiotic resistance genes of Pseudomonas aeruginosa isolated from urinary tract. BACKGROUND AND OBJECTIVES: Pseudomonas aeruginosa (P. aeruginosa) is one of the most common causes of hospital-acquired infections. It is associated with high morbidity and healthcare costs, especially when appropriate antibiotic treatment is delayed. Antibiotic selection for patients with P. aeruginosa infections is challenging due to the bacteria's inherent resistance to many commercially available antibiotics. This study investigated antibiotic-resistance genes in isolated bacteria, which play a key role in disease pathogenesis. MATERIALS AND METHODS: 100 samples out of the 140 samples collected from urinary tract infections (UTIs) cases between December 15(th), 2022, and April 15(th), 2023, were included in the study. Identification of bacterial isolates was based on colony morphology, microscopic examination, biochemical tests, and the Vitek-2 system. Antibiotic resistance genes; Aph(3)-llla, ParC, Tet/tet(M), and aac(6´)-Ib-cr were tested by polymerase chain reaction (PCR). RESULTS: The obtained results were based on bacterial identifications of 81 clinical samples. Only 26 (32%) of these isolates were P. aeruginosa, 21 (26%) were Escherichia coli, and 18 (22.2%) were other bacteria. These isolates were used to detect four genes including tet(M), Aph(3)-llla, Par-c, and aac(6´)-Ib-cr. Four types of primers were used for PCR detection. The results showed that 11/14 (78.57%) carried the tet(M) gene, 10/14 (71.42%) carried the Aph(3)-llla gene, 14/14 (100%) carried the Par-c gene, and 10/14 (71.42%) of the isolates carried the aac(6´)-Ib-cr gene. The biofilm formation examining the esp gene, showed that 9 (64.28) isolates carried this gene. CONCLUSION: The inability of antibiotics to penetrate biofilms is an important factor contributing to the antibiotic tolerance of bacterial biofilms. | 2025 | 40612720 |
| 1142 | 9 | 0.9996 | Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria. | 2021 | 34888259 |
| 931 | 10 | 0.9996 | Epidemiological characteristics and antimicrobial susceptibility among carbapenem-resistant non-fermenting bacteria in Brazil. INTRODUCTION: Non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii are widespread in the environment and are increasingly associated with nosocomial infections. Extensive and indiscriminate use of antibiotics in hospitals has contributed to an increased number of infections caused by these microorganisms, that are resistant to a wide variety of antimicrobials, including β-lactams. This study aimed to isolate and identify carbapenem-resistant Acinetobacter spp. and P. aeruginosa from hospitalized patients, to determine their antimicrobial susceptibility patterns and to screen for blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143 genes among the isolated bacteria. METHODOLOGY: Antimicrobial resistance patterns were performed using the disk-diffusion method. Genetic markers related to carbapenem resistance were screened by polymerase chain reaction. RESULTS: Carbapenem-resistant Acinetobacter spp. (n = 44) and P. aeruginosa (n = 28) samples were isolated from patients admitted to a tertiary hospital. Polymyxin B was the only effective drug for all isolates. Considering the oxacillinase gene screening, genetic markers were observed only in Acinetobacter isolates. The most frequent genotype observed was blaOXA-23+/blaOXA-51+ (45.5%), followed by blaOXA-51+/blaOXA-143+ (41%). The oxacillinase genes blaOXA-24 and blaOXA-58 were not detected. High mortality rates (> 70%) were observed. CONCLUSIONS: The data suggest the need for rational use of antimicrobials associated with early diagnosis of multidrug-resistant bacteria, especially considering non-fermenting Gram-negative rods, which are widespread in hospitals. The findings of blaoxa-51(-) strains suggest the occurrence and spread of non-A. baumannii species throughout our hospitals. Effective implementation of surveillance programs in hospitals is needed to reduce infectious and resistant intra- and inter-species bacteria. | 2016 | 27367001 |
| 2219 | 11 | 0.9996 | Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. A multiplex TaqMan real-time PCR to detect carbapenem-hydrolysing class D β-lactamases (bla(OXA-23)-like, bla(OXA-24/40)-like, bla(OXA-51)-like and bla(OXA-58)-like genes) was developed and evaluated for early detection of imipenem (IMP) resistance in clinically significant Acinetobacter baumannii isolates. Well-characterized strains of A. baumannii were used as positive controls and non-Acinetobacter strains were used to assess specificity. Analytical sensitivity was quantified by comparison with the number of bacterial c.f.u. Forty of 46 (87 %) clinically significant and IMP-resistant A. baumannii isolates were positive for the bla(OXA-23)-like gene, and one isolate (2 %) was positive for the bla(OXA-58)-like gene. The bla(OXA-24/40)-like gene was not detected in any of the 46 IMP-resistant strains and the bla(OXA-51)-like gene was identified in both IMP-resistant and non-resistant A. baumannii. All 11 non-Acinetobacter bacteria produced a negative result for each of the four bla(OXA) genes. This assay was able to detect as few as 10 c.f.u. per assay. This real-time PCR method demonstrated rapid detection of OXA-like carbapenem resistance in A. baumannii in comparison with phenotypic susceptibility testing methodology. This method could be adapted to a multiplexed single reaction for rapid detection of genes associated with carbapenem resistance in A. baumannii and potentially other clinically significant multidrug-resistant Gram-negative bacteria. | 2012 | 22878252 |
| 2151 | 12 | 0.9996 | Study of the Genomic Characterization of Antibiotic-Resistant Escherichia Coli Isolated From Iraqi Patients with Urinary Tract Infections. Urinary tract infection is one of the last diseases prevalent in humans, with various causative agents affecting 250 million people annually, This study analyzed UTIs in Iraqi patients caused by Escherichia coli. ESBL enzymes contribute to antibiotic resistance. The research aimed to analyze ESBL gene frequency, resistance patterns, and genetic diversity of E. coli strains; Between Dec 2020 and May 2021, 200 urine samples were collected, cultured on blood agar, EMB, and MacConkey's plates, samples incubated at 37 °C for 24 h. Positive samples (> 100 cfu/ml) underwent Kirby-Bauer and CLSI antibiotic susceptibility testing. PCR detected virulence genes, Beta-lactamase coding genes, and biofilm-associated resistance genes in E. coli isolates; Out of 200 isolates, 80% comprised Gram-positive and Gram-negative bacteria. Specifically, 120 isolates (60%) were Gram-negative, while 40 isolates (20%) were Gram-positive. Among Gram-negative isolates, 20% were identified as E. coli. Remarkably, all E. coli strains showed resistance to all tested antibiotics, ranging from 80 to 95% resistance. The E. coli isolates harbored three identified resistance genes: blaTEM, blaSHV, and blaCTXM. Regarding biofilm production, 10% showed no formation, 12% weak formation, 62% moderate formation, and 16% strong formation; our study found that pathogenic E. coli caused 20% of UTIs. The majority of studied E. coli strains from UTI patients carried the identified virulence genes, which are vital for infection development and persistence. | 2024 | 39011020 |
| 926 | 13 | 0.9996 | Molecular diversity of Klebsiella pneumoniae clinical isolates: antimicrobial resistance, virulence, and biofilm formation. One of the mechanisms responsible for antibiotic resistance in Klebsiella pneumoniae is the enzymes produced by the bacteria; another important mechanism is the ability to form biofilm. In this study, antibiotic resistance, genes associated with virulence, and biofilm-forming properties of K. pneumoniae strains were investigated. A total of 100 K. pneumoniae isolates were obtained from different clinical samples identified by Matrix-Assisted Laser Desorption/Ionization time-of-flight Mass Spectrometry. Antimicrobial susceptibility testing was performed with the Phoenix 100 apparatus. The biofilm forming properties of strains were determined by the microtiter plate method. For molecular analysis, genes encoding the carbapenemase enzyme (bla(OXA-48), bla(NDM-1), bla(IMP), and bla(VIM)) and biofilm-related genes (treC, luxS, mrkA, and wza) were investigated by polymerase chain reaction (PCR). While 76% of clinical isolates were resistant to three or more antimicrobials, 24% were classified as non-multidrug resistant (non-MDR). When biofilm-forming capacities of clinical isolates were tested, it was determined that the resistant-isolates produced 59.2% strong biofilm, and susceptible-isolates produced 12.5% strong biofilm. According to PCR results, carbapenemase genes were determined as follows: bla(OXA-48)-70%, bla(NDM)-49%, and bla(KPC)-19%, bla(OXA-48)/bla(NDM)/bla(KPC)-12%, bla(OXA-48)/bla(NDM)-26%, and bla(OXA-48)/bla(KPC)-4%. The biofilm-associated genes in bacterial isolates were determined as follows: luxS-98%, treC-94%, mrkA-88%, and wza-15%. In addition, Hierarchical Clustering Tree and Heatmap analysis revealed an association between isolates that lacks resistance genes and isolates lacks biofilm-formation related genes that were included in MDR or non-MDR classes. As a result, biofilm should be considered in the treatment of MDR infections, and therapy should be planned accordingly. In addition, pursuing the data and genes of antibiotic resistance is significant for combating resistance. | 2025 | 38718417 |
| 871 | 14 | 0.9996 | Comparative De Novo and Pan-Genome Analysis of MDR Nosocomial Bacteria Isolated from Hospitals in Jeddah, Saudi Arabia. Multidrug-resistant (MDR) bacteria are one of the most serious threats to public health, and one of the most important types of MDR bacteria are those that are acquired in a hospital, known as nosocomial. This study aimed to isolate and identify MDR bacteria from selected hospitals in Jeddah and analyze their antibiotic-resistant genes. Bacteria were collected from different sources and wards of hospitals in Jeddah City. Phoenix BD was used to identify the strains and perform susceptibility testing. Identification of selected isolates showing MDR to more than three classes on antibiotics was based on 16S rRNA gene and whole genome sequencing. Genes conferring resistance were characterized using de novo and pan-genome analyses. In total, we isolated 108 bacterial strains, of which 75 (69.44%) were found to be MDR. Taxonomic identification revealed that 24 (32%) isolates were identified as Escherichia coli, 19 (25.3%) corresponded to Klebsiella pneumoniae, and 17 (22.67%) were methicillin-resistant Staphylococcus aureus (MRSA). Among the Gram-negative bacteria, K. pneumoniae isolates showed the highest resistance levels to most antibiotics. Of the Gram-positive bacteria, S. aureus (MRSA) strains were noticed to exhibit the uppermost degree of resistance to the tested antibiotics, which is higher than that observed for K. pneumoniae isolates. Taken together, our results illustrated that MDR Gram-negative bacteria are the most common cause of nosocomial infections, while MDR Gram-positive bacteria are characterized by a wider antibiotic resistance spectrum. Whole genome sequencing found the appearance of antibiotic resistance genes, including SHV, OXA, CTX-M, TEM-1, NDM-1, VIM-1, ere(A), ermA, ermB, ermC, msrA, qacA, qacB, and qacC. | 2023 | 37894090 |
| 2179 | 15 | 0.9996 | Increasing frequency of Aminoglycoside-Resistant Klebsiella pneumoniae during the era of pandemic COVID-19. The emergence of multidrug resistance to aminoglycosides in K. pneumoniae isolates is a growing concern, especially during pandemic Coronavirus disease 2019 (COVID-19). The study identifies antibiotic resistance in K. pneumoniae isolated from tertiary hospitals during pandemic COVID-19. Among 220 clinical isolates, the total rate of K. pneumoniae was found to be 89 (40.5%). Phenotyping results confirmed the resistance of aminoglycoside antibiotics in 51 (23.2%) of K. pneumoniae isolates. PCR results confirmed the existence of one or more aminoglycoside genes in 82.3% of the 51 isolates. The rmtD gene was the highest-detected gene (66.7%), followed by aac(6')-Ib (45.1%), aph(3')-Ia (45.1%), rmtB (29.4%), armA (21.6%), aac(3)-II (7.8%), and rmtA (3) (11.8%). Significantly, higher resistance strains showed a higher prevalence (61.5%) of aminoglycoside genes (p < 0.05). During COVID-19, there is a higher risk of acquiring MDR bacterial infections, so the monitoring of multidrug resistant bacteria must be continuously undertaken to implement effective measures in infection control and prevention. | 2021 | 34075332 |
| 857 | 16 | 0.9996 | Characterization of KPC-Producing Serratia marcescens in an Intensive Care Unit of a Brazilian Tertiary Hospital. Serratia marcescens has emerged as an important opportunistic pathogen responsible for nosocomial and severe infections. Here, we determined phenotypic and molecular characteristics of 54 S. marcescens isolates obtained from patient samples from intensive-care-unit (ICU) and neonatal intensive-care-unit (NIUC) of a Brazilian tertiary hospital. All isolates were resistant to beta-lactam group antibiotics, and 92.6% (50/54) were not susceptible to tigecycline. Furthermore, 96.3% showed intrinsic resistance to polymyxin E (colistin), a last-resort antibiotic for the treatment of infections caused by MDR (multidrug-resistant) Gram-negative bacteria. In contrast, high susceptibility to other antibiotics such as fluoroquinolones (81.5%), and to aminoglycosides (as gentamicin 81.5%, and amikacin 85.2%) was found. Of all isolates, 24.1% were classified as MDR. The presence of resistance and virulence genes were examined by PCR and sequencing. All isolates carried KPC-carbapenemase (bla (KPC) ) and extended spectrum beta-lactamase bla (TEM) genes, 14.8% carried bla (OXA-) (1), and 16.7% carried bla (CTX-M-) (1) (group) genes, suggesting that bacterial resistance to β-lactam antibiotics found may be associated with these genes. The genes SdeB/HasF and SdeY/HasF that are associated with efflux pump mediated drug extrusion to fluoroquinolones and tigecycline, respectively, were found in 88.9%. The aac(6')-Ib-cr variant gene that can simultaneously induce resistance to aminoglycoside and fluoroquinolone was present in 24.1% of the isolates. Notably, the virulence genes to (i) pore-forming toxin (ShlA); (ii) phospholipase with hemolytic and cytolytic activities (PhlA); (iii) flagellar transcriptional regulator (FlhD); and (iv) positive regulator of prodigiosin and serratamolide production (PigP) were present in 98.2%. The genetic relationship among the isolates determined by ERIC-PCR demonstrated that the vast majority of isolates were grouped in a single cluster with 86.4% genetic similarity. In addition, many isolates showed 100% genetic similarity to each other, suggesting that the S. marcescens that circulate in this ICU are closely related. Our results suggest that the antimicrobial resistance to many drugs currently used to treat ICU and NIUC patients, associated with the high frequency of resistance and virulence genes is a worrisome phenomenon. Our findings emphasize the importance of active surveillance plans for infection control and to prevent dissemination of these strains. | 2020 | 32670210 |
| 2310 | 17 | 0.9996 | Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Patients with cancer have a higher risk of severe bacterial infections. This study aims to determine the frequency, susceptibility profiles, and resistance genes of bacterial species involved in bacteremia, as well as risk factors associated with mortality in cancer patients in Colombia. In this prospective multicenter cohort study of adult patients with cancer and bacteremia, susceptibility testing was performed and selected resistance genes were identified. A multivariate regression analysis was carried out for the identification of risk factors for mortality. In 195 patients, 206 microorganisms were isolated. Gram-negative bacteria were more frequently found, in 142 cases (68.9%): 67 Escherichia coli (32.5%), 36 Klebsiella pneumoniae (17.4%), and 21 Pseudomonas aeruginosa (10.1%), and 18 other Gram-negative isolates (8.7%). Staphylococcus aureus represented 12.4% (n = 25). Among the isolates, resistance to at least one antibiotic was identified in 63% of them. Genes coding for extended-spectrum beta-lactamases and carbapenemases, blaCTX-M and blaKPC, respectively, were commonly found. Mortality rate was 25.6% and it was lower in those with adequate empirical antibiotic treatment (22.0% vs. 45.2%, OR: 0.26, 95% CI: 0.1-0.63, in the multivariate model). In Colombia, in patients with cancer and bacteremia, bacteria have a high resistance profile to beta-lactams, with a high incidence of extended-spectrum beta-lactamases and carbapenemases. Adequate empirical treatment diminishes mortality, and empirical selection of treatment in this environment of high resistance is of key importance. | 2023 | 36838324 |
| 870 | 18 | 0.9996 | Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia. It has previously been shown that carbapenem-resistant Acinetobacter baumannii are frequently detected in Saudi Arabia. The present study aimed to identify the epidemiology and distribution of antibiotic resistance determinants in these bacteria. A total of 83 A. baumannii isolates were typed by pulsed-field gel electrophoresis (PFGE), and screened by PCR for carbapenemase genes and insertion sequences. Antibiotic sensitivity to imipenem, meropenem, tigecycline, and colistin were determined. Eight different PFGE groups were identified, and were spread across multiple hospitals. Many of the PFGE groups contained isolates belonging to World-wide clone 2. Carbapenem resistance or intermediate resistance was detected in 69% of isolates. The bla VIM gene was detected in 94% of isolates, while bla OXA-23-like genes were detected in 58%. The data demonstrate the co-existence and wide distribution of a number of clones of carbapenem-resistant A. baumannii carrying multiple carbapenem-resistance determinants within hospitals in the Eastern Region of Saudi Arabia. | 2015 | 26191044 |
| 860 | 19 | 0.9996 | Investigation of Plasmid-Mediated Colistin Resistance Genes (mcr-1-8) in Enterobacterales Isolates. Background The escalating global rise in multidrug-resistant gram-negative bacteria presents an increasingly substantial threat to patient safety. Over the past decade, carbapenem-resistant Enterobacterales (CRE) have emerged as one of the most critical pathogens in hospital-acquired infections, notably within intensive care units. Colistin has become one of the last-resort antimicrobial agents utilized to combat infections caused by CRE. However, the use of colistin has been accompanied by a notable increase in the prevalence of colistin-resistant bacteria. This study aimed to investigate plasmid-mediated colistin resistance genes ranging from mcr-1 to mcr-8 among members of the Enterobacterales order. Materials and methods This prospective study was conducted in the microbiology laboratory of Afyonkarahisar Health Sciences University Health Research and Practice Center between May 1, 2021 and July 31, 2022. A total of 2,646 Enterobacterales isolates were obtained from all culture-positive clinical samples sent from various clinics. Of these, 79 isolates exhibiting resistance to carbapenem antibiotics were included in the study. Among the 79 isolates, the presence of mcr-1 to mcr-8 genes was investigated in 27 isolates that were shown to be resistant to colistin. The identification of bacteria at the species level and antibiotic susceptibility tests were conducted using the VITEK 2 automated system (bioMérieux, USA). Colistin resistance among Enterobacterales strains exhibiting carbapenem resistance was evaluated using the broth microdilution technique (ComASP™ Colistin, Liofilchem, Italy), in accordance with the manufacturer's instructions. Results In our in vitro investigations, the minimum inhibitory concentration (MIC) values for meropenem were determined to be >8 µg/ml, whereas for colistin, the MIC50 value was >16 µg/ml and the MIC90 value was 8 µg/ml. A total of 27 colistin-resistant strains were identified among the 79 carbapenem-resistant Enterobacterales strains analyzed. The most prevalent agent among colistin-resistant strains was Klebsiella pneumoniae (K. pneumoniae), representing 66.7% of the isolates. This was followed by Proteus mirabilis (P. mirabilis) with 29.6% and Escherichia coli (E. coli) with 3.7%. The colistin resistance rate among carbapenem-resistant strains was found to be 34.2%, with colistin MIC values in strains tested by the broth microdilution method ranging from 4 to >16 µg/ml concentrations. In polymerase chain reaction (PCR) studies, the mcr-1 gene region was successfully detected by real-time PCR in the positive control isolate. Nevertheless, none of the gene regions from mcr-1 to mcr-8 were identified in our study investigating the presence of plasmid-mediated genes using a multiplex PCR kit. Conclusion Although our study demonstrated the presence of increased colistin resistance rates in carbapenem-resistant Enterobacterales isolates, it resulted in the failure to detect genes from mcr-1 to mcr-8 by the multiplex PCR method. Therefore, it is concluded that the colistin resistance observed in Enterobacteriaceae isolates in our region is not due to the mcr genes screened, but to different resistance development mechanisms. | 2024 | 38957246 |