Classes 1 and 2 integrons in faecal Escherichia coli strains isolated from mother-child pairs in Nigeria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
96601.0000Classes 1 and 2 integrons in faecal Escherichia coli strains isolated from mother-child pairs in Nigeria. BACKGROUND: Antimicrobial resistance among enteric bacteria in Africa is increasingly mediated by integrons on horizontally acquired genetic elements. There have been recent reports of such elements in invasive pathogens across Africa, but very little is known about the faecal reservoir of integron-borne genes. METHODS AND FINDINGS: We screened 1098 faecal Escherichia coli isolates from 134 mother-child pairs for integron cassettes by PCR using primers that anneal to the 5' and 3' conserved ends of the cassette regions and for plasmid replicons. Genetic relatedness of isolates was determined by flagellin and multi-locus sequence typing. Integron cassettes were amplified in 410 (37.5%) isolates and were significantly associated with resistance to trimethoprim and multiple resistance. Ten cassette combinations were found in class 1 and two in class 2 integrons. The most common class 1 cassette configurations were single aadA1 (23.4%), dfrA7 (18.3%) and dfrA5 (14.4%). Class 2 cassette configurations were all either dfrA1-satI-aadA1 (n = 31, 7.6%) or dfrA1-satI (n = 13, 3.2%). A dfr cassette was detected in 294 (31.1%) of trimethoprim resistant strains and an aadA cassette in 242 (23%) of streptomycin resistant strains. Strains bearing integrons carried a wide range of plasmid replicons of which FIB/Y (n = 169; 41.2%) was the most frequently detected. Nine isolates from five different individuals carried the dfrA17-aadA5-bearing ST69 clonal group A (CGA). The same integron cassette combination was identified from multiple distinct isolates within the same host and between four mother-child pairs. CONCLUSIONS: Integrons are important determinants of resistance in faecal E. coli. Plasmids in integron-containing strains may contribute to dispersing resistance genes. There is a need for improved surveillance for resistance and its mechanisms of dissemination and persistence and mobility of resistance genes in the community and clinical settings.201728829804
202710.9998In Silico Detection of Integrons and Their Relationship with Resistance Phenotype of Salmonella Isolates from a Brazilian Pork Production Chain. The pork production chain is an important reservoir of antimicrobial resistant bacteria. This study identified and characterized integrons in Salmonella isolates from a Brazilian pork production chain and associate them with their antibiotic resistance pattern. A total of 41 whole-genome sequencing data of nontyphoidal Salmonella were analyzed using PlasmidSPAdes and IntegronFinder software. Nine isolates (21.9%) had some integrons identified (complete and/or incomplete). Six complete class 1 integrons were found, with streptomycin resistance genes (aadA1, aadA2) alone or downstream of a trimethoprim resistance gene (dfrA1, dfrA12), and some also containing resistance genes for sulfonamides (sul1, sul3) and chloramphenicol (cmlA1). Class 2 integron was detected in only one isolate, containing dfrA1-sat2-aadA1 gene cassettes. Five isolates harbored CALINs-clusters attC but lacking integrases-with antimicrobial resistance genes typically found in integron structures. In all, integrons were observed among four serotypes: Derby, Bredeney, Panama, and monophasic var. Typhimurium I 4,[5],12:i:-. The association of integrons with antibiotic resistance phenotype showed that these elements were predominantly identified in multidrug resistance isolates, and six of the seven gentamicin-resistant isolates had integrons. So, surveillance of integrons in Salmonella should be performed to identify the potential for the spread of antimicrobial resistance genes among bacteria.202438917456
202320.9998Class 1 and class 2 integrons and plasmid-mediated antibiotic resistance in coliforms isolated from ten rivers in northern Turkey. We aimed to determine the molecular mechanisms of antibiotic resistance in coliforms isolated from ten rivers in northern region of Turkey. A total of 183 isolates were tested for antimicrobial susceptibility by disk diffusion and agar dilution methods. Resistance to ampicillin, streptomycin, trimethoprim, tetracycline, and chloramphenicol was detected in 58%, 51.9%, 24%, 28.4%, and 12.5%, respectively. Twelve (6.5%) phylogenetically distant organisms were detected to harbor self-transmissible plasmids ranging 52 to >147 kb in sizes. Resistances to ampicillin, tetracycline, trimethoprim, streptomycin, and nalidixic acid were commonly transferable traits. Transferable nalidixic acid-resistant strains harbored qnrS gene, which was the first report of plasmid-mediated quinolone resistance in bacteria of environmental origin in Turkey. Fourteen and five coliforms harbored class 1 and class 2 integrons, respectively, and some of them were located on transferable plasmids. Sequence analyses of variable regions of the class 1 and 2 integrons harbored various gene cassettes, dfrA1, dfr2d, dfrA7, dfrA16, dfrA17, aadA1, aadA5, bla(oxA-30), and sat1. A gene cassette array, dfrA16 has been demonstrated for the first time in a Citrobacter koseri isolate. Class 1 and class 2-bearing strains were clustered in different groups by BOX-PCR fingerprinting. Rivers in the northern Turkey may act as receptacle for the multi-drug resistant enterobacteria and can serve as reservoirs of the antimicrobial resistance determinants in the environment. The actual risk to public health is the transfer of resistance genes from the environmental bacteria to human pathogens.200919229487
89430.9998Molecular characterisations of integrons in clinical isolates of Klebsiella pneumoniae in a Chinese tertiary hospital. BACKGROUND: Integrons are mobile genetic elements that play an important role in the distribution of antibiotic-resistance genes among bacteria. This study aimed to investigate the distribution of integrons in clinical isolates of Klebsiella pneumoniae and explore the molecular mechanism of integron-mediated multiple-drug resistance in K. pneumoniae. METHODS: Class 1, 2, and 3 integrases were identified by polymerase chain reaction (PCR) among 178 K. pneumoniae clinical isolates. Antibiotic susceptibility was examined by disk-diffusion method. Conjugation experiments were conducted to evaluate the horizontal-transfer capability, and multilocus sequence typing (MLST) assays were conducted to explore the genetic relationships among the isolates. Highly virulent serotypes were identified by PCR from the 44 integron-positive isolates with variable regions. RESULTS: Class1 and 2 integrons were detected in 60.1% and 1.7% of isolates, respectively. One isolate carried both class 1 and 2 integrons. Class 3 integrons were not detected in all 178 isolates. Among the 44 integrons containing variable regions, 39 were located in conjugative plasmids. Dihydrofolate reductase (dfrA) and aminoglycoside adenyltransferase (aad) were found to be the most common in class 1 and 2 integrons. These gene cassettes encoded resistance to trimethoprim and aminoglycosides. Moreover, the association between integron carriage and antibiotic resistance was most significant for aminoglycosides, phenicols, and fluoroquinolones. Among the 44 integron-positive isolates with variable regions, 9 were classified as highly virulent serotypes (k1, k2, k20, and k54). In addition, MLST analysis detected 13 sequence types (STs), with the predominant ones being ST11 and ST15. The eBURST analysis revalued the existence of 11 singleton STs and one group, which is comprised of ST11 and ST437. CONCLUSIONS: The wide diversity of detected integrons suggested that the horizontal transfer by mobile genetic elements played a major role in the distribution of antimicrobial resistance genes, thereby indicating the urgent need to use effective means of avoiding the spread of drug-resistant bacteria.201728111326
205440.9998A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Bacterial resistance to fluoroquinolones result from mutations in the quinolone resistance-determining regions of the drug targets, overexpression of efflux pumps, and/or the more recently identified plasmid-mediated low-level resistance mechanisms. We investigated the prevalence of and characterized plasmid-mediated fluoroquinolone resistance genes (qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA) by polymerase chain reaction in fluoroquinolone-resistant Escherichia coli (n = 530) isolated from a chicken farm, a pig farm, and hospitalized patients in Shandong, China, in 2007. The aac(6')-Ib-cr gene was the most prevalent resistance gene that was detected in bacteria isolated from all sources. Next was the qnrS gene, which was predominantly present in isolates from the pig farm. Only eight (5.8%) isolates from hospital patients were found to possess the qepA gene, and these isolates were first reported in qepA-carrying E. coli from humans in China. The qnrA and qnrB genes were not detected in any of the isolates. Further, most of the isolates were also resistant to beta-lactams and aminoglycosides as determined by the broth microdilution method. Pulsed-field gel electrophoresis analysis of the E. coli isolates with similar resistance patterns that also carried resistance genes showed great genomic diversity among these bacteria, suggesting that the multiresistant E. coli isolates carrying the qnr, aac(6')-Ib-cr, or qepA genes were not derived from a specific clone, but represented a wide variety of different genotypes. The results of Southern hybridization revealed that qepA, qnrS, and parts of aac(6')-Ib-cr genes were localized on plasmids and/or chromosome. qepA and aac(6')-Ib-cr genes were colocalized with aac(6')-Ib-cr and qnrS genes, respectively, on the same plasmids. Our study demonstrated that two different genes (qepA and aac(6')-Ib-cr) were identified on the same plasmid in E. coli strains derived from patients and qnrS and aac(6')-lb-cr genes on the same plasmid in an E. coli strain of animal origin.201019911944
202250.9998Analysis of antimicrobial resistance genes detected in multiple-drug-resistant Escherichia coli isolates from broiler chicken carcasses. Multi-drug-resistant (MDR) bacteria in food animals are a potential problem in both animal and human health. In this study, MDR commensal Escherichia coli isolates from poultry were examined. Thirty-two E. coli isolates from broiler carcass rinses were selected based on their resistance to aminoglycosides, β-lactams, chloramphenicols, tetracyclines, and sulfonamide antimicrobials. Microarray analysis for the presence of antimicrobial resistance and plasmid genes identified aminoglycoside [aac(6), aac(3), aadA, aph, strA, and strB], β-lactam (bla(AmpC), bla(TEM), bla(CMY), and bla(PSE-1)), chloramphenicol (cat, flo, and cmlA), sulfamethoxazole (sulI and sulII), tetracycline [tet(A), tet(C), tet(D), and tetR], and trimethoprim (dfrA) resistance genes. IncA/C plasmid core genes were detected in 27 isolates, while IncHI1 plasmid genes were detected in one isolate, indicating the likely presence of these plasmids. PCR assays for 18 plasmid replicon types often associated with MDR in Enterobacteriaceae also detected one or more replicon types in all 32 isolates. Class I integrons were investigated by PCR amplification of the integrase I gene, intI1, and the cassette region flanked by conserved sequences. Twenty-five isolates were positive for the intI1 gene, and class I integrons ranging in size from ~1,000 to 3,300 bp were identified in 19 of them. The presence of class I integrons, IncA/C plasmid genes, and MDR-associated plasmid replicons in the isolates indicates the importance of these genetic elements in the accumulation and potential spread of antimicrobial resistance genes in the microbial community associated with poultry.201222385320
202560.9998Diverse Gene Cassette Arrays Prevail in Commensal Escherichia coli From Intensive Farming Swine in Four Provinces of China. Multiple-drug resistance bacteria containing antimicrobial resistance genes (ARGs) are a concern for public health. Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes responsible for the spread of ARGs. Few studies link genotype and phenotype of swine-related ARGs in the context of mobile gene cassette arrays among commensal Escherichia coli (E. coli) in nonclinical livestock isolates from intensive farms. In the present study, a total of 264 isolates were obtained from 330 rectal swabs to determine the prevalence and characteristics of antibiotic-resistant gene being carried by commensal E. coli in the healthy swine from four intensive farms at Anhui, Hebei, Shanxi, and Shaanxi, in China. Antimicrobial resistance phenotypes of the recovered isolates were determined for 19 antimicrobials. The E. coli isolates were commonly nonsusceptible to doxycycline (75.8%), tetracycline (73.5%), sulfamethoxazole-trimethoprim (71.6%), amoxicillin (68.2%), sulfasalazine (67.1%), ampicillin (58.0%), florfenicol (56.1%), and streptomycin (53.0%), but all isolates were susceptible to imipenem (100%). Isolates [184 (69.7%)] exhibited multiple drug resistance with 11 patterns. Moreover, 197 isolates (74.6%) were detected carrying the integron-integrase gene (intI1) of class 1 integrons. A higher incidence of antimicrobial resistance was observed in the intI1-positive E. coli isolates than in the intI1-negative E. coli isolates. Furthermore, there were 17 kinds of gene cassette arrays in the 70 integrons as detected by sequencing amplicons of variable regions, with 66 isolates (94.3%) expressing their gene cassettes encoding for multiple drug resistance phenotypes for streptomycin, neomycin, gentamicin, kanamycin, amikacin, sulfamethoxazole-trimethoprim, sulfasalazine, and florfenicol. Notably, due to harboring multiple, hybrid, and recombination cassettes, complex cassette arrays were attributed to multiple drug resistance patterns than simple arrays. In conclusion, we demonstrated that the prevalence of multiple drug resistance and the incidence of class 1 integrons were 69.7 and 74.6% in commensal E. coli isolated from healthy swine, which were lower in frequency than that previously reported in China.202033154738
96770.9998Characterization of Integrons and Quinolone Resistance in Clinical Escherichia coli Isolates in Mansoura City, Egypt. Escherichia coli is a common pathogen in both humans and animals. Quinolones are used to treat infections caused by Gram-negative bacteria, but resistance genes emerged. Only scarce studies investigated the association between plasmid-mediated quinolone resistance (PMQR) genes and integrons in clinical isolates of E. coli. The current study investigated the prevalence of quinolone resistance and integrons among 134 clinical E. coli isolates. Eighty (59.70%) isolates were quinolone-resistant, and 60/134 (44.77%) isolates were integron positive with the predominance of class I integrons (98.33%). There was a significant association between quinolone resistance and the presence of integrons (P < 0.0001). Isolates from Urology and Nephrology Center and Gastroenterology Hospital were significantly quinolone-resistant and integron positive (P ≤ 0.0005). Detection of PMQR genes on plasmids of integron-positive isolates showed that the active efflux pump genes oqxAB and qepA had the highest prevalence (72.22%), followed by the aminoglycoside acetyltransferase gene (aac(6')-Ib-cr, 66.67%) and the quinolone resistance genes (qnr, 61.11%). Amplification and sequencing of integrons' variable regions illustrated that no quinolone resistance genes were detected, and the most predominant gene cassettes were for trimethoprim and aminoglycoside resistance including dfrA17, dfrB4, and dfrA17-aadA5. In conclusion, this study reported the high prevalence of PMQR genes and integrons among clinical E. coli isolates. Although PMQR genes are not cassette-born, they were associated with integrons' presence, which contributes to the widespread of quinolone resistance in Egypt.202134527054
96880.9997Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa.201020145377
298190.9997Investigation of plasmid-mediated resistance in E. coli isolated from healthy and diarrheic sheep and goats. Escherichia coli is zoonotic bacteria and the emergence of antimicrobial-resistant strains becomes a critical issue in both human and animal health globally. This study was therefore aimed to investigate the plasmid-mediated resistance in E. coli strains isolated from healthy and diarrheic sheep and goats. A total of 234 fecal samples were obtained from 157 sheep (99 healthy and 58 diarrheic) and 77 goats (32 healthy and 45 diarrheic) for the isolation and identification of E. coli. Plasmid DNA was extracted using the alkaline lysis method. Phenotypic antibiotic susceptibility profiles were determined against the three classes of antimicrobials, which resistance is mediated by plasmids (Cephalosporins, Fluoroquinolone, and Aminoglycosides) using the disc-diffusion method. The frequency of plasmid-mediated resistance genes was investigated by PCR. A total of 159 E. coli strains harbored plasmids. The isolates antibiogram showed different patterns of resistance in both healthy and diarrheic animals. A total of (82; 51.5%) E. coli strains were multidrug-resistant. rmtB gene was detected in all Aminoglycoside-resistant E. coli, and the ESBL-producing E. coli possessed different CTX-M genes. Similarly, fluoroquinolone-resistant E. coli possessed different qnr genes. On the analysis of the gyrB gene sequence of fluoroquinolone-resistant E. coli, multiple point mutations were revealed. In conclusion, a high prevalence of E. coli with high resistance patterns to antimicrobials was revealed in the current study, in addition to a wide distribution of their resistance determinants. These findings highlight the importance of sheep and goats as reservoirs for the dissemination of MDR E. coli and resistance gene horizontal transfer.202032127753
965100.9997Molecular Characterization of Multidrug-Resistant Escherichia coli Isolates from Bovine Clinical Mastitis and Pigs in the Vojvodina Province, Serbia. The aim of the study was to characterize multidrug-resistant (MDR) Escherichia coli isolates collected in Serbia from bovine clinical mastitis cases and diseased pigs, mainly with molecular methods. A total of 48 E. coli isolates was collected during the years 2013-2014, of which 22 were MDR and were included in further analysis. Phylogenetic typing showed that 17 isolates belonged to group A, while two isolates were classified in group B1 and a single one in group D. All isolates showed unique macrorestriction patterns. Phenotypic susceptibility testing revealed resistances of the isolates against up to 13 antimicrobial agents, including resistance to fluoroquinolones. A wide variety of resistance genes was detected by PCR amplification and sequencing of amplicons. Sequence analysis of the quinolone resistance determining regions of topoisomerase genes revealed mutations in gyrA, parC, and/or parE. Plasmid-mediated quinolone resistance genes were detected in two porcine (aac-6'-Ib-cr and qnrS, respectively) isolates and a single bovine (aac-6'-Ib-cr) isolate. Resistance genes were found to be located on conjugative plasmids in 16 cases, many of which conferred a multidrug resistance phenotype. In conclusion, the plentitude of resistance genes located on conjugative plasmids and integrons in E. coli from cows and pigs in Vojvodina, Serbia, pose a high risk for horizontal gene transfer in bacteria from livestock husbandry.201828520501
2046110.9997QRDR mutations, efflux system & antimicrobial resistance genes in enterotoxigenic Escherichia coli isolated from an outbreak of diarrhoea in Ahmedabad, India. BACKGROUND & OBJECTIVES: Diverse mechanisms have been identified in enteric bacteria for their adaptation and survival against multiple classes of antimicrobial agents. Resistance of bacteria to the most effective fluoroquinolones have increasingly been reported in many countries. We have identified that most of the enterotoxigenic Escherichia coli (ETEC) were resistant to several antimicrobials in a diarrhoea outbreak at Ahmedabad during 2000. The present study was done to identify several genes responsible for antimicrobial resistance and mobile genetic elements in the ETEC strains. METHODS: Seventeen ETEC strains isolated from diarrhoeal patients were included in this study. The antimicrobial resistance was confirmed by conventional disc diffusion method. PCR and DNA sequencing were performed for the identification of mutation in the quinolone resistance-determining regions (QRDRs). Efflux pump was tested by inhibiting the proton-motive force. DNA hybridization assay was made for the detection of integrase genes and the resistance gene cassettes were identified by direct sequencing of the PCR amplicons. RESULTS: Majority of the ETEC had GyrA mutations at codons 83 and 87 and in ParC at codon 80. Six strains had an additional mutation in ParC at codon 108 and two had at position 84. Plasmid-borne qnr gene alleles that encode quinolone resistance were not detected but the newly described aac(6')-Ib-cr gene encoding a fluoroquinolne-modifying enzyme was detected in 64.7 per cent of the ETEC. Class 1 (intI1) and class 2 (intI2) integrons were detected in six (35.3%) and three (17.6%) strains, respectively. Four strains (23.5%) had both the classes of integrons. Sequence analysis revealed presence of dfrA17, aadA1, aadA5 in class 1, and dfrA1, sat1, aadA1 in class 2 integrons. In addition, the other resistance genes such as tet gene alleles (94.1%), catAI (70.6%), strA (58.8%), bla TEM-1 (35.2%), and aphA1-Ia (29.4%) were detected in most of the strains. INTERPRETATION & CONCLUSIONS: Innate gene mutations and acquisition of multidrug resistance genes through mobile genetic elements might have contributed to the emergence of multidrug resistance (MDR) in ETEC. This study reinforces the necessity of utilizing molecular techniques in the epidemiological studies to understand the nature of resistance responsible for antimicrobial resistance in different species of pathogenic bacteria.201121911975
969120.9997Dissemination of the rmtB gene carried on IncF and IncN plasmids among Enterobacteriaceae in a pig farm and its environment. OBJECTIVES: To investigate the prevalence and characterization of 16S rRNA methylase-producing bacteria in a pig farm and its environment in East China. METHODS: Enterobacteriaceae isolates and metagenomic DNA from 102 pig faecal samples from a pig farm and 97 soil samples taken in or around the farm were screened for the presence of 16S rRNA methylase genes. The clonal relationships of 16S rRNA methylase-positive isolates, plasmid content and other associated resistance genes were also characterized. RESULTS: Fifty-six rmtB-positive Enterobacteriaceae isolates, including 54 Escherichia coli, 1 Morganella morganii and 1 Proteus mirabilis, were recovered from 55 pig faecal samples. Nineteen rmtB-positive bacteria, including 13 E. coli, 2 M. morganii, 2 Leclercia adecarboxylata, 1 Enterobacter aerogenes and 1 Enterobacter cloacae, were recovered from 16 soil samples. Among the 75 rmtB-positive isolates, 31 and 25 also carried the qepA and bla(CTX-M) genes, respectively. The qepA gene co-localized with rmtB on the F2:A-:B1 plasmids and the bla(CTX-M-65) gene co-localized with rmtB on the F33:A-:B- plasmids. The rmtB gene was also found to be associated with the IncN plasmids. Clonal transmission of rmtB-positive E. coli isolates was observed between different pig groups and soil samples. CONCLUSIONS: Both horizontal gene transfer and clonal spread could be responsible for the dissemination of the rmtB gene in the pig farm and its environment. To our knowledge, this study is the first report of rmtB-positive bacteria from farmland soils and indicates that these antibiotic-resistant bacteria and/or resistance genes could be acquired by humans through the food chain.201121852287
2069130.9997Two novel CMY-2-type β-lactamases encountered in clinical Escherichia coli isolates. BACKGROUND: Chromosomally encoded AmpC β-lactamases may be acquired by transmissible plasmids which consequently can disseminate into bacteria lacking or poorly expressing a chromosomal bla AmpC gene. Nowadays, these plasmid-mediated AmpC β-lactamases are found in different bacterial species, namely Enterobacteriaceae, which typically do not express these types of β-lactamase such as Klebsiella spp. or Escherichia coli. This study was performed to characterize two E. coli isolates collected in two different Portuguese hospitals, both carrying a novel CMY-2-type β-lactamase-encoding gene. FINDINGS: Both isolates, INSRA1169 and INSRA3413, and their respective transformants, were non-susceptible to amoxicillin, amoxicillin plus clavulanic acid, cephalothin, cefoxitin, ceftazidime and cefotaxime, but susceptible to cefepime and imipenem, and presented evidence of synergy between cloxacilin and cefoxitin and/or ceftazidime. The genetic characterization of both isolates revealed the presence of bla CMY-46 and bla CMY-50 genes, respectively, and the following three resistance-encoding regions: a Citrobacter freundii chromosome-type structure encompassing a blc-sugE-bla CMY-2-type -ampR platform; a sul1-type class 1 integron with two antibiotic resistance gene cassettes (dfrA1 and aadA1); and a truncated mercury resistance operon. CONCLUSIONS: This study describes two new bla CMY-2-type genes in E. coli isolates, located within a C. freundii-derived fragment, which may suggest their mobilization through mobile genetic elements. The presence of the three different resistance regions in these isolates, with diverse genetic determinants of resistance and mobile elements, may further contribute to the emergence and spread of these genes, both at a chromosomal or/and plasmid level.201525885413
1732140.9997High Carriage Rate of the Multiple Resistant Plasmids Harboring Quinolone Resistance Genes in Enterobacter spp. Isolated from Healthy Individuals. Antimicrobial-resistant bacteria causing intractable and even fatal infections are a major health concern. Resistant bacteria residing in the intestinal tract of healthy individuals present a silent threat because of frequent transmission via conjugation and transposition. Plasmids harboring quinolone resistance genes are increasingly detected in clinical isolates worldwide. Here, we investigated the molecular epidemiology of plasmid-mediated quinolone resistance (PMQR) in Gram-negative bacteria from healthy service trade workers. From 157 rectal swab samples, 125 ciprofloxacin-resistant strains, including 112 Escherichia coli, 10 Klebsiella pneumoniae, two Proteus mirabilis, and one Citrobacter braakii, were isolated. Multiplex PCR screening identified 39 strains harboring the PMQR genes (including 17 qnr,19 aac(6')-Ib-cr, and 22 oqxA/oqxB). The genome and plasmid sequences of 39 and 31 strains, respectively, were obtained by short- and long-read sequencing. PMQR genes mainly resided in the IncFIB, IncFII, and IncR plasmids, and coexisted with 3-11 other resistance genes. The high PMQR gene carriage rate among Gram-negative bacteria isolated from healthy individuals suggests the high-frequency transmission of these genes via plasmids, along with other resistance genes. Thus, healthy individuals may spread antibiotic-resistant bacterial, highlighting the need for improved monitoring and control of the spread of antibiotic-resistant bacteria and genes in healthy individuals.202135052892
1899150.9997Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.201222808141
1734160.9997Identification and characterization of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae isolated from healthy poultry in Brazil. The expression of plasmid-mediated quinolone resistance (PMQR) genes confers low-level quinolone and fluoroquinolones resistance alone. However, the association to chromosomal resistance mechanisms determines an expressively higher resistance in Enterobacteriaceae. These mechanisms are horizontally disseminated within plasmids and have contributed to the emergence of bacteria with reduced susceptibility or resistant to therapies worldwide. The epidemiological characterization of PMQR dissemination is highly relevant in the scientific and medical context, to investigate the dissemination within enterobacteria, from different populations, including humans and food-producing animals. In the present study, 200 Enterobacteriaceae isolates were harvested from poultry with cloacal swabs and identified as Escherichia coli (90.5%), Escherichia fergusonii (5.5%), Klebsiella oxytoca (2.5%) and Klebsiella pneumoniae (1.5%). Among isolates evaluated, 46 (23%) harboured PMQR genes including qnrB (43/200), qnrS (2/200) and aac(6')-Ib-cr (1/200). All isolates carrying PMQR genes showed multidrug-resistance phenotype. The 36 E. coli isolates showed 18 different PFGE types. All E. fergusonii isolates showed the same PFGE type. The two Klebsiella oxytoca belonged to two different PFGE types. The phylogenetic groups A, B1, and D were found among the E. coli harboring PMQR genes. Based on the phylogenetic analysis and PFGE, the population structure of E. coli isolates was diverse, even within the same farm. All isolates carrying qnrB and qnrS genes also harboured ColE-like plasmids. The Southern blot hybridization using the S1-PFGE revealed that the qnrB genes were located on low molecular weight plasmids, smaller than 10Kb. Resistance plasmids were sequenced and showed 100% identity with plasmid pPAB19-3. The association of PMQR genes with mobile genetic elements, such as transferable plasmids, favours the selection and dissemination of (fluoro) quinolones resistant bacteria among food-producing animals, and may play an important role in the current increased prevalence of resistant bacteria in different environments reported worldwide.201829427764
1188170.9997High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China. Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.201627427763
2055180.9997Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. The purpose of this study was to investigate the prevalence and characteristics of plasmid-mediated quinolone resistance (PMQR) genes qnr, aac(6')-Ib-cr, and qepA in a total of 185 non-duplicate Salmonella spp. isolated from hatcheries, poultry farms, and poultry slaughterhouses during the period 2001 to 2010 in Korea. Additionally, mutation analysis of quinolone resistance determining regions (QRDRs), conjugation experiments, and plasmid analysis were performed in the PMQR-positive isolates. Among the 185 isolates, six (3.2%) contained qnr genes (two qnrB4 and four qnrS1) but none carried the aac(6')-Ib-cr or qepA genes. Among the six PMQR-positive isolates, one showed a single mutation (Ser83-Phe substitution) in the QRDRs of gyrA. Among them, three were non-susceptible (intermediate or resistant) to nalidixic acid (minimum inhibitory concentration [MIC] ≥256 µg/ml), ciprofloxacin (MIC 2 µg/ml), and levofloxacin (MIC 4 µg/ml), but others were susceptible to all of the three fluoroquinolones. They were resistant to six or more antimicrobial agents tested and were able to transfer quinolone resistance to recipient Escherichia coli J53 by conjugation. By performing a hybridization test, plasmids harbouring qnrB4 and qnrS1 genes were less than 8 kb and about 70 kb in size, respectively. The horizontal dissemination of qnrS1 gene was mediated by IncN plasmid. Compared with the recipient strain, MICs of the transconjugants increased two-fold to four-fold for nalidixic acid, and eight-fold to 16-fold for ciprofloxacin and levofloxacin. This report is the first to describe the detection of qnr genes in Salmonella spp. isolated from poultry in Korea. Widespread horizontal transfer of these genes among bacteria may be a serious public health concern because these can rapidly increase fluoroquinolone resistance. To ensure the public health, it is essential to continuously survey and carefully monitor the spread of PMQR genes in Salmonella from poultry.201323607509
2028190.9997Short communication: Whole-genome sequence analysis of 4 fecal bla(CMY-2)-producing Escherichia coli isolates from Holstein dairy calves. This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 4 fecal bla(CMY-2)-producing Escherichia coli isolated from Holstein dairy calves on the same farm using whole-genome sequencing. Genomic analysis revealed that 3 of the 4 isolates shared similar genetic features, including sequence type (ST), serotype, plasmid characteristics, insertion ST, and virulence genes. In addition to genes encoding for complex multidrug resistance efflux systems, all 4 isolates were carriers of genes conferring resistance to β-lactams (bla(CMY-2), bla(TEM-1B)), tetracyclines (tetA, tetB, tetD), aminoglycosides [aadA1, aph(3")-lb, aph(6)-ld], sulfonamides (sul2), and trimethoprim (dfrA1). We also detected 4 incompatibility plasmid groups: Inc.F, Inc.N, Inc.I, and Inc.Q. A novel ST showing a new purA and mdh allelic combination was found. The 4 isolates were likely enterotoxigenic pathotypes of E. coli, based on serotype and presence of the plasmid Inc.FII(pCoo). This study provides information for comparative genomic analysis of AMR genes and mobile genetic elements. This analysis could give some explanation to the multidrug resistance characteristics of bacteria colonizing the intestinal tract of dairy calves in the first few weeks of life.202031733866