Uses of antimicrobials in plant agriculture. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
968101.0000Uses of antimicrobials in plant agriculture. Bacterial diseases of plants are less prevalent than diseases caused by fungi and viruses. Antimicrobials for prophylactic treatment of bacterial diseases of plants are limited in availability, use, and efficacy, and therapeutic use is largely ineffective. Most applications are by spray treatments in orchards. Monitoring and surveillance for drug resistance are not routinely done. In the United States, data on use of antimicrobials for treatment of bacterial diseases of plants are limited to streptomycin and oxytetracycline. Resistance to streptomycin has become widespread among bacterial phytopathogens; no resistance among these bacteria has yet been reported for oxytetracycline. No human health effects have been documented since inception of use of antimicrobials in plants in the 1950s. Transfer of antimicrobial resistance from marker genes in transgenic plants to bacteria has not been documented under natural conditions in field-grown plants. However, antimicrobial-resistance genes are being eliminated from use as marker genes because of concerns about possible transfer from plant genomes back to bacteria, with further horizontal transfer to the bacteria in the environment, or from plant genomes to animals by plant consumption. No new antimicrobials are expected to be used in plant agriculture because of high costs of development, regulatory constraints, and environmental and human health concerns. Alternatives to antimicrobials, such as biocontrol agents, transgenic plants, and novel chemicals, are being developed and marketed, although their efficacy remains to be determined.200211988880
411810.9999Antimicrobial resistance in livestock. Antimicrobial resistance may become a major problem in veterinary medicine as a consequence of the intensive use and misuse of antimicrobial drugs. Related problems are now arising in human medicine, such as the appearance of multi-resistant food-borne pathogens. Product characteristics, dose, treatment interval and duration of treatment influence the selection pressure for antimicrobial drug resistance. There are theoretical, experimental and clinical indications that the emergence of de novo resistance in a pathogenic population can be prevented by minimizing the time that suboptimal drug levels are present in the infected tissue compartment. Until recently, attention has been focused on target pathogens. However, it should be kept in mind that when antimicrobial drugs are used in an individual, resistance selection mainly affects the normal body flora. In the long term, this is at least equally important as resistance selection in the target pathogens, as the horizontal transfer of resistance genes converts almost all pathogenic bacteria into potential recipients for antimicrobial resistance. Other factors contributing to the epidemiology of antimicrobial resistance are the localization and size of the microbial population, and the age, immunity and contact intensity of the host. In livestock, dynamic herd-related resistance patterns have been observed in different animal species.200312667177
406020.9999Current status of antibiotic resistance in animal production. It is generally accepted that the more antibiotics we use, the faster bacteria will develop resistance. Further it has been more or less accepted that once an antibiotic is withdrawn from the clinic, the resistance genes will eventually disappear, [table: see text] since they will no more be of any survival value for the bacterial cell. However, recent research has shown that after a long time period of exposure to antibiotics, certain bacterial species may adapt to this environment in such a way that they keep their resistance genes stably also after the removal of antibiotics. Thus, there is reason to believe that once resistance has developed it will not even in the long term be eradicated. What then can we do not to increase further the already high level of antibiotic-resistant bacteria in animals? We should of course encourage a prudent use of these valuable drugs. In Sweden antibiotics are not used for growth promoting purposes and are available only after veterinary prescription on strict indications. Generally, antimicrobial treatment of animals on individual or on herd basis should not be considered unless in connection with relevant diagnostics. The amounts of antibiotics used and the development of resistance in important pathogens should be closely monitored. Furthermore, resistance monitoring in certain non-pathogenic intestinal bacteria, which may serve as a reservoir for resistance genes is probably more important than hitherto anticipated. Once the usage of or resistance to a certain antibiotic seems to increase in an alarming way, steps should be taken to limit the usage of the drug in order to prevent further spread of resistance genes in animals, humans and the environment. Better methods for detecting and quantifying antibiotic resistance have to be developed. Screening methods must be standardized and evaluated in order to obtain comparable and reliable results from different countries. The genetic mechanisms for development of resistance and spread of resistance genes should be studied in detail. Research in these areas will lead to new ideas on how to inhibit the resistance mechanisms. So far, it has been well established that a heavy antimicrobial drug selective pressure in overcrowded populations of production animals creates favourable environments both for the emergence and the spread of antibiotic resistance genes.199910783714
423130.9999Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. The worldwide use, and misuse, of antibiotics for about sixty years in the so-called antibiotic era, has been estimated in some one to ten million tons, a relevant part of which destined for non-therapeutic purposes such as growth promoting treatments for livestock or crop protection. As highly adaptable organisms, bacteria have reacted to this dramatic change in their environment by developing several well-known mechanisms of antibiotic resistance and are becoming increasingly resistant to conventional antibiotics. In recent years, commensal bacteria have become a cause of concern since they may act as reservoirs for the antibiotic resistance genes found in human pathogens. In particular, the food chain has been considered the main route for the introduction of animal and environment associated antibiotic resistant bacteria into the human gastrointestinal tract (GIT) where these genes may be transferred to pathogenic and opportunistic bacteria. As fundamental microbial communities in a large variety of fermented foods and feed, the anaerobe facultative, aerotolerant lactic acid bacteria (LAB) are likely to play a pivotal role in the resistance gene exchange occurring in the environment, food, feed and animal and human GIT. Therefore their antibiotic resistance features and their genetic basis have recently received increasing attention. The present article summarises the results of the latest studies on the most typical genera belonging to the low G + C branch of LAB. The evolution of the criteria established by European regulatory bodies to ensure a safe use of microorganisms in food and feed, including the assessment of their antibiotic resistance is also reviewed.201121515393
422340.9999Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.202236144306
419750.9999Antibiotic-resistant bacteria: a challenge for the food industry. Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.201323035919
968060.9999Antibiotic Resistance in Plant-Pathogenic Bacteria. Antibiotics have been used for the management of relatively few bacterial plant diseases and are largely restricted to high-value fruit crops because of the expense involved. Antibiotic resistance in plant-pathogenic bacteria has become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For example, the strAB streptomycin-resistance genes occur in Erwinia amylovora, Pseudomonas syringae, and Xanthomonas campestris, and these genes have presumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance. Such knowledge is critical to the development of robust resistance management strategies to ensure the safe and effective continued use of antibiotics in the management of critically important diseases.201829856934
406170.9999Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Market launching of a new antibiotic requires knowing in advance its benefits and possible risks, and among them how rapidly resistance will emerge and spread among bacterial pathogens. This information is not only useful from a public health point of view, but also for pharmaceutical industry, in order to reduce potential waste of resources in the development of a compound that might be discontinued at the short term because of resistance development. Most assays currently used for predicting the emergence of resistance are based on culturing the target bacteria by serial passages in the presence of increasing concentrations of antibiotics. Whereas these assays may be valuable for identifying mutations that might cause resistance, they are not useful to establish how fast resistance might appear, neither to address the risk of spread of resistance genes by horizontal gene transfer. In this article, we review recent information pertinent for a more accurate prediction on the emergence and dispersal of antibiotic resistance.201121835695
407780.9999Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations.201728213031
969790.9999Origins and evolution of antibiotic resistance. The massive prescription of antibiotics and their non-regulated and extensive usage has resulted in the development of extensive antibiotic resistance in microorganisms; this has been of great clinical significance. Antibiotic resistance occurs not only by mutation of microbial genes which code for antibiotic uptake into cells or the binding sites for antibiotics, but mostly by the acquisition of heterologous resistance genes from external sources. The physical characteristics of the microbial community play a major role in gene exchange, but antimicrobial agents provide the selective pressure for the development of resistance and promote the transfer of resistance genes among bacteria. The control of antibiotic usage is essential to prevent the development of resistance to new antibiotics.19969019139
4115100.9999Antibiotic Use for Growth Promotion in Animals: Ecologic and Public Health Consequences. Antibiotics have successfully treated infectious diseases in man, animals and agricultural plants. However, one consequence of usage at any level, subtherapeutic or therapeutic, has been selection of microorganisms resistant to these valuable agents. Today clinicians worldwide face singly resistant and multiply resistant bacteria which complicate treatment of even common infectious agents. This situation calls for a critical evaluation of the numerous ways in which antibiotics are being used so as to evaluate benefits and risks. About half of the antibiotics produced in the United States arc used in animals, chiefly in subtherapeutic amounts for growth promotion. This usage is for prolonged periods leading to selection of multiply-resistant bacteria which enter a common environmental pool. From there, resistance determinants from different sources spread from one bacterium to another, from one animal host to another, from one area to another. The same resistance determinants have been traced to many different genera associated with humans, animals and foods where they pose a continued threat to public health. Since alternative measures for growth promotion, such as antimicrobials which are not used for human therapy and which do not select for multiple-resistances are available, their use, instead of antibiotics, would remove a major factor contributing to the environmental pool of transferable resistance genes.198730965484
4043110.9999Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products. In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.201627383577
4062120.9999Antibiotic resistance mechanisms in bacteria of oral and upper respiratory origin. Over the past 20 years, antibiotic resistance has increased in virtually every species of bacteria examined. In this paper, the main mechanisms of antibiotic resistance currently known for antibiotics used for treatment of disease caused by oral and upper respiratory bacteria will be reviewed, with an emphasis on the most commonly used antibiotics. The possible role that mercury, which is released from silver amalgams, plays in the oral/respiratory bacterial ecology is also discussed, as it relates to possible selection of antibiotic resistant bacteria.19989573495
4068130.9999Co-selection for antibiotic resistance by environmental contaminants. The environment is increasingly recognised as a hotspot for the selection and dissemination of antibiotic resistant bacteria and antibiotic resistance genes. These can be selected for by antibiotics and non-antibiotic agents (such as metals and biocides), with the evidence to support this well established by observational and experimental studies. However, there is emerging evidence to suggest that plant protection products (such as herbicides), and non-antibiotic drugs (such as chemotherapeutic agents), can also co-select for antibiotic resistance. This review aims to provide an overview of four classes of non-antibiotic agents (metals, biocides, plant protection products, and non-antibiotic drugs) and how they may co-select for antibiotic resistance, with a particular focus on the environment. It also aims to identify key knowledge gaps that should be addressed in future work, to better understand these potential co-selective agents.202439843965
4095140.9999Antimicrobial resistance: more than 70 years of war between humans and bacteria. Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).202032954887
4188150.9999Use of antimicrobial agents in aquaculture. The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria.201222849275
9452160.9999Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host's immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.202235203766
4063170.9999The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. Antibiotic resistance has become a major clinical and public health problem within the lifetime of most people living today. Confronted by increasing amounts of antibiotics over the past 60 years, bacteria have responded to the deluge with the propagation of progeny no longer susceptible to them. While it is clear that antibiotics are pivotal in the selection of bacterial resistance, the spread of resistance genes and of resistant bacteria also contributes to the problem. Selection of resistant forms can occur during or after antimicrobial treatment; antibiotic residues can be found in the environment for long periods of time after treatment. Besides antibiotics, there is the mounting use of other agents aimed at destroying bacteria, namely the surface antibacterials now available in many household products. These too enter the environment. The stage is thus set for an altered microbial ecology, not only in terms of resistant versus susceptible bacteria, but also in terms of the kinds of microorganisms surviving in the treated environment. We currently face multiresistant infectious disease organisms that are difficult and, sometimes, impossible to treat successfully. In order to curb the resistance problem, we must encourage the return of the susceptible commensal flora. They are our best allies in reversing antibiotic resistance.200211751763
4064180.9999Antimicrobial resistance. The development of antimicrobial drugs, and particularly of antibiotics, has played a considerable role in substantially reducing the morbidity and mortality rates of many infectious diseases. However, the fact that bacteria can develop resistance to antibiotics has produced a situation where antimicrobial agents are losing their effectiveness because of the spread and persistence of drug-resistant organisms. To combat this, more and more antibiotics with increased therapeutic and prophylactic action will need to be developed.This article is concerned with antibiotic resistance in bacteria which are pathogenic to man and animals. The historical background is given, as well as some information on the present situation and trends of antibiotic resistance to certain bacteria in different parts of the world. Considerable concern is raised over the use of antibiotics in man and animals. It is stated that antibiotic resistance in human pathogens is widely attributed to the "misuse" of antibiotics for treatment and prophylaxis in man and to the administration of antibiotics to animals for a variety of purposes (growth promotion, prophylaxis, or therapy), leading to the accumulation of resistant bacteria in their flora. Factors favouring the development of resistance are discussed.19836603914
9684190.9999Pesticide degrading natural multidrug resistance bacterial flora. Multidrug-resistant (MDR) bacteria are a growing threat to humans across the world. Antibiotic resistance is a global problem that has developed through continuous antibiotic use, combinatorial antibiotic use, pesticide-antibiotic cross-resistance, and horizontal gene transfer, as well as various other modes. Pesticide-antibiotic cross-resistance and the subsequent expansion of drug-resistant bacteria are critically documented in this review, the primary focus of which is to assess the impact of indiscriminate pesticide use on the development of microbial communities with parallel pesticide and multidrug resistance. The consumption of pesticide-contaminated food products and the use of broad-spectrum antibiotics by humans and in livestock animals have favored the development of both antibiotic and pesticide-resistant bacterial flora via natural selection. Pesticide resistance mainly develops through defensive bacterial adaptations such as biofilm formation, induced mutations, and horizontal/vertical gene transfer through plasmids or transposons, as well as through the increased expression of certain hydrolytic enzymes. Pesticide resistance genes are always transferred as gene clusters, and they may also carry genes essential for antibiotic resistance. Moreover, for some induced mutations, the mutated active site of the affected enzyme may allow degradation of both pesticides and antibiotics, resulting in cross-resistance. A few studies have shown that the sub-lethal exposure of wild-type strains to herbicides induces antibiotic resistance. This review concludes that xenobiotic exposure leads to cross-resistance in wild microbial flora, which requires further study to develop therapeutic approaches to overcome the threats of MDR bacteria and superbugs.201829223450