Towards the fate of antibiotics and the development of related resistance genes in stream biofilms. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
964201.0000Towards the fate of antibiotics and the development of related resistance genes in stream biofilms. Antibiotics are ubiquitously found in natural surface waters and cause great harm to aquatic organisms. Stream biofilm is a complex and active community composed of algae, bacteria, fungi and other microorganisms, which mainly adheres to solid substances such as rocks and sediments. The durability and diverse structural and metabolic characteristics of biofilms make them a representative of microbial life in aquatic micrecosystems and can reflect major ecosystem processes. Microorganisms and extracellular polymeric substances in biofilms can adsorb and actively accumulate antibiotics. Therefore, biofilms are excellent biological indicators for detecting antibiotic in polluted aquatic environments, but the biotransformation potential of stream biofilms for antibiotics has not been fully explored in the aquatic environment. The characteristics of stream biofilm, such as high abundance and activity of bacterial community, wide contact area with pollutants, etc., which increases the opportunity of biotransformation of antibiotics in biofilm and contribute to bioremediation to improve ecosystem health. Recent studies have demonstrated that both exposure to high and sub-minimum inhibitory concentrations of antibiotics may drive the development of antibiotic resistance genes (ARGs) in natural stream biofilms, which are susceptible to the effects of antibiotic residues, microbial communities and mobile genetic elements, etc. On the basis of peer-reviewed papers, this review explores the distribution behavior of antibiotics in stream biofilms and the contribution of biofilms to the acquisition and spread of antibiotic resistance. Considering that antibiotics and ARGs alter the structure and ecological functions of natural microbial communities and pose a threat to river organisms and human health, our research findings provide comprehensive insights into the migration, transformation, and bioavailability of antibiotics in biofilms.202337454845
964110.9999Microplastics pollution in the ocean: Potential carrier of resistant bacteria and resistance genes. Microplastics pollution in marine environments is concerning. Microplastics persist and accumulate in various sections of the ocean where they present opportunity for micropollutant accumulation and microbial colonisation. Even though biofilm formation on plastics was first reported in the 1970's, it is only in recent years were plastic associated biofilms have gained research attention. Plastic surfaces pose a problem as they are a niche ready for colonisation by diverse biofilm assemblages, composed of specific bacterial communities and putative pathogens prone to acquiring ARGs and resistance in the biofilm. However, the nature of antibiotic resistance on aquatic plastic debris is not yet fully understood and remains a concern. Given the inevitable increase of plastic production and waste generation, microplastics released into the environment may prove to be problematic. This review explores microplastic waste in the ocean and possible concerns that may arise from the presence of microplastics in conjunction with favourable conditions for the development and dispersal of antibiotic resistance in the ocean and food web.202134562691
645820.9999Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics (ABs) have made it possible to treat bacterial infections, which were in the past untreatable and consequently fatal. Regrettably, their use and abuse among humans and livestock led to antibiotic resistance, which has made them ineffective in many cases. The spread of antibiotic resistance genes (ARGs) and bacteria is not limited to nosocomial environments, but also involves water and soil ecosystems. The environmental presence of ABs and ARGs is a hot topic, and their direct and indirect effects, are still not well known or clarified. A particular concern is the presence of antibiotics in agroecosystems due to the application of agro-zootechnical waste (e.g., manure and biosolids), which can introduce antibiotic residues and ARGs to soils. This review provides an insight of recent findings of AB direct and indirect effects on terrestrial organisms, focusing on plant and invertebrates. Possible changing in viability and organism growth, AB bioaccumulation, and shifts in associated microbiome composition are reported. Oxidative stress responses of plants (such as reactive oxygen species production) to antibiotics are also described.202337760767
648330.9999Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.202336830244
641240.9999Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater. The role of microplastics (MPs) in the spread of antibiotic resistance genes (ARGs) is increasingly attracting global research attention due to their unique ecological and environmental effects. The ubiquitous use of plastics and their release into the environment by anthropic/industrial activities are the main sources for MP contamination, especially of water bodies. Because of their physical and chemical characteristics, MPs represent an ideal substrate for microbial colonization and formation of biofilm, where horizontal gene transfer is facilitated. In addition, the widespread and often injudicious use of antibiotics in various human activities leads to their release into the environment, mainly through wastewater. For these reasons, wastewater treatment plants, in particular hospital plants, are considered hotspots for the selection of ARGs and their diffusion in the environment. As a result, the interaction of MPs with drug-resistant bacteria and ARGs make them vectors for the transport and spread of ARGs and harmful microorganisms. Microplastic-associated antimicrobial resistance is an emerging threat to the environment and consequently for human health. More studies are required to better understand the interaction of these pollutants with the environment as well as to identify effective management systems to reduce the related risk.202337239594
648050.9999Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Antibiotics play a key role in the management of infectious diseases in humans, animals, livestock, and aquacultures all over the world. The release of increasing amount of antibiotics into waters and soils creates a potential threat to all microorganisms in these environments. This review addresses issues related to the fate and degradation of antibiotics in soils and the impact of antibiotics on the structural, genetic and functional diversity of microbial communities. Due to the emergence of bacterial resistance to antibiotics, which is considered a worldwide public health problem, the abundance and diversity of antibiotic resistance genes (ARGs) in soils are also discussed. When antibiotic residues enter the soil, the main processes determining their persistence are sorption to organic particles and degradation/transformation. The wide range of DT50 values for antibiotic residues in soils shows that the processes governing persistence depend on a number of different factors, e.g., physico-chemical properties of the residue, characteristics of the soil, and climatic factors (temperature, rainfall, and humidity). The results presented in this review show that antibiotics affect soil microorganisms by changing their enzyme activity and ability to metabolize different carbon sources, as well as by altering the overall microbial biomass and the relative abundance of different groups (i.e., Gram-negative bacteria, Gram-positive bacteria, and fungi) in microbial communities. Studies using methods based on analyses of nucleic acids prove that antibiotics alter the biodiversity of microbial communities and the presence of many types of ARGs in soil are affected by agricultural and human activities. It is worth emphasizing that studies on ARGs in soil have resulted in the discovery of new genes and enzymes responsible for bacterial resistance to antibiotics. However, many ambiguous results indicate that precise estimation of the impact of antibiotics on the activity and diversity of soil microbial communities is a great challenge.201930906284
963560.9999The influence of antibiotics on the anammox process - a review. Anaerobic ammonium oxidation (anammox) is one of the most promising processes for the treatment of ammonium-rich wastewater. It is more effective, cheaper, and more environmentally friendly than the conventional process currently in use for nitrogen removal. Unfortunately, anammox bacteria are sensitive to various substances, including heavy metals and organic matter commonly found in the wastewater treatment plants (WWTPs). Of these deleterious substances, antibiotics are recognized to be important. For decades, the increasing consumption of antibiotics has led to the increased occurrence of antibiotics in the aquatic environment, including wastewater. One of the most important issues related to antibiotic pollution is the generation and transfer of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs). Here, we will discuss the effect of short- and long-term exposure of the anammox process to antibiotic pollutants; with a special focus on the activity of the anammox bacteria, biomass properties, community structures, the presence of antibiotic resistance genes and combined effect of antibiotics with other substances commonly found in wastewater. Further, the defense mechanisms according to which bacteria adapt against antibiotic stress are speculated upon. This review aims to facilitate a better understanding of the influence of antibiotics and other co-pollutants on the anammox process and to highlight future avenues of research to target gaps in the knowledge.202234845633
648270.9998Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Bioremediation represents a sustainable approach to remediating petroleum hydrocarbon contaminated soils. One aspect of sustainability includes the sourcing of nutrients used to stimulate hydrocarbon-degrading microbial populations. Organic nutrients such as animal manure and sewage sludge may be perceived as more sustainable than conventional inorganic fertilizers. However, organic nutrients often contain antibiotic residues and resistant bacteria (along with resistance genes and mobile genetic elements). This is further exacerbated since antibiotic resistant bacteria may become more abundant in contaminated soils due to co-selection pressures from pollutants such as metals and hydrocarbons. We review the issues surrounding bioremediation of petroleum-hydrocarbon contaminated soils, as an example, and consider the potential human-health risks from antibiotic resistant bacteria. While awareness is coming to light, the relationship between contaminated land and antibiotic resistance remains largely under-explored. The risk of horizontal gene transfer between soil microorganisms, commensal bacteria and/or human pathogens needs to be further elucidated, and the environmental triggers for gene transfer need to be better understood. Findings of antibiotic resistance from animal manures are emerging, but even fewer bioremediation studies using sewage sludge have made any reference to antibiotic resistance. Resistance mechanisms, including those to antibiotics, have been considered by some authors to be a positive trait associated with resilience in strains intended for bioremediation. Nevertheless, recognition of the potential risks associated with antibiotic resistant bacteria and genes in contaminated soils appears to be increasing and requires further investigation. Careful selection of bacterial candidates for bioremediation possessing minimal antibiotic resistance as well as pre-treatment of organic wastes to reduce selective pressures (e.g., antibiotic residues) are suggested to prevent environmental contamination with antibiotic-resistant bacteria and genes.202032236187
643080.9998Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities. Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health.202337019264
646790.9998The role of biofilms as environmental reservoirs of antibiotic resistance. Antibiotic resistance has become a significant and growing threat to public and environmental health. To face this problem both at local and global scales, a better understanding of the sources and mechanisms that contribute to the emergence and spread of antibiotic resistance is required. Recent studies demonstrate that aquatic ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well as potential conduits for their transmission to human pathogens. Despite the wealth of information about antibiotic pollution and its effect on the aquatic microbial resistome, the contribution of environmental biofilms to the acquisition and spread of antibiotic resistance has not been fully explored in aquatic systems. Biofilms are structured multicellular communities embedded in a self-produced extracellular matrix that acts as a barrier to antibiotic diffusion. High population densities and proximity of cells in biofilms also increases the chances for genetic exchange among bacterial species converting biofilms in hot spots of antibiotic resistance. This review focuses on the potential effect of antibiotic pollution on biofilm microbial communities, with special emphasis on ecological and evolutionary processes underlying acquired resistance to these compounds.201526583011
9638100.9998Response of microbial antibiotic resistance to pesticides: An emerging health threat. The spread of microbial antibiotic resistance has seriously threatened public health globally. Non-antibiotic stressors have significantly contributed to the evolution of bacterial antibiotic resistance. Although numerous studies have been conducted on the potential risk of pesticide pollution for bacterial antibiotic resistance, a systematic review of these concerns is still lacking. In the present study, we elaborate the mechanism underlying the effects of pesticides on bacterial antibiotic resistance acquisition as well as the propagation of antimicrobial resistance. Pesticide stress enhanced the acquisition of antibiotic resistance in bacteria via various mechanisms, including the activation of efflux pumps, inhibition of outer membrane pores for resistance to antibiotics, and gene mutation induction. Horizontal gene transfer is a major mechanism whereby pesticides influence the transmission of antibiotic resistance genes (ARGs) in bacteria. Pesticides promoted the conjugation transfer of ARGs by increasing cell membrane permeability and increased the proportion of bacterial mobile gene elements, which facilitate the spread of ARGs. This review can improve our understanding regarding the pesticide-induced generation and spread of ARGs and antibiotic resistant bacteria. Moreover, it can be applied to reduce the ecological risks of ARGs in the future.202235977623
6413110.9998Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. Microplastics (MPs) and antibiotic resistance genes (ARGs) have become the increasing attention and global research hotpots due to their unique ecological and environmental effects. As susceptible locations for MPs and ARGs, aquaculture environments play an important role in their enrichment and transformation. In this review, we focused on the MPs, ARGs, and the effects of their interactions on the aquaculture environments. The facts that antibiotics have been widely applied in different kinds of agricultural productions (e.g., aquaculture) and that most of antibiotics enter the water environment with rainfall and residual in the aquaculture environment have been resulting in the emergence of antibiotic resistance bacteria (ARB). Moreover, the water MPs are effective carriers of the environmental microbes and ARB, making them likely to be continuously imported into the aquaculture environments. As a result, the formation of the compound pollutions may also enter the aquatic organisms through the food chains and eventually enter the human body after a long-term enrichment. Furthermore, the compound pollutions result in the joint toxic effects on the human health and the ecological environment. In summary, this review aims to emphasize the ecological effects and the potential hazards on the aquaculture environments where interactions between MPs and ARGs results, and calls for to reduce the use of the plastic products and the antibiotics in the aquaculture environments.202133265004
9639120.9998Co-selection mechanism for bacterial resistance to major chemical pollutants in the environment. Bacterial resistance is an emerging global public health problem, posing a significant threat to animal and human health. Chemical pollutants present in the environment exert selective pressure on bacteria, which acquire resistance through co-resistance, cross-resistance, co-regulation, and biofilm resistance. Resistance genes are horizontally transmitted in the environment through four mechanisms including conjugation transfer, bacterial transformation, bacteriophage transduction, and membrane vesicle transport, and even enter human bodies through the food chain, endangering human health. Although the co-selection effects of bacterial resistance to chemical pollutants has attracted widespread attention, the co-screening mechanism and co-transmission mechanisms remain unclear. Therefore, this article summarises the current research status of the co-selection effects and mechanism of environmental pollutants resistance, emphasising the necessity of studying the co-selection mechanism of bacteria against major chemical pollutants, and lays a solid theoretical foundation for conducting risk assessment of bacterial resistance.202438101638
6479130.9998Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent.200919398507
9636140.9998A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. The release of tetracyclines (TCs) in the environment is of significant concern because the residual antibiotics may promote resistance in pathogenic microorganisms, and the transfer of antibiotic resistance genes poses a potential threat to ecosystems. Microbial biodegradation plays an important role in removing TCs in both natural and artificial systems. After long-term acclimation, microorganisms that can tolerate and degrade TCs are retained to achieve efficient removal of TCs under the optimum conditions (e.g. optimal operational parameters and moderate concentrations of TCs). To date, cultivation-based techniques have been used to isolate bacteria or fungi with potential degradation ability. Moreover, the biodegradation mechanism of TCs can be unveiled with the development of chemical analysis (e.g. UPLC-Q-TOF mass spectrometer) and molecular biology techniques (e.g. 16S rRNA gene sequencing, multi-omics sequencing, and whole genome sequencing). In this review, we made an overview of the biodegradation of TCs in different systems, refined functional microbial communities and pure isolates relevant to TCs biodegradation, and summarized the biodegradation products, pathways, and degradation genes of TCs. In addition, ecological risks of TCs biodegradation were considered from the perspectives of metabolic products toxicity and resistance genes. Overall, this article aimed to outline the research progress of TCs biodegradation and propose future research prospects.202234995606
6401150.9998Antibiotics and antibiotic resistance genes in landfills: A review. Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance.202234597560
6504160.9998Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies.202235455389
6449170.9998Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change.202031818598
7427180.9998A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Antibiotics are commonly used to prevent and control diseases in aquaculture. However, long-term/overuse of antibiotics not only leaves residues but results in the development of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Antibiotics, ARB, and ARGs are widespread in aquaculture ecosystems. However, their impacts and interaction mechanisms in biotic and abiotic media remain to be clarified. In this paper, we summarized the detection methods, present status, and transfer mechanisms of antibiotics, ARB, and ARGs in water, sediment, and aquaculture organisms. Currently, the dominant methods of detecting antibiotics, ARB, and ARGs are UPLC-MS/MS, 16S rRNA sequencing, and metagenomics, respectively. Tetracyclines, macrolides, fluoroquinolones, and sulfonamides are most frequently detected in aquaculture. Generally, antibiotic concentrations and ARG abundance in sediment are much higher than those in water. Yet, no obvious patterns in the category of antibiotics or ARB are present in organisms or the environment. The key mechanisms of resistance to antibiotics in bacteria include reducing the cell membrane permeability, enhancing antibiotic efflux, and structural changes in antibiotic target proteins. Moreover, horizontal transfer is a major pathway for ARGs transfer, including conjugation, transformation, transduction, and vesiculation. Identifying, quantifying, and summarizing the interactions and transmission mechanisms of antibiotics, ARGs, and ARB would provide useful information for future disease diagnosis and scientific management in aquaculture.202337235235
9640190.9998Effects of microplastic concentration, composition, and size on Escherichia coli biofilm-associated antimicrobial resistance. Microplastics (MPs) have emerged as a significant environmental pollutant with profound implications for public health, particularly as substrates to facilitate bacterial antimicrobial resistance (AMR). Recently, studies have shown that MPs may accommodate biofilm communities, chemical contaminants, and genetic material containing AMR genes. This study investigated the effects of MP concentration, composition, and size on the development of multidrug resistance in Escherichia coli. Specifically, we exposed E. coli to varying concentrations of different MP types, including polyethylene, polystyrene, and polypropylene, across a range of sizes (3-10, 10-50, and 500 µm). Results indicated that the biofilm cells attached to MPs had elevated multidrug resistance (in E. coli. Notably, MPs exhibited a higher propensity for facilitating biofilm and resistance than control substrates such as glass, likely due to their hydrophobicity, greater adsorption capacities, and surface chemistries. Notably, we found that the bacteria passaged with MPs formed stronger biofilms once the MPs were removed, which was associated with changes in motility. Thus, MPs select cells that are better at forming biofilms, which can lead to biofilm-associated AMR and recalcitrant infections in the environment and healthcare setting. Our study highlights the importance of developing effective strategies to address the challenges posed by MPs. IMPORTANCE: Antimicrobial resistance (AMR) is one of the world's most pressing global health crises. With the pipeline of antibiotics running dry, it is imperative that mitigation strategies understand the mechanisms that drive the genesis of AMR. One emerging dimension of AMR is the environment. This study highlights the relationship between a widespread environmental pollutant, microplastics (MPs), and the rise of drug-resistant bacteria. While it is known that MPs facilitate resistance through several modes (biofilm formation, plastic adsorption rates, etc.), this study fills the knowledge gap on how different types of MPs are contributing to AMR.202540067049