First detection of resistance genes and virulence factors in Escherichia coli and Salmonella spp in Togo: the case of imported chicken and frozen by-products. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
97001.0000First detection of resistance genes and virulence factors in Escherichia coli and Salmonella spp in Togo: the case of imported chicken and frozen by-products. BACKGROUND: The increasing importation of frozen poultry into Togo raises concerns about the microbiological safety and antimicrobial resistance of associated pathogens. Despite the public health risks posed by resistant foodborne bacteria, data on resistance profiles, resistance genes, and virulence factors in imported frozen chickens in Togo remain limited. This study aims to address this gap by characterizing these factors in pathogenic strains isolated from imported poultry. METHODS: A cross-sectional prospective study was undertaken to assess the microbiological quality and resistance profiles of imported poultry products. Samples were collected from seven cold storage facilities located within the Golfe prefecture of the Greater Lomé metropolitan area. In total, 285 poultry meat and cut samples were analyzed following standardized AFNOR microbiological protocols. Isolated Salmonella spp. and Escherichia coli strains underwent antibiotic susceptibility testing using the disk diffusion method, adhering to the guidelines established by the Comité de l'Antibiogramme de la Société Française de Microbiologie (CA-SFM). Furthermore, polymerase chain reaction (PCR) assays were employed to identify genetic determinants of antibiotic resistance and virulence factors in the bacterial isolates. RESULTS: Microbiological analysis revealed a prevalence of Escherichia coli of 32.98%, while Salmonella spp. were detected in 2.46% of the samples. Antibiotic susceptibility testing demonstrated resistance among isolates to several beta-lactams and quinolones. Specifically, resistance to cefoxitin was observed in 14.28% of strains, whereas resistance to cefalexin, cefuroxime, ceftazidime, ceftriaxone, and nalidixic acid was uniformly detected at a prevalence of 28.57%. Among the E. coli isolates, 9.44% exhibited multidrug resistance to both beta-lactams and quinolones. Molecular characterization identified class 1 integrons in 17.6% of isolates, with gene cassettes predominantly harboring aadA1 and dfr1, which encode resistance to streptomycin, spectinomycin, and trimethoprim. Notably, class 2 and class 3 integrons were absent. Additionally, the plasmid-mediated qnrB gene was detected in 5.9% of isolates. The study also documented the emergence of resistance to third-generation cephalosporins (C3G), primarily associated with extended-spectrum beta-lactamase (ESBL) production, as evidenced by the presence of blaCTX (35.3%) and blaTEM (58.8%) genes among ESBL-producing strains. CONCLUSIONS: This study reveals a notable presence of antimicrobial-resistant Escherichia coli and Salmonella in imported frozen poultry in Togo, highlighting significant public health risks. The findings call for improved surveillance and stricter control measures to prevent the spread of resistant pathogens via the food supply. CLINICAL TRIAL NUMBER: Not applicable.202540457192
100410.9997Hospital Wastes as Potential Sources for Multi-Drug-Resistant ESBL-Producing Bacteria at a Tertiary Hospital in Ethiopia. The hospital environment is increasingly becoming an important reservoir for multi-drug-resistant (MDR) Gram-negative bacteria, posing serious challenges to efforts to combat antimicrobial resistance (AMR). This study aimed to investigate the role of hospital waste as a potential source of MDR ESBL-producing bacteria. Samples were collected from multiple sources within a hospital and its vicinity, including surface swabs, houseflies, and sewage samples. The samples were subsequently processed in a microbiology laboratory to identify potential pathogenic bacteria and confirmed using MALDI-TOF MS. Bacteria were isolated from 87% of samples, with the predominant isolates being E. coli (30.5%), Klebsiella spp. (12.4%), Providencia spp. (12.4%), and Proteus spp. (11.9%). According to the double disc synergy test (DDST) analysis, nearly half (49.2%) of the bacteria were identified as ESBL producers. However, despite exhibiting complete resistance to beta-lactam antibiotics, 11.8% of them did not test positive for ESBL production. The characterization of E. coli revealed that 30.6% and 5.6% of them carried blaCTX-M group 1 type-15 and blaNDM genes, respectively. This finding emphasizes the importance of proper hospital sanitation and waste management practices to mitigate the spread of AMR within the healthcare setting and safeguard the health of both patients and the wider community.202438667050
100520.9997Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Fresh fruits and vegetables are potential reservoirs for antimicrobial resistance determinants, but few studies have focused specifically on organic vegetables. The present study aimed to determine the presence of third-generation cephalosporin (3GC)- and carbapenem-resistant Gram-negative bacteria on fresh organic vegetables produced in the city of Valencia (Spain). Main expanded spectrum beta-lactamase (ESBL)- and carbapenemase-encoding genes were also detected in the isolates. One hundred and fifteen samples were analyzed using selective media supplemented with cefotaxime and meropenem. Resistance assays for twelve relevant antibiotics in medical use were performed using a disc diffusion test. A total of 161 isolates were tested. Overall, 33.5% presented multidrug resistance and 16.8% were resistant to all β-lactam antibiotics tested. Imipenem resistance was observed in 18% of isolates, and low resistance levels were found to ceftazidime and meropenem. Opportunistic pathogens such as Acinetobacter baumannii, Enterobacter spp., Raoultella sp., and Stenotrophomonas maltophilia were detected, all presenting high rates of resistance. PCR assays revealed bla(VIM) to be the most frequently isolated ESBL-encoding gene, followed by bla(TEM) and bla(OXA-48). These results confirm the potential of fresh vegetables to act as reservoirs for 3GC- and carbapenem-producing ARB. Further studies must be carried out to determine the impact of raw organic food on the spread of AMRs into the community.202336830297
105930.9997Dissemination and phenotypic characterization of ESBL-producing Escherichia coli in Indonesia. BACKGROUND: The alarming rise in infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in animals and humans poses a serious threat due to its escalating antibiotic resistance. Unveiling this problematic bacteria's prevalence and resistance patterns in animals is crucial for formulating effective control strategies and safeguarding public health. AIM: The purpose of this study was to analyze the expression of three main genes: blaCTX-M, blaSHV, and blaTEM, in ESBL-producing E. coli isolates from The Research Center for Veterinary Science and the National Research and Innovation Agency. Moreover, their resistance profiles against various antibiotics should be systematically evaluated. METHODS: Ninety-seven E. coli isolates from the bacteriology laboratory of The Research Center for Veterinary Science were identified on MacConkey medium supplemented with cefotaxime. The isolates were verified for the existence of the blaCTX-M, blaSHV, and blaTEM genes using PCR. Antimicrobial susceptibility testing was conducted using antibiotic discs following the CLSI standards. RESULTS: The prevalence of ESBL-producing E. coli in chicken ceca, eggs, and fish intestines was 16.5% (16/97). The specific genes detected were blaCTX-M gene at 93.75% (15/16), followed by the blaTEM gene, at 81.25% (13/16), and blaSHV at 25% (4/16). The antimicrobial sensitivity test results revealed that all ESBL-producing E. coli isolates had multidrug resistance 81.25% to 1-5 antibiotics and 18.75% to 6-7 antibiotics. The isolate exhibited 100% resistance to ampicillin and sulfamethoxazole, with exclusive sensitivity to chloramphenicol. CONCLUSION: The dominant gene in the ESBL-producing isolates was blaCTX-M. This bacterium is completely resistant to ampicillin and sulfamethoxazole, whereas it displays multidrug resistance to 1-7 different types of antibiotics.202540276175
114640.9997Molecular detection and prevalence of colistin-resistant Escherichia coli in poultry and humans: a one health perspective. Multidrug-resistant (MDR) bacteria significantly threaten humans and animals worldwide. Colistin is the last resort of antibiotics against gram-negative bacterial infections. Its irrational use in poultry is a major factor in transmitting MDR bacteria to humans. The present study investigated the risk factors, prevalence, and molecular detection of colistin resistance associated with poultry and humans. A total of (n = 140) cloacal swabs from chickens and human stool samples (n = 140) were processed to identify E. coli using conventional methods, followed by genotypic confirmation. Phenotypic and genotypic confirmation of antibiotic resistance genes qnrA, blaTEM, tetA, aadA, and mcr genes was performed on these E. coli isolates. These isolates were confirmed at 69.3% and 62.8% in chickens and humans, respectively. Limited education and poor hygiene significantly increased the infection rate (p = 0.0001). The E. coli isolates from commercial poultry showed 100% resistance to amoxicillin/clavulanic acid, 98.9% to ampicillin, and 93.8% to tetracycline. The E. coli isolates from humans exhibited 90% resistance to ciprofloxacin, 88% to ampicillin, and 85% to ceftriaxone. Among these, MDR E. coli isolates of both commercial poultry and humans, colistin resistance was found in 78.6% and 48.1%, respectively. Genotypic confirmation of mcr genes such as mcr-1 (42%), mcr-2 (19.6%), mcr-3 (15.1%), mcr-4 (7.6%), and mcr-5 (4.5%) in commercial poultry. However, only the mcr-1 (15.6%) gene was found in human isolates. The current study findings highlight the prevalence of mcr genes in E. coli, potentially contributing to broader antibiotic resistance concerns.202540956559
270750.9997Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. BACKGROUND: Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. METHODS: This study determined the phenotype and genotype of AMR, extended-spectrum β-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. RESULTS: A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla (TEM) (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int (SXT). None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. CONCLUSIONS: Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish.202336855429
114560.9997Abundance of Mobilized Colistin Resistance Gene (mcr-1) in Commensal Escherichia coli from Diverse Sources. Aims: Antimicrobial resistance (AMR) spreads not only by pathogenic but also by commensal bacteria, and the latter can become a reservoir for resistance genes. This study was aimed to investigate the AMR patterns along with the presence of mobilized colistin resistance (mcr) genes in commensal Escherichia coli circulating in chickens, farm environments, street foods, and human patients. Materials and Methods: By a cross-sectional survey, isolates obtained from 530 samples were tested for their AMR profiles against 9 antimicrobials. Minimum inhibitory concentration (MIC) of the phenotypically colistin-resistant isolates was determined and screened for a set of mcr genes followed by sequencing of mcr-1 gene in the multidrug-resistant (MDR) isolates. Results: A total of 313 E. coli strains were isolated and confirmed by polymerase chain reaction. Antimicrobial susceptibility testing revealed that about 98% (confidence interval [95% CI] 95-99) of the isolates were MDR, and 58% (95% CI 52-63) isolates exhibited resistance to colistin. MIC values of colistin against the isolates ranged from 4 to 64 mg/L. Except for human patients, 20.4% colistin-resistant isolates from other sources of isolation had mcr-1 gene. Conclusions: There is abundance of commensal MDR E. coli strains with the acquisition of mcr-1 gene circulating in chickens and farm environments in Bangladesh.202133909471
84870.9997Molecular Characterization of Escherichia coli Causing Urinary Tract Infections Through Next-Generation Sequencing: A Comprehensive Analysis of Serotypes, Sequence Types, and Antimicrobial and Virulence Genes. Introduction An enormous increase in antimicrobial resistance (AMR) among bacteria isolated from human clinical specimens contributed to treatment failures. Increased surveillance through next-generation sequencing (NGS) or whole genome sequencing (WGS) could facilitate the study of the epidemiology of drug-resistant bacterial strains, resistance genes, and other virulence determinants they are potentially carrying. Methods This study included 30 Escherichia coli (E. coli) isolates obtained from patients suffering from urinary tract infections (UTIs) attending Prathima Institute of Medical Sciences, Karimnagar, India. All bacterial isolates were identified, and antimicrobial susceptibility patterns were determined through conventional microbiological techniques and confirmed by automated systems. All the isolates were investigated using NGS to identify genes coding for resistance, such as extended-spectrum beta-lactamases (ESBLs), metallo-beta-lactamases, and virulence genes. Multilocus sequence typing (MLST) was used to understand the prevalent strain types, and serotyping was carried out to evaluate the type of O (cell wall antigen) and H (flagellar antigen) serotypes carried by the isolates. Results The conventional antimicrobial susceptibility testing revealed that 15 (50%) isolates were resistant to imipenem (IPM), 10 (33.33%) were resistant to amikacin (AK), 13 (43.33%) were resistant to piperacillin-tazobactam (PTZ), 17 (56.66%) were resistant to cephalosporins, and 14 (46.66%) were resistant to nitrofurantoin (NIT). Among the isolates, 26 (86.66%) had revealed the presence of multiple antibiotic-resistant genes with evidence of at least one gene coding for beta-lactamase resistance. There was a high prevalence of bla(CTX-M )(19/30, 63.33%) genes, followed by bla(TEM) and bla(OXA-1). The bla(NDM-5) gene was found in three isolates (3/30, 10%). The virulence genes identified in the present study were iutA, sat, iss, and papC, among others. The E. coli serotype found predominantly belonged to O25:H4 (5, 16.66%), followed by O102:H6 (4, 13.33%). A total of 16 MLST variants were identified among the examined samples. Of the MLST-based sequence types (STs) identified, ST-131 (7, 23.33%) was the predominant one, followed by ST-167 (3, 10%) and ST-12 (3, 10%). Conclusions The study results demonstrated that the E. coli strains isolated from patients suffering from UTIs potentially carried antimicrobial resistance and virulence genes and belonged to different strain types based on MLST. Careful evaluation of bacterial strains using molecular analyses such as NGS could facilitate an improved understanding of bacterial antibiotic resistance and its virulence potential. This could enable physicians to choose appropriate antimicrobial agents and contribute to better patient management, thereby preventing the emergence and spread of drug-resistant bacteria.202438576671
101380.9997Molecular detection and antimicrobial resistance profiles of Extended-Spectrum Beta-Lactamase (ESBL) producing Escherichia coli in broiler chicken farms in Malaysia. Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.202337205716
120390.9997Prevalence, serovars, and risk factors associated with the presence of Salmonella in pork sold in public markets in Quito, Ecuador. BACKGROUND: Salmonella enterica are bacteria that include more than 2,500 serovars. Most of these serovars have been linked to human foodborne illnesses, mainly related to poultry and pigs. Thus, these animals are considered the reservoirs of many Salmonella serovars and strains related to antibiotic resistance. This study aimed to determine the prevalence, serovars, β-lactam resistance genes, and the risk factors associated with Salmonella enterica in pork commercialized in open markets of Quito city. METHODS: For this, 165 pork meat samples were taken from municipal markets in three areas in the city. These samples were microbiologically processed following the ISO 6579-2014 standardized method. The polymerase chain reaction (PCR) test was used to identify Salmonella serotyping and resistance genes. Strains not identified by PCR were typed by the Kauffman White Le Minor scheme. A multivariate analysis was performed to identify risk factors associated with the presence of the microorganism. RESULTS: Salmonella prevalence in pork was 9.1%. Identified serovars were 4, [5], 12: i:- (53.3%), Infantis (33.3%), and Derby (13.4%). Furthermore, the β-lactam resistance genes bla (CTX-M-65) could be identified in three S. infantis isolates. Multivariate analysis showed that temperature (above 8°C) and cutting surfaces (wood) presented significant association values. CONCLUSIONS: In conclusion, pork in traditional markets of Quito is contaminated with Salmonella enterica, whose main serovars pose a public health concern, and shows beta-lactam resistance.202338882713
1610100.9997Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BACKGROUND: The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation. RESULTS: In sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the bla(NDM-1) and bla(VIM-2) genes, respectively and were able to transmit imipenem resistance through conjugation. CONCLUSION: Our findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria.202033256594
1012110.9997Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century.202032266079
2972120.9997Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. OBJECTIVES: Antimicrobial resistance in Salmonella serotypes has been reported. Integrons play an important role in the dissemination of antimicrobial resistance genes in bacteria. Scarce literature is available on the identification of integrons in Salmonella isolated from broiler chickens. In this study, antimicrobial susceptibility testing and characterisation of class 1 integrons among multidrug-resistant (MDR) Salmonella enterica serotypes in broiler chicken farms in Egypt were performed. METHODS: Antimicrobial susceptibility was determined by the disk diffusion method. PCR was performed to detect antimicrobial resistance genes and class 1 integrons in the tested Salmonella serotypes. Gene sequencing of the variable region of a class 1 integron was performed. RESULTS: Salmonella spp. were detected in 26 (13.5%) of 192 broiler samples, with Salmonella Enteritidis being the most frequently detected serotype, followed by Salmonella Kentucky and Salmonella Typhimurium and other serotypes. A very high resistance rate was observed to trimethoprim/sulfamethoxazole (100%), whilst a low resistance rate was observed to cefuroxime (57.7%). MDR S. enterica isolates displayed resistance to ciprofloxacin and azithromycin. Class 1 integrons were detected in 20 (76.9%) of the 26 Salmonella isolates. A high prevalence of class 1 integrons, as the first recorded percentage in the literature, associated with MDR Salmonella isolates was observed. CONCLUSIONS: Antimicrobial resistance rates in Salmonella serotypes from broiler chicken farms were alarming, especially for ciprofloxacin and azithromycin. Thus, another therapeutic strategy other than antimicrobials is recommended to prevent outbreaks of MDR Salmonella.201829684574
1618130.9997Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (bla(CTX-M-65), bla(CTX-M-55), and bla(EC-1982)). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use.202439453061
2970140.9997Plasmid-mediated quinolone resistance in Escherichia coli isolates from commercial broiler chickens in Semnan, Iran. BACKGROUND AND OBJECTIVES: Antibiotic resistance within the poultry sector presents a considerable health concern due to treatment inefficacy and resistance transmission to humans and the environment. The investigation of plasmid-mediated quinolone resistance (PMQR) in Escherichia coli, acknowledged for its role in advancing resistance, remains inadequately studied in Iranian poultry. This study aimed to evaluate PMQR gene prevalence as well as to determine correlation between resistance phenotype and genotype in E. coli obtained from poultry colibacillosis. MATERIALS AND METHODS: A collection of 100 E. coli isolates from the viscera of broilers suspected to colibacillosis was assessed. Using the Kirby-Bauer disk diffusion method, antimicrobial susceptibility tests were conducted for ofloxacin, nalidixic acid, levofloxacin, ciprofloxacin, and ampicillin. Additionally, PCR was employed to screen for qnrS, qnrB, and aac(6)Ib-cr genes. RESULTS: Among the analyzed E. coli isolates, 51% demonstrated resistance to at least one of the tested antibiotics, with 17% exhibiting resistance to four different antibiotics. Nalidixic acid displayed the highest resistance rate at 48%, while ampicillin had the lowest at 16%. PMQR genes were detected in 28% of the E. coli isolates, with aac(6')-Ib-cr being the most prevalent at 14%, followed by qnrB in 13%, and qnrS in 7%. CONCLUSION: The study underscores the vital need for careful antibiotic usage in poultry to curb the emergence of antibiotic-resistant bacteria. The results illuminate the prevalence of PMQR genes and their association with resistance trends in Iranian poultry, forming a pivotal basis for forthcoming approaches to combat antibiotic resistance within the poultry sector.202438854977
1205150.9997Prevalence and Genomic Investigation of Multidrug-Resistant Salmonella Isolates from Companion Animals in Hangzhou, China. Salmonella is a group of bacteria that constitutes the leading cause of diarrheal diseases, posing a great disease burden worldwide. There are numerous pathways for zoonotic Salmonella transmission to humans; however, the role of companion animals in spreading these bacteria is largely underestimated in China. We aimed to investigate the prevalence of Salmonella in pet dogs and cats in Hangzhou, China, and characterize the antimicrobial resistance profile and genetic features of these pet-derived pathogens. In total, 137 fecal samples of pets were collected from an animal hospital in Hangzhou in 2018. The prevalence of Salmonella was 5.8% (8/137) in pets, with 9.3% (5/54) of cats and 3.6% (3/83) of dogs being Salmonella positive. By whole-genome sequencing (WGS), in silico serotyping, and multilocus sequence typing (MLST), 26 pet-derived Salmonella isolates were identified as Salmonella Dublin (ST10, n = 22) and Salmonella Typhimurium (ST19, n = 4). All of the isolates were identified as being multidrug-resistant (MDR), by conducting antimicrobial susceptibility testing under both aerobic and anaerobic conditions. The antibiotics of the most prevalent resistance were streptomycin (100%), cotrimoxazole (100%), tetracycline (96.20%), and ceftriaxone (92.30%). Versatile antimicrobial-resistant genes were identified, including floR (phenicol-resistant gene), blaCTX-M-15, and blaCTX-M-55 (extended-spectrum beta-lactamase genes). A total of 11 incompatible (Inc) plasmids were identified, with IncA/C2, IncFII(S), and IncX1 being the most predominant among Salmonella Dublin, and IncFIB(S), IncFII(S), IncI1, and IncQ1 being the most prevailing among Salmonella Typhimurium. Our study applied WGS to characterize pet-derived Salmonella in China, showing the presence of MDR Salmonella in pet dogs and cats with a high diversity of ARGs and plasmids. These data indicate a necessity for the regular surveillance of pet-derived pathogens to mitigate zoonotic diseases.202235625269
1014160.9997Contamination of retail market meat with extended-spectrum beta-lactamase genes in Vietnam. The contamination of retail meat with antibiotic-resistant bacteria poses a substantial public health risk because of the potential spread of these bacteria within communities. The contamination of retail meat with extended-spectrum beta-lactamase (ESBL)-producing bacteria was investigated in four cities in Vietnam using real-time PCR, employing ESBL marker genes. This method provides a more comprehensive assessment of ESBL-producing bacterial contamination in meat samples than culture-based methods because it directly detects resistance genes from the extracted sample DNA. Retail meats in Vietnam were substantially contaminated with ESBL genes [54 % (n = 46) and 48 % (n = 49) of chicken and pork samples, respectively]. No significant differences in ESBL gene detection rates were observed between chicken and pork. The most frequently detected ESBL gene was blaTEM, followed by blaSHV, whereas blaCTX-M was found in only 4-8 % of the samples. Ho Chi Minh City showed significantly higher contamination rates for both chicken and pork than those in other cities. ESBL-producing Escherichia coli strains were isolated from contaminated meat samples and genomically analyzed. All isolated strains carried blaCTX-M, with some harboring blaTEM, whereas blaSHV was not detected. Although IncFIB plasmids were prevalent among the ESBL-producing E. coli strains, the variability in resistance gene profiles suggested that the endemic spread of specific resistance gene-carrying plasmids was unlikely. Overall, these findings highlight the effectiveness of the ESBL gene detection method and the high levels of ESBL-producing E. coli in retail meat.202539827751
1017170.9997Evaluation of canine raw food products for the presence of extended-spectrum beta-lactamase- and carbapenemase-producing bacteria of the order Enterobacterales. OBJECTIVE: To assess the potential contamination of commercial raw dog food products with bacteria of the Enterobacterales order that produce extended spectrum beta-lactamase (ESBL) and carbapenemase enzymes, determine risk factors for contamination, and understand isolate genetic diversity. SAMPLES: A total of 200 canine raw food products. METHODS: Products were cultured on selective chromogenic agar following enrichment steps. Whole-genome sequencing was performed for isolates that were confirmed to produce an ESBL. Isolates were characterized by antimicrobial resistance genes, and multilocus sequences typing, and compared to other isolates in the NCBI database for clonality. Preservation method and protein sources were assessed as potential risk factors for contamination with ESBL and carbapenemase-producing bacteria of the Enterobacterales order. RESULTS: No carbapenemase-producing Enterobacterales (CPE) were identified, but ESBL-producing Enterobacterales bacteria were isolated from 20/200 products (10.0%; 95% CI, 7.3 to 16.5%), all of which were frozen. Pork-derived protein source products were 8.1 times (P = .001; 95% CI, 2.53 to 26.2) more likely to carry ESBL-producing Enterobacterales bacteria than other protein sources. WGS analysis confirmed the presence of ESBL genes in a total of 25 distinct isolates (19 Escherichia coli, 5 Klebsiella pneumoniae, and 1 Citrobacter braakii). Genes encoding CTX-M type ESBL enzymes were the most common (24/25 isolates, 96.0%) with blaCTX-M-27 being the most common allele (8/25, 32.0%). CLINICAL RELEVANCE: Frozen, raw food products may serve as a route of transmission of ESBL-producing Enterobacterales bacteria to companion animals. Veterinarians should advise owners about the risks of raw food diets, including potential exposure to antimicrobial-resistant bacteria.202235895774
1201180.9997Antimicrobial-Resistant Escherichia coli, Enterobacter cloacae, Enterococcus faecium, and Salmonella Kentucky Harboring Aminoglycoside and Beta-Lactam Resistance Genes in Raw Meat-Based Dog Diets, USA. The practice of feeding raw meat-based diets to dogs has grown in popularity worldwide in recent years. However, there are public health risks in handling and feeding raw meat-based dog diets (RMDDs) to dogs since there are no pathogen reduction steps to reduce the microbial load, which may include antimicrobial-resistant pathogenic bacteria. A total of 100 RMDDs from 63 suppliers were sampled, and selective media were used to isolate bacteria from the diets. Bacterial identification, antimicrobial susceptibility testing, and whole-genome sequencing (WGS) were conducted to identify antimicrobial resistance (AMR). The primary meat sources for RMDDs included in this study were poultry (37%) and beef (24%). Frozen-dry was the main method of product production (68%). In total, 52 true and opportunistic pathogens, including Enterobacterales (mainly Escherichia coli, Enterobacter cloacae) and Enterococcus faecium, were obtained from 30 RMDDs. Resistance was identified to 19 of 28 antimicrobials tested, including amoxicillin/clavulanic acid (23/52, 44%), ampicillin (19/52, 37%), cephalexin (16/52, 31%), tetracycline (7/52, 13%), marbofloxacin (7/52, 13%), and cefazolin (6/52, 12%). All 19 bacterial isolates submitted for WGS harbored at least one type of AMR gene. The identified AMR genes were found to mediate resistance to aminoglycoside (gentamicin, streptomycin, amikacin/kanamycin, gentamicin/kanamycin/tobramycin), macrolide, beta-lactam (carbapenem, cephalosporin), tetracycline, fosfomycin, quinolone, phenicol/quinolone, and sulfonamide. In conclusion, the results of this study suggest that feeding and handling RMDDs may pose a significant public health risk due to the presence of antimicrobial-resistant pathogens, and further research and intervention may be necessary to minimize these risks.202337615516
1144190.9997Identification of mcr-2 and mcr-3 Genes in Colistin-Resistant E. coli O157:H7 Isolated From Raw Meat Samples in Beirut, Lebanon. Colistin is a last-resort antibiotic used to treat multidrug-resistant Gram-negative bacterial infections. The global emergence of colistin resistance has been attributed to plasmid-mediated mobile colistin resistance (mcr) genes. In Lebanon, bacteria carrying the mcr-1 gene have increasingly been identified in food animal sources. This study is aimed at detecting colistin-resistant Shiga toxigenic Escherichia coli O157:H7 in raw meat samples from local markets in the suburbs of Beirut and evaluating their antimicrobial resistance profiles. A total of 50 meat samples, including 25 minced beef and 25 burger samples, were collected and analyzed. Antimicrobial resistance patterns were determined using the Kirby-Bauer method, while colistin resistance and the presence of mcr-2 and mcr-3 genes were assessed using broth microdilution and PCR amplification techniques. Among these samples, 23 (46%) tested positive for E. coli O157:H7. Resistance to ampicillin and amoxicillin/clavulanic acid was observed in 96% of the samples, while 61% were resistant to trimethoprim/sulfamethoxazole, and 43% to chloramphenicol. Notably, 87% of the samples displayed colistin resistance, with a minimum inhibitory concentration (MIC) of ≥ 4 μg/mL. The mcr-2 gene was present in four isolates (17.4%), and the mcr-3 gene was identified in 10 isolates (43.4%). This study is the first to document the presence of plasmid-mediated colistin resistance genes, mcr-2 and mcr-3, in E. coli O157:H7 strains in Lebanon. These findings highlight a serious public health concern for the Lebanese community. Therefore, the responsible use of antibiotics across all healthcare sectors, combined with strict hygiene measures in food handling, is essential to control the spread of colistin-resistant genes.202540226838