Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
971701.0000Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements. Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.202032127449
971810.9999Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments. Understanding the role of horizontal gene transfer (HGT) in adaptation is a key challenge in evolutionary biology. In microbes, an important mechanism of HGT is prophage acquisition (phage genomes integrated into bacterial chromosomes). Prophages can influence bacterial fitness via the transfer of beneficial genes (including antibiotic-resistance genes, ARGs), protection from superinfecting phages, or switching to a lytic lifecycle that releases free phages infectious to competitors. We expect these effects to depend on environmental conditions because of, for example, environment-dependent induction of the lytic lifecycle. However, it remains unclear how costs/benefits of prophages vary across environments. Here, studying prophages with/without ARGs in Escherichia coli, we disentangled the effects of prophages alone and adaptive genes they carry. In competition with prophage-free strains, benefits from prophages and ARGs peaked in different environments. Prophages were most beneficial when induction of the lytic lifecycle was common, whereas ARGs were more beneficial upon antibiotic exposure and with reduced prophage induction. Acquisition of prophage-encoded ARGs by competing strains was most common when prophage induction, and therefore free phages, were common. Thus, selection on prophages and adaptive genes they carry varies independently across environments, which is important for predicting the spread of mobile/integrating genetic elements and their role in evolution.202133347602
938720.9998Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids. Bacterial genes that confer crucial phenotypes, such as antibiotic resistance, can spread horizontally by residing on mobile genetic elements (MGEs). Although many mobile genes provide strong benefits to their hosts, the fitness consequences of the process of transfer itself are less clear. In previous studies, transfer has been interpreted as a parasitic trait of the MGEs because of its costs to the host but also as a trait benefiting host populations through the sharing of a common gene pool. Here, we show that costly donation is an altruistic act when it spreads beneficial MGEs favoured when it increases the inclusive fitness of donor ability alleles. We show mathematically that donor ability can be selected when relatedness at the locus modulating transfer is sufficiently high between donor and recipients, ensuring high frequency of transfer between cells sharing donor alleles. We further experimentally demonstrate that either population structure or discrimination in transfer can increase relatedness to a level selecting for chromosomal transfer alleles. Both mechanisms are likely to occur in natural environments. The simple process of strong dilution can create sufficient population structure to select for donor ability. Another mechanism observed in natural isolates, discrimination in transfer, can emerge through coselection of transfer and discrimination alleles. Our work shows that horizontal gene transfer in bacteria can be promoted by bacterial hosts themselves and not only by MGEs. In the longer term, the success of cells bearing beneficial MGEs combined with biased transfer leads to an association between high donor ability, discrimination, and mobile beneficial genes. However, in conditions that do not select for altruism, host bacteria promoting transfer are outcompeted by hosts with lower transfer rate, an aspect that could be relevant in the fight against the spread of antibiotic resistance.201627270455
938630.9998Bacteriophages limit the existence conditions for conjugative plasmids. Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome. IMPORTANCE: Conjugative plasmids are infectious loops of DNA capable of transmitting DNA between bacterial cells and between species. Because plasmids often carry extra genes that allow bacteria to live in otherwise-inhospitable environments, their dynamics are central to understanding bacterial adaptive evolution. The plasmid-bacterium interaction has typically been studied in isolation, but in natural bacterial communities, bacteriophages, viruses that infect bacteria, are ubiquitous. Using experiments, mathematical models, and computer simulations we show that bacteriophages drive plasmid dynamics through their ecological and evolutionary effects on bacteria and ultimately limit the conditions allowing plasmid existence. These results advance our understanding of bacterial adaptation and show that bacteriophages could be used to select against plasmids carrying undesirable traits, such as antibiotic resistance.201526037122
984140.9998Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Mobile genetic elements (MGEs), such as plasmids, promote bacterial evolution through horizontal gene transfer (HGT). However, the rules governing the repertoire of traits encoded on MGEs remain unclear. In this study, we uncovered the central role of genetic dominance shaping genetic cargo in MGEs, using antibiotic resistance as a model system. MGEs are typically present in more than one copy per host bacterium, and as a consequence, genetic dominance favors the fixation of dominant mutations over recessive ones. In addition, genetic dominance also determines the phenotypic effects of horizontally acquired MGE-encoded genes, silencing recessive alleles if the recipient bacterium already carries a wild-type copy of the gene. The combination of these two effects governs the catalog of genes encoded on MGEs. Our results help to understand how MGEs evolve and spread, uncovering the neglected influence of genetic dominance on bacterial evolution. Moreover, our findings offer a framework to forecast the spread and evolvability of MGE-encoded genes, which encode traits of key human interest, such as virulence or antibiotic resistance.202032571917
971650.9998Fitness effects of plasmids shape the structure of bacteria-plasmid interaction networks. Antimicrobial resistance (AMR) genes are often carried on broad host range plasmids, and the spread of AMR within microbial communities will therefore depend on the structure of bacteria–plasmid networks. Empirical and theoretical studies of ecological interaction networks suggest that network structure differs between communities that are predominantly mutualistic versus antagonistic, with the former showing more generalized interactions (i.e., species interact with many others to a similar extent). This suggests that mutualistic bacteria–plasmid networks—where antibiotics are present and plasmids carry AMR genes—will be more generalized than antagonistic interactions, where plasmids do not confer benefits to their hosts. We first develop a simple theory to explain this link: fitness benefits of harboring a mutualistic symbiont promote the spread of the symbiont to other species. We find support for this theory using an experimental bacteria–symbiont (plasmid) community, where the same plasmid can be mutualistic or antagonistic depending on the presence of antibiotics. This short-term and parsimonious mechanism complements a longer-term mechanism (coevolution and stability) explaining the link between mutualistic and antagonistic interactions and network structure.202235613058
949460.9998Within-Host Mathematical Models of Antibiotic Resistance. Mathematical models have been used to study the spread of infectious diseases from person to person. More recently studies are developing within-host modeling which provides an understanding of how pathogens-bacteria, fungi, parasites, or viruses-develop, spread, and evolve inside a single individual and their interaction with the host's immune system.Such models have the potential to provide a more detailed and complete description of the pathogenesis of diseases within-host and identify other influencing factors that may not be detected otherwise. Mathematical models can be used to aid understanding of the global antibiotic resistance (ABR) crisis and identify new ways of combating this threat.ABR occurs when bacteria respond to random or selective pressures and adapt to new environments through the acquisition of new genetic traits. This is usually through the acquisition of a piece of DNA from other bacteria, a process called horizontal gene transfer (HGT), the modification of a piece of DNA within a bacterium, or through. Bacteria have evolved mechanisms that enable them to respond to environmental threats by mutation, and horizontal gene transfer (HGT): conjugation; transduction; and transformation. A frequent mechanism of HGT responsible for spreading antibiotic resistance on the global scale is conjugation, as it allows the direct transfer of mobile genetic elements (MGEs). Although there are several MGEs, the most important MGEs which promote the development and rapid spread of antimicrobial resistance genes in bacterial populations are plasmids and transposons. Each of the resistance-spread-mechanisms mentioned above can be modeled allowing us to understand the process better and to define strategies to reduce resistance.202438949703
972170.9998Mobile Genetic Element Flexibility as an Underlying Principle to Bacterial Evolution. Mobile genetic elements are key to the evolution of bacteria and traits that affect host and ecosystem health. Here, we use a framework of a hierarchical and modular system that scales from genes to populations to synthesize recent findings on mobile genetic elements (MGEs) of bacteria. Doing so highlights the role that emergent properties of flexibility, robustness, and genetic capacitance of MGEs have on the evolution of bacteria. Some of their traits can be stored, shared, and diversified across different MGEs, taxa of bacteria, and time. Collectively, these properties contribute to maintaining functionality against perturbations while allowing changes to accumulate in order to diversify and give rise to new traits. These properties of MGEs have long challenged our abilities to study them. Implementation of new technologies and strategies allows for MGEs to be analyzed in new and powerful ways.202337437216
928580.9998Bacterial genetic exchange in nature. Most bacteria are haploid organisms containing only one copy of each gene per cell for most of the growth cycle. This means that the chance for correcting random mutations in bacterial genes would depend entirely on the complementarity inherent in DNA structures, unless homologous DNA sequences can be imported from outside the cell. Bacteria, like all living organisms have evolved at least one autonomous mechanism, conjugation, for exchanging portions of genetic materials between two related cells. The ecological benefits of conjugation include the expansion of metabolic versatility and resistance to hazardous environmental conditions. Natural bacterial genetic exchange also occurs through virus infections (transduction) and through the uptake of extracellular DNA (transformation). The origin and ecological benefits of transduction and transformation are difficult to assess because they are driven by factors external to the affected cell. Bacterial genetic exchange has implications for the evolution of phenotypes that are either beneficial to humans, such as biodegradation of toxic xenobiotic chemicals, or that are detrimental, such as the evolution of pathogenesis and the spread of antibiotic resistance. Understanding natural bacterial genetic exchange mechanisms is also relevant to the assessment of dispersal risks associated with genetically engineered bacteria and recombinant genes in the environment.19958533067
970990.9998Role of Plasmids in Plant-Bacteria Interactions. Plants are colonized by diverse microorganisms, which may positively or negatively influence the plant fitness. The positive impact includes nutrient acquisition, enhancement of resistance to biotic and abiotic stresses, both important factors for plant growth and survival, while plant pathogenic bacteria can cause diseases. Plant pathogens are adapted to negate or evade plant defense mechanisms, e.g. by the injection of effector proteins into the host cells or by avoiding the recognition by the host. Plasmids play an important role in the rapid bacterial adaptation to stresses and changing environmental conditions. In the plant environment, plasmids can further provide a selective advantage for the host bacteria, e.g. by carrying genes encoding metabolic pathways, metal and antibiotic resistances, or pathogenicity-related genes. However, we are only beginning to understand the role of mobile genetic elements and horizontal gene transfer for plant-associated bacteria. In this review, we aim to provide a short update on what is known about plasmids and horizontal gene transfer of plant associated bacteria and their role in plant-bacteria interactions. Furthermore, we discuss tools available to study the plant-associated mobilome, its transferability, and its bacterial hosts.201930070649
9260100.9998The Evolution of Plasmid Transfer Rate in Bacteria and Its Effect on Plasmid Persistence. AbstractPlasmids are extrachromosomal segments of DNA that can transfer genes between bacterial cells. Many plasmid genes benefit bacteria but cause harm to human health by granting antibiotic resistance to pathogens. Transfer rate is a key parameter for predicting plasmid dynamics, but observed rates are highly variable, and the effects of selective forces on their evolution are unclear. We apply evolutionary analysis to plasmid conjugation models to investigate selective pressures affecting plasmid transfer rate, emphasizing host versus plasmid control, the costs of plasmid transfer, and the role of recipient cells. Our analyses show that plasmid-determined transfer rates can be predicted with three parameters (host growth rate, plasmid loss rate, and the cost of plasmid transfer on growth) under some conditions. We also show that low-frequency genetic variation in transfer rate can accumulate, facilitating rapid adaptation to changing conditions. Furthermore, reduced transfer rates due to host control have limited effects on plasmid prevalence until low enough to prevent plasmid persistence. These results provide a framework to predict plasmid transfer rate evolution in different environments and demonstrate the limited impact of host mechanisms to control the costs incurred when plasmids are present.202134559608
9342110.9998Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.202134542714
9724120.9998Characteristics of phage-plasmids and their impact on microbial communities. Bacteria host various foreign genetic elements, most notably plasmids and bacteriophages (or phages). Historically, these two classes were seen as separate, but recent research has shown considerable interplay between them. Phage-plasmids (P-Ps) exhibit characteristics of both phages and plasmids, allowing them to exist extrachromosomally within bacterial hosts as plasmids, but also to infect and lyse bacteria as phages. This dual functionality enables P-Ps to utilize the modes of transmission of both phage and plasmids, facilitating the rapid dissemination of genetic material, including antibiotic resistance and virulence genes, throughout bacterial populations. Additionally, P-Ps have been found to encode toxin-antitoxin and CRISPR-Cas adaptive immune systems, which enhance bacterial survival under stress and provide immunity against other foreign genetic elements. Despite a growing body of literature on P-Ps, large gaps remain in our understanding of their ecological roles and environmental prevalence. This review aims to synthesise existing knowledge and identify research gaps on the impacts of P-Ps on microbial communities.202439611587
9284130.9998The population and evolutionary dynamics of homologous gene recombination in bacterial populations. In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination -- broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT) -- plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR) to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1) the contribution of HGR to the rate of adaptive evolution in these populations and (2) the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1) HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2) once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent invasion of non-recombining populations, even when recombination engenders a modest fitness cost; and (3) because of the density- and frequency-dependent nature of HGR in bacteria, this capacity to increase rates of adaptive evolution is not sufficient as a selective force to provide a recombining population a selective advantage when it is rare. Under realistic conditions, homologous gene recombination will increase the rate of adaptive evolution in bacterial populations and, once established, selection for higher rates of evolution will promote the maintenance of bacteria-encoded mechanisms for HGR. On the other hand, increasing rates of adaptive evolution by HGR is unlikely to be the sole or even a dominant selective pressure responsible for the original evolution of transformation.200919680442
9838140.9998Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmids are genetic elements that play a role in bacterial evolution by providing new genes that promote adaptation to diverse conditions. Plasmids are also known to reduce bacterial competitiveness in the absence of selection for plasmid-encoded traits. It is easier to understand plasmid persistence when considering the evidence that plasmid maintenance can improve during co-evolution with the bacterial host, i.e. the chromosome. However, bacteria isolated from nature often harbor diverse mobile elements: phages, transposons, genomic islands and even other plasmids. Recent interest has emerged on the role such elements play on the persistence and evolution of plasmids. Here, we mainly review interactions between different plasmids, but also discuss their interactions with other genetic elements. We focus on interactions that impact fundamental plasmid traits, such as the fitness effect imposed on their hosts and the transfer efficiency into new host cells. We illustrate these phenomena with examples concerning clinically relevant organisms and the spread of plasmids carrying antibiotic resistance genes and virulence factors.201930771401
9714150.9998Antibiotic resistance shaping multi-level population biology of bacteria. Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.201323508522
9493160.9998Regulatory integration of horizontally-transferred genes in bacteria. Horizontal transfer of genetic material is a fact of microbial life and bacteria can obtain new DNA sequences through the processes of conjugation, transduction and transformation. This offers the bacterium the possibility of evolving rapidly by importing new genes that code for new traits that may assist in environmental adaptation. Research in this area has focused in particular on the role of horizontal transfer in the dissemination through bacterial populations of genes for resistance to antimicrobial agents, including antibiotics. It is becoming clear that many other phenotypic characteristics have been acquired through horizontal routes and that these include traits contributing to pathogenesis and symbiosis. An important corollary to the acquisition of new genes is the problem of how best to integrate them in the existing gene regulatory circuits of the recipient so that fitness is not compromised initially and can be enhanced in the future through optimal expression of the new genes.200919273337
9294170.9998Plasmid persistence: costs, benefits, and the plasmid paradox. Plasmids are extrachromosomal DNA elements that can be found throughout bacteria, as well as in other domains of life. Nonetheless, the evolutionary processes underlying the persistence of plasmids are incompletely understood. Bacterial plasmids may encode genes for traits that are sometimes beneficial to their hosts, such as antimicrobial resistance, virulence, heavy metal tolerance, and the catabolism of unique nutrient sources. In the absence of selection for these traits, however, plasmids generally impose a fitness cost on their hosts. As such, plasmid persistence presents a conundrum: models predict that costly plasmids will be lost over time or that beneficial plasmid genes will be integrated into the host genome. However, laboratory and comparative studies have shown that plasmids can persist for long periods, even in the absence of positive selection. Several hypotheses have been proposed to explain plasmid persistence, including host-plasmid co-adaptation, plasmid hitchhiking, cross-ecotype transfer, and high plasmid transfer rates, but there is no clear evidence that any one model adequately resolves the plasmid paradox.201829562144
9282180.9997Could DNA uptake be a side effect of bacterial adhesion and twitching motility? DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence-a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila.201323381940
9296190.9997Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Living organisms are defined by the genes they possess. Control of expression of this gene set, both temporally and in response to the environment, determines whether an organism can survive changing conditions and can compete for the resources it needs to reproduce. Bacteria are no exception; changes to the genome will, in general, threaten the ability of the microbe to survive, but acquisition of new genes may enhance its chances of survival by allowing growth in a previously hostile environment. For example, acquisition of an antibiotic resistance gene by a bacterial pathogen can permit it to thrive in the presence of an antibiotic that would otherwise kill it; this may compromise clinical treatments. Many forces, chemical and genetic, can alter the genetic content of DNA by locally changing its nucleotide sequence. Notable for genetic change in bacteria are transposable elements and site-specific recombination systems such as integrons. Many of the former can mobilize genes from one replicon to another, including chromosome-plasmid translocation, thus establishing conditions for interspecies gene transfer. Balancing this, transposition activity can result in loss or rearrangement of DNA sequences. This chapter discusses bacterial DNA transfer systems, transposable elements and integrons, and the contributions each makes towards the evolution of bacterial genomes, particularly in relation to bacterial pathogenesis. It highlights the variety of phylogenetically distinct transposable elements, the variety of transposition mechanisms, and some of the implications of rearranging DNA, and addresses the effects of genetic change on the fitness of the microbe.200415148416