# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 964 | 0 | 1.0000 | Distribution of plasmid-mediated quinolone resistance in Gram-negative bacteria from a tertiary hospital in Nigeria. BACKGROUND: Until recently, mechanisms of resistance to quinolones in Gram-negative bacteria were believed to be only chromosome encoded. However, emergence of plasmid-mediated quinolone resistance (PMQR) has been reported worldwide. AIM: This study investigated distribution of PMQR in Gram-negative bacteria from a tertiary hospital in eastern part of Nigeria. MATERIALS AND METHODS: Seventy-one nonduplicate Gram-negative bacterial isolates of eight species were analyzed for antimicrobial susceptibility, genotypic detection of various PMQRs, typed by random amplified polymorphic DNA (RAPD) and analysis of plasmids present, including replicon typing. RESULTS: The minimum inhibitory concentrations showed MIC90values as high as 256 μg/ml for fluoroquinolones. Carriage of PMQR was found to be 35.2%. Twenty (28.2%) isolates carried various qnr genes, of which seven (9.9%) qnrA1; four (5.6%) qnrB1; eight (11.3%) qnrS1 while one (1.4%) encoded qnrD1. Eighteen (25.4%) isolates were positive for aac(6')-Ib-cr while carriage of multiple genes exists in some strains. Similarly, 13 isolates (18.7%) were found to carry PMQR efflux pump gene, qepA. Conjugation experiments revealed that the plasmids once transferred coded for fluoroquinolone resistance. The transconjugant strains carried a common plasmid estimated to be 65 kb. These plasmids were untypable for replicon/incompatibility. Typing revealed high diversity among all species tested with no identical RAPD pattern seen. CONCLUSION: This study further confirms high level resistance to many antimicrobials in different species of Gram-negative bacteria including fluoroquinolones and spread of PMQR genes in Southern Nigeria. | 2016 | 27510669 |
| 1109 | 1 | 0.9998 | Quinolone Susceptibility and Detection of qnr and aac(6')-Ib-cr Genes in Community Isolates of Klebsiella pneumoniae. BACKGROUND: Plasmid-mediated quinolone resistance genes (PMQR) have been shown to play not only an important role in quinolone resistance, but also resistance to other antibiotics, particularly β-lactams and aminoglycosides. These genes are mainly associated with clinical isolates of Enterobacteriaceae. However, detection of PMQR genes in the community isolates can increase the dissemination rate of resistance determinants among bacteria. OBJECTIVES: This study aimed to investigate quinolone resistance and distribution of qnr and aac (6')-Ib-cr genes among the community isolates of Klebsiella pneumoniae. MATERIALS AND METHODS: Fifty-two K. pneumoniae isolates were collected from the Central Laboratory in Karaj between July 2010 and January 2011. Antibacterial susceptibility was determined by the disc diffusion method. Quinolone and/or cephalosporin-resistant isolates were screened for the presence of qnrA, qnrB, qnrS and aac (6')-Ib-cr genes by polymerase chain reaction (PCR). RESULTS: Of the 52 K. pneumoniae isolates, 23 were resistant to cephalosporins and/or quinolones. Overall, 7 out of the 23 resistant isolates harbored qnr and/or aac (6')-Ib-cr genes (30.4%). Among these, 5 isolates were resistant to both classes of antibiotics of which; 3 carried the aac (6')-Ib-cr gene, one had the qnrS, and one harbored both aac (6')-Ib-cr and qnrB genes. None of the isolates contained qnrA. Two isolates were sensitive to quinolones and resistant to cephalosporins of which; one had qnrS and the other carried the aac (6')-Ib-cr gene. CONCLUSIONS: Our study showed that 30.4% of the quinolone and/or cephalosporin resistant community isolates of K. pneumoniae carried PMQR genes. These results confirm that community isolates can be an important source for spreading antibiotic resistance determinants among Gram negative pathogens. This is the first report from Iran on detection of PMQR in the community isolates of K. pneumoniae. | 2014 | 25368793 |
| 895 | 2 | 0.9998 | The determination of gyrA and parC mutations and the prevalence of plasmid-mediated quinolone resistance genes in carbapenem resistant Klebsiella pneumonia ST11 and ST76 strains isolated from patients in Heilongjiang Province, China. BACKGROUND: There is increasing resistance to carbapenems among Klebsiella pneumoniae,and fluoroquinolones (FQ) are increasingly used to treat infections from extended-spectrum β- lactamase(ESBLs) and carbapenemase-producing Klebsiella pneumoniae. However, the acquisition of plasmid-mediated quinolone resistance (PMQR) or the spontaneous mutation of the quinolone resistance-determining regions (QRDR) of the gyrA and parC genes can severely affect the therapeutic effect of quinolones. The goal of this study was to investigate the molecular determinants of FQ resistance(FQ-R) in carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates from Heilongjiang Province,China. MATERIALS AND METHODS: We isolated 40 strains of CRKP from a treatment center in the eastern part of Heilongjiang Province from January 2016 to December 2018. The VITEK2 Compact analyzer was used to identify and detect drug sensitivity. Different types of drug resistance genes were detected by polymerase chain reaction (PCR). PCR and DNA sequencing were used to assess the presence of qnrA, qnrB, qnrS,qepA and acc(6') Ib-cr genes,which are plasmid-encode genes that can contribute to resistance. The sequences of gyrA and parC genes were sequenced and compared with the sequences of standard strains to determine if mutations were present.Multi-site sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed on the strains to assess homology. RESULTS: The isolated CRKP strains showed rates of resistance to fluoroquinolones of 22.5% to 42.5%. The resistance rate of ciprofloxacin was significantly higher than that of levofloxacin.Nine CRKP strains (22.5%) showed co-resistance to ciprofloxacin and levofloxacin.The quinolone resistant strains were screened for plasmid-encoded genes that can contribute to resistance (PMQR genes).Among the 17 quinolone resistant strains,one strain contained no PMQR genes,twelve strains contained two PMQR genes,and four strains contained four PMQR genes.Acc (6') Ib-cr was the most frequently detected PMQR gene, detected in 95% of strains tested (38 of 40) and in 94.1% of the quinolone-resistant strains (16 of 17). The qepA gene encoding an efflux pump was not detected in any strains.No isolate carried five different PMQRs simultaneously.Changes of S83I and D87G changes in gyrA, and the S80I change in parC,which were mediated by QRDR,were identified in two isolates,which showed resistance to both ciprofloxacin and levofloxacin.Most of the FQ-R strains(58.8%,10/17) belong to ST(sequence type) 76, which is dominant in the local area, while all the mutant strains (100%,2/2),that differ in at least one site from standard bacteria, belong to the ST11 group. The strains were isolated from a hospital where there had been a recent outbreak of ST76 type CRKP in the neurosurgery ward and intensive care unit. CONCLUSION: CRKP strains were identified that were insensitive or even resistant to quinolones,and this resistance is common in Heilongjiang Province of eastern China;fluoroquinolone-resistance in these clinical CRKP strains is a complex interplay between PMQR determinants and mutations in gyrA and parC.The resistance level caused by QRDR mutation is higher than that caused by PMQR, however, the high frequency of PMQR genes in the isolated CRKP strains suggests the potential for impact of these genes.PMQR determinants are often found in carbapenemase-producing or ESBLs-producing Klebsiella pneumoniae,and some resistance genes,such as:SHV,TEM, CTX-M-15,and OXA-1 are closely associated with FQ-R. Finally, geographical factors can affect the emergence and spread of PMQR and QRDR.Some genetic lineages have higher potential risks, and continuous close monitoring is required. | 2020 | 32278145 |
| 2054 | 3 | 0.9998 | A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Bacterial resistance to fluoroquinolones result from mutations in the quinolone resistance-determining regions of the drug targets, overexpression of efflux pumps, and/or the more recently identified plasmid-mediated low-level resistance mechanisms. We investigated the prevalence of and characterized plasmid-mediated fluoroquinolone resistance genes (qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA) by polymerase chain reaction in fluoroquinolone-resistant Escherichia coli (n = 530) isolated from a chicken farm, a pig farm, and hospitalized patients in Shandong, China, in 2007. The aac(6')-Ib-cr gene was the most prevalent resistance gene that was detected in bacteria isolated from all sources. Next was the qnrS gene, which was predominantly present in isolates from the pig farm. Only eight (5.8%) isolates from hospital patients were found to possess the qepA gene, and these isolates were first reported in qepA-carrying E. coli from humans in China. The qnrA and qnrB genes were not detected in any of the isolates. Further, most of the isolates were also resistant to beta-lactams and aminoglycosides as determined by the broth microdilution method. Pulsed-field gel electrophoresis analysis of the E. coli isolates with similar resistance patterns that also carried resistance genes showed great genomic diversity among these bacteria, suggesting that the multiresistant E. coli isolates carrying the qnr, aac(6')-Ib-cr, or qepA genes were not derived from a specific clone, but represented a wide variety of different genotypes. The results of Southern hybridization revealed that qepA, qnrS, and parts of aac(6')-Ib-cr genes were localized on plasmids and/or chromosome. qepA and aac(6')-Ib-cr genes were colocalized with aac(6')-Ib-cr and qnrS genes, respectively, on the same plasmids. Our study demonstrated that two different genes (qepA and aac(6')-Ib-cr) were identified on the same plasmid in E. coli strains derived from patients and qnrS and aac(6')-lb-cr genes on the same plasmid in an E. coli strain of animal origin. | 2010 | 19911944 |
| 2055 | 4 | 0.9998 | Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. The purpose of this study was to investigate the prevalence and characteristics of plasmid-mediated quinolone resistance (PMQR) genes qnr, aac(6')-Ib-cr, and qepA in a total of 185 non-duplicate Salmonella spp. isolated from hatcheries, poultry farms, and poultry slaughterhouses during the period 2001 to 2010 in Korea. Additionally, mutation analysis of quinolone resistance determining regions (QRDRs), conjugation experiments, and plasmid analysis were performed in the PMQR-positive isolates. Among the 185 isolates, six (3.2%) contained qnr genes (two qnrB4 and four qnrS1) but none carried the aac(6')-Ib-cr or qepA genes. Among the six PMQR-positive isolates, one showed a single mutation (Ser83-Phe substitution) in the QRDRs of gyrA. Among them, three were non-susceptible (intermediate or resistant) to nalidixic acid (minimum inhibitory concentration [MIC] ≥256 µg/ml), ciprofloxacin (MIC 2 µg/ml), and levofloxacin (MIC 4 µg/ml), but others were susceptible to all of the three fluoroquinolones. They were resistant to six or more antimicrobial agents tested and were able to transfer quinolone resistance to recipient Escherichia coli J53 by conjugation. By performing a hybridization test, plasmids harbouring qnrB4 and qnrS1 genes were less than 8 kb and about 70 kb in size, respectively. The horizontal dissemination of qnrS1 gene was mediated by IncN plasmid. Compared with the recipient strain, MICs of the transconjugants increased two-fold to four-fold for nalidixic acid, and eight-fold to 16-fold for ciprofloxacin and levofloxacin. This report is the first to describe the detection of qnr genes in Salmonella spp. isolated from poultry in Korea. Widespread horizontal transfer of these genes among bacteria may be a serious public health concern because these can rapidly increase fluoroquinolone resistance. To ensure the public health, it is essential to continuously survey and carefully monitor the spread of PMQR genes in Salmonella from poultry. | 2013 | 23607509 |
| 965 | 5 | 0.9998 | Molecular Characterization of Multidrug-Resistant Escherichia coli Isolates from Bovine Clinical Mastitis and Pigs in the Vojvodina Province, Serbia. The aim of the study was to characterize multidrug-resistant (MDR) Escherichia coli isolates collected in Serbia from bovine clinical mastitis cases and diseased pigs, mainly with molecular methods. A total of 48 E. coli isolates was collected during the years 2013-2014, of which 22 were MDR and were included in further analysis. Phylogenetic typing showed that 17 isolates belonged to group A, while two isolates were classified in group B1 and a single one in group D. All isolates showed unique macrorestriction patterns. Phenotypic susceptibility testing revealed resistances of the isolates against up to 13 antimicrobial agents, including resistance to fluoroquinolones. A wide variety of resistance genes was detected by PCR amplification and sequencing of amplicons. Sequence analysis of the quinolone resistance determining regions of topoisomerase genes revealed mutations in gyrA, parC, and/or parE. Plasmid-mediated quinolone resistance genes were detected in two porcine (aac-6'-Ib-cr and qnrS, respectively) isolates and a single bovine (aac-6'-Ib-cr) isolate. Resistance genes were found to be located on conjugative plasmids in 16 cases, many of which conferred a multidrug resistance phenotype. In conclusion, the plentitude of resistance genes located on conjugative plasmids and integrons in E. coli from cows and pigs in Vojvodina, Serbia, pose a high risk for horizontal gene transfer in bacteria from livestock husbandry. | 2018 | 28520501 |
| 1173 | 6 | 0.9998 | Investigation of plasmid-mediated quinolone resistance in Pseudomonas aeruginosa clinical isolates. AIMS: To investigate plasmid-mediated quinolone resistance in clinical isolates of Pseudomonas aeruginosa with the polymerase chain reaction (PCR). The plasmid-mediated quinolone resistance genes have been identified in many bacteria within the Enterobactericeae family, they have not been detected in P. aeruginosa isolates. Subjects and Methods : Identification of the isolates and testing of antibiotic susceptibility was performed in Vitek2 Compact (Biomeriux, France) and Phoinex (BD, USA) automated systems. Screening for the qnrA, qnrB, qnrS, qnrC, aac (6')-Ib-cr and qepA genes was carried out by PCR amplification and aac (6')-Ib-cr DNA sequencing. RESULTS: The qnr and the qepA genes were not detected in any of P. aeruginosa isolates. The aac (6')-Ib gene was detected in six of the isolates and positive isolates for aac (6')-Ib were sequenced for detection of the aac (6')-Ib-cr variant but aac (6')-Ib-cr was not detected in any isolates. CONCLUSIONS: Plasmid-mediated quinolone resistance genes have so far not been identified in P. aeruginosa isolates. However, qnrB have detected in P. florescens and P. putida isolates. This is the first study conducted on the qnrA, qnrB, qnrS and qnrC genes as well as the qepA and aac (6')-Ib-cr genes in P. aeruginosa clinical isolates. | 2014 | 25008822 |
| 1108 | 7 | 0.9998 | Resistance Mechanism of Carbapenem-Resistant Enterobacteriaceae to Quinolones. BACKGROUND: To investigate the epidemics of plasmid-mediated quinolone resistance (PMQR) gene in carbapenem-resistant Enterobacteriaceae (CRE) and the resistance mechanism. METHODS: We collected CRE bacteria isolated clinically between December 2017 and December 2018 for identification and drug sensitivity testing using a VITEK2 Compact Analyzer. Furthermore, genes, including qnrA, qnrB, qnrS, qepA, and acc (6') Ib-cr, were determined through the polymerase chain reaction and sequencing. The hori-zontal transfer of PMQR gene was validated through the plasmid conjugational test. RESULTS: Drug resistance rate of carbapenem-resistant Escherichia coli against quinolones was 100%, while the rate of carbapenem-resistant Klebsiella pneumoniae ranged from 15.56% to 33.33%. The detection rate of acc (6') Ib-cr was the highest (87.72%), followed by qnrB (77.19%) and qnrS (17.54%). Additionally, there were two bacteria carrying the qnrA gene (3.51%), but qepA gene was not isolated from the samples. In total, 84.21% of these bacteria carried 2 or 3 kinds of PMQR genes. Among 8 bacteria with successful plasmid conjugation, PMQR gene transfer was detected in all of them, but with no significant change in the minimum inhibitory concentration of quinolones. CONCLUSIONS: CRE remain sensitive to quinolones in spite of the high detection rate of PMQR gene in this hospital. | 2021 | 34383410 |
| 968 | 8 | 0.9998 | Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa. | 2010 | 20145377 |
| 967 | 9 | 0.9998 | Characterization of Integrons and Quinolone Resistance in Clinical Escherichia coli Isolates in Mansoura City, Egypt. Escherichia coli is a common pathogen in both humans and animals. Quinolones are used to treat infections caused by Gram-negative bacteria, but resistance genes emerged. Only scarce studies investigated the association between plasmid-mediated quinolone resistance (PMQR) genes and integrons in clinical isolates of E. coli. The current study investigated the prevalence of quinolone resistance and integrons among 134 clinical E. coli isolates. Eighty (59.70%) isolates were quinolone-resistant, and 60/134 (44.77%) isolates were integron positive with the predominance of class I integrons (98.33%). There was a significant association between quinolone resistance and the presence of integrons (P < 0.0001). Isolates from Urology and Nephrology Center and Gastroenterology Hospital were significantly quinolone-resistant and integron positive (P ≤ 0.0005). Detection of PMQR genes on plasmids of integron-positive isolates showed that the active efflux pump genes oqxAB and qepA had the highest prevalence (72.22%), followed by the aminoglycoside acetyltransferase gene (aac(6')-Ib-cr, 66.67%) and the quinolone resistance genes (qnr, 61.11%). Amplification and sequencing of integrons' variable regions illustrated that no quinolone resistance genes were detected, and the most predominant gene cassettes were for trimethoprim and aminoglycoside resistance including dfrA17, dfrB4, and dfrA17-aadA5. In conclusion, this study reported the high prevalence of PMQR genes and integrons among clinical E. coli isolates. Although PMQR genes are not cassette-born, they were associated with integrons' presence, which contributes to the widespread of quinolone resistance in Egypt. | 2021 | 34527054 |
| 1501 | 10 | 0.9998 | High-level and novel mechanisms of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria. To determine the occurrence and molecular basis of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria, 182 non-duplicate Gram-negative bacterial isolates were investigated for antimicrobial susceptibility, presence of carbapenemases (tested phenotypically and genotypically), random amplified polymorphic DNA (RAPD) typing, plasmid sizing and replicon typing. Minimum inhibitory concentrations of carbapenems showed a high degree of resistance, with 67 isolates (36.8%) being resistant to all carbapenems, of which 40 (59.7%) produced enzymes able to hydrolyse imipenem. PCR and sequencing identified only 10 isolates (5.5%) carrying known carbapenemase genes, including bla(NDM), bla(VIM) and bla(GES). The majority of phenotypically carbapenem-resistant and carbapenemase-producing isolates did not carry a known carbapenemase gene. Transconjugant or transformant plasmid sizes were estimated to be 115 kb for bla(NDM)- and 93 kb for bla(VIM)-carrying plasmids. These plasmids were untypeable for replicon/incompatibility and transferred various other genes including plasmid-mediated quinolone resistance (PMQR) genes and bla(CTX-M-15). Typing showed that the isolates in this study were not clonally related. There is a high level of carbapenem resistance in Nigeria. As well as the globally relevant carbapenemases (bla(NDM), bla(VIM) and bla(GES)), there are other unknown gene(s) or variant(s) in circulation able to hydrolyse carbapenems and confer high-level resistance. | 2014 | 24613608 |
| 886 | 11 | 0.9998 | Detection of Plasmid-Mediated Resistance against Colistin in Multi-Drug-Resistant Gram-Negative Bacilli Isolated from a Tertiary Hospital. The aim of this study was to determine the prevalence of plasmid-mediated colistin resistance mcr-1 to mcr-5 genes among colistin and multi-drug-resistant Gram-negative bacilli strains isolated from patients in a tertiary hospital in Toluca, Mexico. The presence of mcr genes among the 241 strains collected was assessed by PCR. In the case of mcr-carrying E. coli, further PCR tests were performed to determine the presence of bla(CTX-M) and whether the strains belonged to the O25b-ST131 clone. Conjugation experiments were also carried out to assess the horizontal transmission of colistin resistance. A total of twelve strains (5.0%), of which four were E. coli; four were P. aeruginosa; three were K. pneumoniae, and one E. cloacae, were found to be resistant to colistin. Of these strains, two E. coli isolates were found to carry mcr-1, and Southern blot hybridization demonstrated its presence on an approximately 60 kb plasmid. Both mcr-1-carrying E. coli strains were found to co-express bla(CTX-M), belong to the O25b-ST131 clone, and horizontally transmit their colistin resistance. The results of this study confirm the presence of plasmid-mediated colistin resistance in hospitalized patients in Mexico and demonstrated that the multi-drug-resistant O25b-ST131 E. coli clone can acquire mcr genes and transmit such resistance traits to other bacteria. | 2023 | 37630556 |
| 1174 | 12 | 0.9998 | Identification of plasmid-mediated quinolone resistance qnr genes in multidrug-resistant Gram-negative bacteria from hospital wastewaters and receiving waters in the Jinan area, China. We investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) qnr genes by the polymerase chain reaction (PCR) in antibiotic-resistant bacteria isolates collected from aquatic environments in Jinan during 2 years (2008.3-2009.11). Genes were identified to variant level by PCR restriction fragment length polymorphism analysis or sequencing. qnrA1, qnrB2, qnrB4, qnrB6, qnrB9, qnrS1, and the new qnrB variant qnrB26 were detected in 31 strains from six genera (Klebsiella spp., Escherichia coli, Enterobacter spp., Proteus spp., Shigella spp., and Citrobacter spp.), four of which contained double qnr genes. Other PMQR genes, aac(6')-Ib-cr and qepA, were found in 12 (38.7%) and 5 (16.1%) of 31 isolates, respectively; while qepA was found in Shigella spp. for the first time. Eight types of β-lactamase genes and eight other types of resistance genes were also present in the 31 qnr-positive isolates. The detection rate for five β-lactamase genes (blaTEM, blaCTX, ampR, blaDHA, and blaSHV) was >45%. Class 1 integrons and complex class 1 integrons were prevalent in these strains, which contained 15 different gene cassette arrays and 5 different insertion sequence common region 1 (ISCR1)-mediated downstream structures. qnrA1, qnrB2, and qnrB6 were present in three ISCR1-mediated downstream structures: qnrA1-ampR, sapA-like-qnrB2, and sdr-qnrB6. We also analyzed the horizontal transferability of PMQR genes and other resistance determinants. The qnr genes and some integrons and resistance genes from 18 (58.1%) of the 31 qnr-positive strains could be transferred to E. coli J53 Azi(R) or E. coli DH5α recipient strains using conjugation or transformation methods. The results showed that a high number of qnr genes were associated with other resistance genes in aquatic environments in Jinan. This suggests that we should avoid over-using antibiotics and monitor aquatic environments to control the spread of antibiotic resistance genes. | 2013 | 23844849 |
| 885 | 13 | 0.9998 | Emergence of Fosfomycin Resistance by Plasmid-Mediated fos Genes in Uropathogenic ESBL-Producing E. coli Isolates in Mexico. Fosfomycin is currently a viable option against urinary tract infections, particularly against extended-spectrum β-lactamases (ESBL)-producing E. coli, due to its unique mechanism of action and its low resistance among bacteria. The objective of this study was to investigate two of the three most common mechanisms of resistance against this antibiotic among 350 ESBL-producing E. coli strains isolated from the urine of Mexican patients. The prevalence of fosfomycin resistance in our study was 10.9% (38/350). Of all resistant isolates analyzed, 23 (60.5%) were identified as fos-producing organisms, with 14 strains carrying fosA3 and 9, fosA1. Additionally, 11 (28.9%) fosfomycin-resistant isolates presented resistance due to impaired antibiotic transport and 8 (21.0%) both mechanisms. No resistance mechanism investigated in the study was found on 12 strains. All 38 confirmed ESBL-producing isolates carried a bla(CTX-M) subtype, 36 (94.5%) belonged to the O25b-ST131 clone, and all of them were able to transfer the fosfomycin resistance trait to recipient strains horizontally. This is the first study in Mexico demonstrating a plasmid-mediated fosfomycin resistance mechanism among clinical E. coli strains. Since our results suggest a strong association among fos and bla(CTX-M) genes and ST131 clones in uropathogenic E. coli, plasmid-mediated fosfomycin resistance should be closely monitored. | 2022 | 36290041 |
| 969 | 14 | 0.9998 | Dissemination of the rmtB gene carried on IncF and IncN plasmids among Enterobacteriaceae in a pig farm and its environment. OBJECTIVES: To investigate the prevalence and characterization of 16S rRNA methylase-producing bacteria in a pig farm and its environment in East China. METHODS: Enterobacteriaceae isolates and metagenomic DNA from 102 pig faecal samples from a pig farm and 97 soil samples taken in or around the farm were screened for the presence of 16S rRNA methylase genes. The clonal relationships of 16S rRNA methylase-positive isolates, plasmid content and other associated resistance genes were also characterized. RESULTS: Fifty-six rmtB-positive Enterobacteriaceae isolates, including 54 Escherichia coli, 1 Morganella morganii and 1 Proteus mirabilis, were recovered from 55 pig faecal samples. Nineteen rmtB-positive bacteria, including 13 E. coli, 2 M. morganii, 2 Leclercia adecarboxylata, 1 Enterobacter aerogenes and 1 Enterobacter cloacae, were recovered from 16 soil samples. Among the 75 rmtB-positive isolates, 31 and 25 also carried the qepA and bla(CTX-M) genes, respectively. The qepA gene co-localized with rmtB on the F2:A-:B1 plasmids and the bla(CTX-M-65) gene co-localized with rmtB on the F33:A-:B- plasmids. The rmtB gene was also found to be associated with the IncN plasmids. Clonal transmission of rmtB-positive E. coli isolates was observed between different pig groups and soil samples. CONCLUSIONS: Both horizontal gene transfer and clonal spread could be responsible for the dissemination of the rmtB gene in the pig farm and its environment. To our knowledge, this study is the first report of rmtB-positive bacteria from farmland soils and indicates that these antibiotic-resistant bacteria and/or resistance genes could be acquired by humans through the food chain. | 2011 | 21852287 |
| 963 | 15 | 0.9998 | The detection of fosfomycin resistance genes in Enterobacteriaceae from pets and their owners. The aim of this study was to investigate the prevalence of fosfomycin resistance and molecular characteristic of fosfomycin-resistant strains isolated from companion animals and their owners. A total of 171 samples collected from pets and pet owners in a Chinese veterinary teaching hospital were screened for the presence of phenotype and genotype of fosfomycin-resistance by selective media containing fosfomycin and PCR & sequencing. Among 171 samples tested, nineteen isolates were resistant to fosfomycin. Sixteen and three of these fosfomycin-resistant isolates were positive for fosA3 and fosA genes, respectively. The fosA3 gene was detected both in chromosomes and plasmids in bacteria. All of the fosA3 gene-positive isolates except one were CTX-M producers and nearly half (7/16) of them also harbored the rmtB gene. The fosA3 gene-carrying plasmids, which were readily transferrable to recipient E. coli J53 by conjugation, conferred resistance to multiple antimicrobial agents. Genetic structures were IS26-385bp-fosA3-1810bp-IS26 (n=11) and IS26-385bp-fosA3-588bp-IS26 (n=5). Molecular typing indicated that two fosA3-positive isolates from dogs were genetically identical to the isolates from the pet owners. Our results indicated that active transmission of fosA3-mediated fosfomycin resistance has occurred among Enterobacteriaceae isolated from pets and their owners by both horizontal transfer and clonal expansion. | 2016 | 27599932 |
| 1734 | 16 | 0.9998 | Identification and characterization of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae isolated from healthy poultry in Brazil. The expression of plasmid-mediated quinolone resistance (PMQR) genes confers low-level quinolone and fluoroquinolones resistance alone. However, the association to chromosomal resistance mechanisms determines an expressively higher resistance in Enterobacteriaceae. These mechanisms are horizontally disseminated within plasmids and have contributed to the emergence of bacteria with reduced susceptibility or resistant to therapies worldwide. The epidemiological characterization of PMQR dissemination is highly relevant in the scientific and medical context, to investigate the dissemination within enterobacteria, from different populations, including humans and food-producing animals. In the present study, 200 Enterobacteriaceae isolates were harvested from poultry with cloacal swabs and identified as Escherichia coli (90.5%), Escherichia fergusonii (5.5%), Klebsiella oxytoca (2.5%) and Klebsiella pneumoniae (1.5%). Among isolates evaluated, 46 (23%) harboured PMQR genes including qnrB (43/200), qnrS (2/200) and aac(6')-Ib-cr (1/200). All isolates carrying PMQR genes showed multidrug-resistance phenotype. The 36 E. coli isolates showed 18 different PFGE types. All E. fergusonii isolates showed the same PFGE type. The two Klebsiella oxytoca belonged to two different PFGE types. The phylogenetic groups A, B1, and D were found among the E. coli harboring PMQR genes. Based on the phylogenetic analysis and PFGE, the population structure of E. coli isolates was diverse, even within the same farm. All isolates carrying qnrB and qnrS genes also harboured ColE-like plasmids. The Southern blot hybridization using the S1-PFGE revealed that the qnrB genes were located on low molecular weight plasmids, smaller than 10Kb. Resistance plasmids were sequenced and showed 100% identity with plasmid pPAB19-3. The association of PMQR genes with mobile genetic elements, such as transferable plasmids, favours the selection and dissemination of (fluoro) quinolones resistant bacteria among food-producing animals, and may play an important role in the current increased prevalence of resistant bacteria in different environments reported worldwide. | 2018 | 29427764 |
| 1735 | 17 | 0.9998 | Multiple transmissible genes encoding fluoroquinolone and third-generation cephalosporin resistance co-located in non-typhoidal Salmonella isolated from food-producing animals in China. The aim of this study was to identify genes conferring resistance to fluoroquinolones and extended-spectrum β-lactams in non-typhoidal Salmonella (NTS) from food-producing animals in China. In total, 31 non-duplicate NTS were obtained from food-producing animals that were sick. Isolates were identified and serotyped and the genetic relatedness of the isolates was determined by pulsed-field gel electrophoresis of XbaI-digested chromosomal DNA. Antimicrobial susceptibility was determined using Clinical and Laboratory Standards Institute methodology. The presence of extended-spectrum β-lactamase (ESBL) and fluoroquinolone resistance genes was established by PCR and sequencing. Genes encoded on transmissible elements were identified by conjugation and transformation. Plasmids were typed by PCR-based replicon typing. The occurrence and diversity of numerous different transmissible genes conferring fluoroquinolone resistance [qnrA, qnrD, oqxA and aac(6')-Ib-cr] and ESBLs (CTX-M-27 and CTX-M-14), and which co-resided in different isolates and serovars of Salmonella, were much higher than in European countries. Furthermore, different plasmids encoded fluoroquinolone resistance (ca. 6 kb) and β-lactam resistance (ca. 63 kb) and these co-resided in isolates with mutations in topoisomerase genes (gyrA and parC) giving very resistant Salmonella. The presence of multidrug-resistant bacteria in food-producing animals in countries that export foodstuffs suggests that global transfer of antibiotic resistances from country to country on food is possible. | 2014 | 24581597 |
| 897 | 18 | 0.9997 | Prevalence of class 1 integrons and plasmid-mediated qnr-genes among Enterobacter isolates obtained from hospitalized patients in Ahvaz, Iran. Quinolones are frequently used classes of antimicrobials in hospitals, crucial for the treatment of infections caused by Gram-negative bacteria. The inappropriate use of quinolones and other antimicrobial agents for the treatment of bacterial infections leads to a significant increase of resistant isolates. The acquisition of antimicrobial resistance may be related to achievement of resistance determinant genes mediated by plasmids, transposons and gene cassettes in integrons. The objective of this cross-sectional study, conducted from December 2015 to July 2016 at two teaching hospitals in Ahvaz, southern Iran, was to screen for the presence of class 1 integrons and quinolone resistance genes in clinical isolates of Enterobacter spp. In all, 152 non-duplicated Enterobacter isolates were collected from clinical specimens and identified as Enterobacter spp. using standard microbiological methods. Antimicrobial susceptibility test was determined using the disc diffusion method according to the CLSI recommendation. Determination of class 1 integrons and PMQR genes was assessed by PCR. Analysis of antibiotic susceptibility tests showed that the highest antibiotic resistance was toward ciprofloxacin (55.3%), while the lowest level was observed against meropenem (34.9%). Moreover, 47.4% (72/152) and 29% (44/152) of isolates were positive for class 1 integron and quinolone resistance genes, respectively. The relative frequencies of antibiotic resistance were significantly higher among class 1 integron-positive isolates. In summary, our results highlight the importance of PMQR genes in the emergence of quinolone-resistant Enterobacter isolates. Moreover, it seems that class 1 integrons have a widespread distribution among Enterobacter isolates and have clinical relevance to multiple-drug-resistant isolates. | 2017 | 29286015 |
| 2053 | 19 | 0.9997 | Replicon typing of plasmids in environmental Achromobacter sp. producing quinolone-resistant determinants. This study aimed to investigate the antimicrobial resistance profile to quinolones, the presence of quinolone-resistant determinants and the plasmid replicon typing in environmental Achromobacter sp. isolated from Brazil. Soil and water samples were used for bacterial isolation. The antimicrobial susceptibility testing was performed by minimum inhibitory concentration method. The detection of mutations in the quinolone resistance-determining regions (QRDR) genes, the presence of plasmid-mediated quinolone resistance (PMQR) genes, and plasmid replicons were performed by PCR. A total of 16 isolates was obtained from different cultures, cities, and states of Brazil. All isolates were non-susceptible to ciprofloxacin, norfloxacin, and levofloxacin. Some mutations in QRDR genes were found, including Gln-83-Leu and Asp-87-Asn in the gyrA and Gln-80-Ile and Asp-84-Ala in the parC. Different PMQR genes were detected, such as qnrA, qnrB, qnrS, oqxA, and oqxB. Three different plasmid families were detected, being most presented the ColE-like, followed by IncFIB and IncA/C. The presence of different PMQR genes and plasmids in the isolates of the present study shows that environmental bacteria can act as reservoir of important genes of resistance to fluoroquinolones, which is of great concern, due to the potential of horizontal dissemination of these genes. Besides that, there are no studies reporting these results in Achromobacter sp. isolates. | 2018 | 30357960 |