Species-Scale Genomic Analysis of Staphylococcus aureus Genes Influencing Phage Host Range and Their Relationships to Virulence and Antibiotic Resistance Genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
966201.0000Species-Scale Genomic Analysis of Staphylococcus aureus Genes Influencing Phage Host Range and Their Relationships to Virulence and Antibiotic Resistance Genes. Phage therapy has been proposed as a possible alternative treatment for infections caused by the ubiquitous bacterial pathogen Staphylococcus aureus. However, successful therapy requires understanding the genetic basis of host range-the subset of strains in a species that could be killed by a particular phage. We searched diverse sets of S. aureus public genome sequences against a database of genes suggested from prior studies to influence host range to look for patterns of variation across the species. We found that genes encoding biosynthesis of molecules that were targets of S. aureus phage adsorption to the outer surface of the cell were the most conserved in the pangenome. Putative phage resistance genes that were core components of the pangenome genes had similar nucleotide diversity, ratio of nonsynonymous to synonymous substitutions, and functionality (measured by delta-bitscore) to other core genes. However, phage resistance genes that were not part of the core genome were significantly less consistent with the core genome phylogeny than all noncore genes in this set, suggesting more frequent movement between strains by horizontal gene transfer. Only superinfection immunity genes encoded by temperate phages inserted in the genome correlated with experimentally determined temperate phage resistance. Taken together, these results suggested that, while phage adsorption genes are heavily conserved in the S. aureus species, HGT may play a significant role in strain-specific evolution of host range patterns. IMPORTANCE Staphylococcus aureus is a widespread, hospital- and community-acquired pathogen that is commonly antibiotic resistant. It causes diverse diseases affecting both the skin and internal organs. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent, such as phage therapy, in which viruses specific to infecting bacteria clear infection. S. aureus phage host range not only determines whether phage therapy will be successful by killing bacteria but also horizontal gene transfer through transduction of host genetic material by phages. In this work, we comprehensively reviewed existing literature to build a list of S. aureus phage resistance genes and searched our database of almost 43,000 S. aureus genomes for these genes to understand their patterns of evolution, finding that prophages' superinfection immunity correlates best with phage resistance and HGT. These findings improved our understanding of the relationship between known phage resistance genes and phage host range in the species.202235040700
966310.9999The structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria. With their ability to integrate into the bacterial chromosome and thereby transfer virulence or drug-resistance genes across bacterial species, temperate phage play a key role in bacterial evolution. Thus, it is paramount to understand who infects whom to be able to predict the movement of DNA across the prokaryotic world and ultimately the emergence of novel (drug-resistant) pathogens. We empirically investigated lytic infection patterns among Vibrio spp. from distinct phylogenetic clades and their derived temperate phage. We found that across distantly related clades, infections occur preferentially within modules of the same clade. However, when the genetic distance of the host bacteria decreases, these clade-specific infections disappear. This indicates that the structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria.201830429242
382920.9999Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical Escherichia coli Isolates. The spread of antibiotic resistance is driving interest in new approaches to control bacterial pathogens. This includes applying multiple antibiotics strategically, using bacteriophages against antibiotic-resistant bacteria, and combining both types of antibacterial agents. All these approaches rely on or are impacted by associations among resistance phenotypes (where bacteria resistant to one antibacterial agent are also relatively susceptible or resistant to others). Experiments with laboratory strains have shown strong associations between some resistance phenotypes, but we lack a quantitative understanding of associations among antibiotic and phage resistance phenotypes in natural and clinical populations. To address this, we measured resistance to various antibiotics and bacteriophages for 94 natural and clinical Escherichia coli isolates. We found several positive associations between resistance phenotypes across isolates. Associations were on average stronger for antibacterial agents of the same type (antibiotic-antibiotic or phage-phage) than different types (antibiotic-phage). Plasmid profiles and genetic knockouts suggested that such associations can result from both colocalization of resistance genes and pleiotropic effects of individual resistance mechanisms, including one case of antibiotic-phage cross-resistance. Antibiotic resistance was predicted by core genome phylogeny and plasmid profile, but phage resistance was predicted only by core genome phylogeny. Finally, we used observed associations to predict genes involved in a previously uncharacterized phage resistance mechanism, which we verified using experimental evolution. Our data suggest that susceptibility to phages and antibiotics are evolving largely independently, and unlike in experiments with lab strains, negative associations between antibiotic resistance phenotypes in nature are rare. This is relevant for treatment scenarios where bacteria encounter multiple antibacterial agents.IMPORTANCE Rising antibiotic resistance is making it harder to treat bacterial infections. Whether resistance to a given antibiotic spreads or declines is influenced by whether it is associated with altered susceptibility to other antibiotics or other stressors that bacteria encounter in nature, such as bacteriophages (viruses that infect bacteria). We used natural and clinical isolates of Escherichia coli, an abundant species and key pathogen, to characterize associations among resistance phenotypes to various antibiotics and bacteriophages. We found associations between some resistance phenotypes, and in contrast to past work with laboratory strains, they were exclusively positive. Analysis of bacterial genome sequences and horizontally transferred genetic elements (plasmids) helped to explain this, as well as our finding that there was no overall association between antibiotic resistance and bacteriophage resistance profiles across isolates. This improves our understanding of resistance evolution in nature, potentially informing new rational therapies that combine different antibacterials, including bacteriophages.201729089428
426130.9999Recovery and Characterization of Bacteria Resisting Infection by Lytic Bacteriophage. Bacteria and bacteriophages coexist and coevolve, bacteriophages being obligatory predators exerting an evolutionary pressure on their prey. Mechanisms in action vary depending on the bacterial genomic content and on the regulation of the bacteriophage cycle. To assess the multiplicity of bacterial genes involved in resistance as well as the changes in the bacteriophage interactions with the bacteria, it is necessary to isolate and investigate large numbers of independent resistant variants. Here we describe protocols that have been applied to the study of Pseudomonas aeruginosa and four of its virulent bacteriophages belonging to the Podoviridae and Myoviridae bacteriophage families. Mutations are identified using whole genome sequencing of resistant variants. Phenotypic analyses are performed to describe the changes conferred by the mutations.201829119434
426240.9999Fitness cost of antibiotic susceptibility during bacterial infection. Advances in high-throughput DNA sequencing allow for a comprehensive analysis of bacterial genes that contribute to virulence in a specific infectious setting. Such information can yield new insights that affect decisions on how to best manage major public health issues such as the threat posed by increasing antimicrobial drug resistance. Much of the focus has been on the consequences of the selective advantage conferred on drug-resistant strains during antibiotic therapy. It is thought that the genetic and phenotypic changes that confer resistance also result in concomitant reductions in in vivo fitness, virulence, and transmission. However, experimental validation of this accepted paradigm is modest. Using a saturated transposon library of Pseudomonas aeruginosa, we identified genes across many functional categories and operons that contributed to maximal in vivo fitness during lung infections in animal models. Genes that bestowed both intrinsic and acquired antibiotic resistance provided a positive in vivo fitness advantage to P. aeruginosa during infection. We confirmed these findings in the pathogenic bacteria Acinetobacter baumannii and Vibrio cholerae using murine and rabbit infection models, respectively. Our results show that efforts to confront the worldwide increase in antibiotic resistance might be exacerbated by fitness advantages that enhance virulence in drug-resistant microbes.201526203082
892050.9999A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm. Antibiotic resistance is an increasing problem in the health care system and we are in a constant race with evolving bacteria. Biofilm-associated growth is thought to play a key role in bacterial adaptability and antibiotic resistance. We employed a systems biology approach to identify candidate drug targets for biofilm-associated bacteria by imitating specific microenvironments found in microbial communities associated with biofilm formation. A previously reconstructed metabolic model of Pseudomonas aeruginosa (PA) was used to study the effect of gene deletion on bacterial growth in planktonic and biofilm-like environmental conditions. A set of 26 genes essential in both conditions was identified. Moreover, these genes have no homology with any human gene. While none of these genes were essential in only one of the conditions, we found condition-dependent genes, which could be used to slow growth specifically in biofilm-associated PA. Furthermore, we performed a double gene deletion study and obtained 17 combinations consisting of 21 different genes, which were conditionally essential. While most of the difference in double essential gene sets could be explained by different medium composition found in biofilm-like and planktonic conditions, we observed a clear effect of changes in oxygen availability on the growth performance. Eight gene pairs were found to be synthetic lethal in oxygen-limited conditions. These gene sets may serve as novel metabolic drug targets to combat particularly biofilm-associated PA. Taken together, this study demonstrates that metabolic modeling of human pathogens can be used to identify oxygen-sensitive drug targets and thus, that this systems biology approach represents a powerful tool to identify novel candidate antibiotic targets.201222523548
437460.9999Core genes can have higher recombination rates than accessory genes within global microbial populations. Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome.202235801696
426770.9999Relationship between Virulence and Resistance among Gram-Negative Bacteria. Bacteria present in the human body are innocuous, providing beneficial functions, some of which are necessary for correct body function. However, other bacteria are able to colonize, invade, and cause damage to different tissues, and these are categorised as pathogens. These pathogenic bacteria possess several factors that enable them to be more virulent and cause infection. Bacteria have a great capacity to adapt to different niches and environmental conditions (presence of antibiotics, iron depletion, etc.). Antibiotic pressure has favoured the emergence and spread of antibiotic-resistant bacteria worldwide. Several studies have reported the presence of a relationship (both positive and negative, and both direct and indirect) between antimicrobial resistance and virulence among bacterial pathogens. This review studies the relationship among the most important Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) taking into account two points of view: (i) the effect the acquisition of resistance has on virulence, and (ii) co-selection of resistance and virulence. The relationship between resistance and virulence among bacteria depends on the bacterial species, the specific mechanisms of resistance and virulence, the ecological niche, and the host.202033092201
892180.9998Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. Biofilm bacteria are widely held to exhibit a unique phenotype, typified by their increased resistance to antimicrobial agents. Numerous studies have been devoted to the identification of biofilm-specific genes, but surprisingly few have been reported to date. We compared the whole cell proteomes of 24 h old Bacillus cereus biofilms and the associated suspended population to exponential, transient and stationary phase planktonic cultures using the unbiased approach of principal component analysis, comparing the quantity variations of the 823 detected spots. The analyses support the hypothesis that biofilms of Gram positive bacteria have a unique pattern of gene expression. The data provides proteomic evidence for a new biofilm and surface influenced planktonic population which is distinct to both planktonic and biofilm cells.200616889414
426390.9998The emergence of antibiotic resistance by mutation. The emergence of mutations in nucleic acids is one of the major factors underlying evolution, providing the working material for natural selection. Most bacteria are haploid for the vast majority of their genes and, coupled with typically short generation times, this allows mutations to emerge and accumulate rapidly, and to effect significant phenotypic changes in what is perceived to be real-time. Not least among these phenotypic changes are those associated with antibiotic resistance. Mechanisms of horizontal gene spread among bacterial strains or species are often considered to be the main mediators of antibiotic resistance. However, mutational resistance has been invaluable in studies of bacterial genetics, and also has primary clinical importance in certain bacterial species, such as Mycobacterium tuberculosis and Helicobacter pylori, or when considering resistance to particular antibiotics, especially to synthetic agents such as fluoroquinolones and oxazolidinones. In addition, mutation is essential for the continued evolution of acquired resistance genes and has, e.g., given rise to over 100 variants of the TEM family of beta-lactamases. Hypermutator strains of bacteria, which have mutations in genes affecting DNA repair and replication fidelity, have elevated mutation rates. Mutational resistance emerges de novo more readily in these hypermutable strains, and they also provide a suitable host background for the evolution of acquired resistance genes in vitro. In the clinical setting, hypermutator strains of Pseudomonas aeruginosa have been isolated from the lungs of cystic fibrosis patients, but a more general role for hypermutators in the emergence of clinically relevant antibiotic resistance in a wider variety of bacterial pathogens has not yet been proven.200717184282
9405100.9998Functional Metagenomic Screening for Antimicrobial Resistance in the Oral Microbiome. A large proportion of bacteria, from a multitude of environments, are not yet able to be grown in the laboratory, and therefore microbiological and molecular biological investigations of these bacteria are challenging. A way to circumvent this challenge is to analyze the metagenome, the entire collection of DNA molecules that can be isolated from a particular environment or sample. This collection of DNA molecules can be sequenced and assembled to determine what is present and infer functional potential, or used as a PCR template to detect known target DNA and potentially unknown regions of DNA nearby those targets; however assigning functions to new or conserved hypothetical, functionally cryptic, genes is difficult. Functional metagenomics allows researchers to determine which genes are responsible for selectable phenotypes, such as resistance to antimicrobials and metabolic capabilities, without the prerequisite needs to grow the bacteria containing those genes or to already know which genes are of interest. It is estimated that a third of the resident species of the human oral cavity is not yet cultivable and, together with the ease of sample acquisition, makes this metagenome particularly suited to functional metagenomic studies. Here we describe the methodology related to the collection of saliva samples, extraction of metagenomic DNA, construction of metagenomic libraries, as well as the description of functional assays that have previously led to the identification of new genes conferring antimicrobial resistance.202134410638
8999110.9998Growth-Dependent Predation and Generalized Transduction of Antimicrobial Resistance by Bacteriophage. Bacteriophage (phage) are both predators and evolutionary drivers for bacteria, notably contributing to the spread of antimicrobial resistance (AMR) genes by generalized transduction. Our current understanding of this complex relationship is limited. We used an interdisciplinary approach to quantify how these interacting dynamics can lead to the evolution of multidrug-resistant bacteria. We cocultured two strains of methicillin-resistant Staphylococcus aureus, each harboring a different antibiotic resistance gene, with generalized transducing phage. After a growth phase of 8 h, bacteria and phage surprisingly coexisted at a stable equilibrium in our culture, the level of which was dependent on the starting concentration of phage. We detected double-resistant bacteria as early as 7 h, indicating that transduction of AMR genes had occurred. We developed multiple mathematical models of the bacteria and phage relationship and found that phage-bacteria dynamics were best captured by a model in which phage burst size decreases as the bacteria population reaches stationary phase and where phage predation is frequency-dependent. We estimated that one in every 10(8) new phage generated was a transducing phage carrying an AMR gene and that double-resistant bacteria were always predominantly generated by transduction rather than by growth. Our results suggest a shift in how we understand and model phage-bacteria dynamics. Although rates of generalized transduction could be interpreted as too rare to be significant, they are sufficient in our system to consistently lead to the evolution of multidrug-resistant bacteria. Currently, the potential of phage to contribute to the growing burden of AMR is likely underestimated. IMPORTANCE Bacteriophage (phage), viruses that can infect and kill bacteria, are being investigated through phage therapy as a potential solution to the threat of antimicrobial resistance (AMR). In reality, however, phage are also natural drivers of bacterial evolution by transduction when they accidentally carry nonphage DNA between bacteria. Using laboratory work and mathematical models, we show that transduction leads to evolution of multidrug-resistant bacteria in less than 8 h and that phage production decreases when bacterial growth decreases, allowing bacteria and phage to coexist at stable equilibria. The joint dynamics of phage predation and transduction lead to complex interactions with bacteria, which must be clarified to prevent phage from contributing to the spread of AMR.202235311576
4264120.9998Mutational Evolution of Pseudomonas aeruginosa Resistance to Ribosome-Targeting Antibiotics. The present work examines the evolutionary trajectories of replicate Pseudomonas aeruginosa cultures in presence of the ribosome-targeting antibiotics tobramycin and tigecycline. It is known that large number of mutations across different genes - and therefore a large number of potential pathways - may be involved in resistance to any single antibiotic. Thus, evolution toward resistance might, to a large degree, rely on stochasticity, which might preclude the use of predictive strategies for fighting antibiotic resistance. However, the present results show that P. aeruginosa populations evolving in parallel in the presence of antibiotics (either tobramycin or tigecycline) follow a set of trajectories that present common elements. In addition, the pattern of resistance mutations involved include common elements for these two ribosome-targeting antimicrobials. This indicates that mutational evolution toward resistance (and perhaps other properties) is to a certain degree deterministic and, consequently, predictable. These findings are of interest, not just for P. aeruginosa, but in understanding the general rules involved in the evolution of antibiotic resistance also. In addition, the results indicate that bacteria can evolve toward higher levels of resistance to antibiotics against which they are considered to be intrinsically resistant, as tigecycline in the case of P. aeruginosa and that this may confer cross-resistance to other antibiotics of therapeutic value. Our results are particularly relevant in the case of patients under empiric treatment with tigecycline, which frequently suffer P. aeruginosa superinfections.201830405685
3796130.9998The presence of plasmids in bacterial hosts alters phage isolation and infectivity. Antibiotic resistance genes are often carried by plasmids, which spread intra- and inter genera bacterial populations, and also play a critical role in bacteria conferring phage resistance. However, it remains unknown about the influence of plasmids present in bacterial hosts on phage isolation and subsequent infectivity. In this study, using both Escherichia coli and Pseudomonas putida bacteria containing different plasmids, eight phages were isolated and characterized in terms of phage morphology and host range analysis, in conjunction with DNA and protein sequencing. We found that plasmids can influence both the phage isolation process and phage infectivity. In particular, the isolated phages exhibited different phage plaquing infectivity towards the same bacterial species containing different plasmids. Furthermore, the presence of plasmids was found to alter the expression of bacteria membrane protein, which correlates with bacterial cell surface receptors recognized by phages, thus affecting phage isolation and infectivity. Given the diverse and ubiquitous nature of plasmids, our findings highlight the need to consider plasmids as factors that can influence both phage isolation and infectivity.202237938681
3830140.9998Resistance Gene Carriage Predicts Growth of Natural and Clinical Escherichia coli Isolates in the Absence of Antibiotics. Bacterial pathogens that carry antibiotic resistance alleles sometimes pay a cost in the form of impaired growth in antibiotic-free conditions. This cost of resistance is expected to be a key parameter for understanding how resistance spreads and persists in pathogen populations. Analysis of individual resistance alleles from laboratory evolution and natural isolates has shown they are typically costly, but these costs are highly variable and influenced by genetic variation at other loci. It therefore remains unclear how strongly resistance is linked to impaired antibiotic-free growth in bacteria from natural and clinical scenarios, where resistance alleles are likely to coincide with other types of genetic variation. To investigate this, we measured the growth of 92 natural and clinical Escherichia coli isolates across three antibiotic-free environments. We then tested whether variation of antibiotic-free growth among isolates was predicted by their resistance to 10 antibiotics, while accounting for the phylogenetic structure of the data. We found that isolates with similar resistance profiles had similar antibiotic-free growth profiles, but it was not simply that higher average resistance was associated with impaired growth. Next, we used whole-genome sequences to identify antibiotic resistance genes and found that isolates carrying a greater number of resistance gene types grew relatively poorly in antibiotic-free conditions, even when the resistance genes they carried were different. This suggests that the resistance of bacterial pathogens is linked to growth costs in nature, but it is the total genetic burden and multivariate resistance phenotype that predict these costs, rather than individual alleles or mean resistance across antibiotics.IMPORTANCE Managing the spread of antibiotic resistance in bacterial pathogens is a major challenge for global public health. Central to this challenge is understanding whether resistance is linked to impaired bacterial growth in the absence of antibiotics, because this determines whether resistance declines when bacteria are no longer exposed to antibiotics. We studied 92 isolates of the key bacterial pathogen Escherichia coli; these isolates varied in both their antibiotic resistance genes and other parts of the genome. Taking this approach, rather than focusing on individual genetic changes associated with resistance as in much previous work, revealed that growth without antibiotics was linked to the number of specialized resistance genes carried and the combination of antibiotics to which isolates were resistant but was not linked to average antibiotic resistance. This approach provides new insights into the genetic factors driving the long-term persistence of antibiotic-resistant bacteria, which is important for future efforts to predict and manage resistance.201930530714
9406150.9998Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments.201525784907
4386160.9998Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.201122194979
9470170.9998Practical Method for Isolation of Phage Deletion Mutants. The growing concern about multi-drug resistant pathogenic bacteria has led to a renewed interest in the study of bacteriophages as antimicrobials and as therapeutic agents against infectious diseases (phage therapy). Phages to be used for this purpose have to be subjected to in-depth genomic characterization. It is essential to ascribe specific functions to phage genes, which will give information to unravel phage biology and to ensure the lack of undesirable genes, such as virulence and antibiotic resistance genes. Here, we describe a simple protocol for the selection of phage mutants carrying random deletions along the phage genome. Theoretically, any DNA region might be removed with the only requirement that the phage particle viability remains unaffected. This technique is based on the instability of phage particles in the presence of chelating compounds. A fraction of the phage population naturally lacking DNA segments will survive the treatment. Within the context of phages as antimicrobials, this protocol is useful to select lytic variants from temperate phages. In terms of phage efficiency, virulent phages are preferred over temperate ones to remove undesirable bacteria. This protocol has been used to obtain gene mutations that are involved in the lysogenic cycle of phages infecting Gram-positive bacteria (Staphylococcus and Lactobacillus).201831164553
4385180.9998Genes Contributing to the Unique Biology and Intrinsic Antibiotic Resistance of Enterococcus faecalis. The enterococci, which are among the leading causes of multidrug-resistant (MDR) hospital infection, are notable for their environmental ruggedness, which extends to intrinsic antibiotic resistance. To identify genes that confer this unique property, we used Tn-seq to comprehensively explore the genome of MDR Enterococcus faecalis strain MMH594 for genes important for growth in nutrient-containing medium and with low-level antibiotic challenge. As expected, a large core of genes for DNA replication, expression, and central metabolism, shared with other bacteria, are intolerant to transposon disruption. However, genes were identified that are important to E. faecalis that are either absent from or unimportant for Staphylococcus aureus and Streptococcus pneumoniae fitness when similarly tested. Further, 217 genes were identified that when challenged by sub-MIC antibiotic levels exhibited reduced tolerance to transposon disruption, including those previously shown to contribute to intrinsic resistance, and others not previously ascribed this role. E. faecalis is one of the few Gram-positive bacteria experimentally shown to possess a functional Entner-Doudoroff pathway for carbon metabolism, a pathway that contributes to stress tolerance in other microbes. Through functional genomics and network analysis we defined the unusual structure of this pathway in E. faecalis and assessed its importance. These approaches also identified toxin-antitoxin and related systems that are unique and active in E. faecalis Finally, we identified genes that are absent in the closest nonenterococcal relatives, the vagococci, and that contribute importantly to fitness with and without antibiotic selection, advancing an understanding of the unique biology of enterococci.IMPORTANCE Enterococci are leading causes of antibiotic-resistant infection transmitted in hospitals. The intrinsic hardiness of these organisms allows them to survive disinfection practices and then proliferate in the gastrointestinal tracts of antibiotic-treated patients. The objective of this study was to identify the underlying genetic basis for its unusual hardiness. Using a functional genomic approach, we identified traits and pathways of general importance for enterococcal survival and growth that distinguish them from closely related pathogens as well as ancestrally related species. We further identified unique traits that enable them to survive antibiotic challenge, revealing a large set of genes that contribute to intrinsic antibiotic resistance and a smaller set of uniquely important genes that are rare outside enterococci.202033234689
9612190.9998Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages. Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs.201121509046