# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 963 | 0 | 1.0000 | The detection of fosfomycin resistance genes in Enterobacteriaceae from pets and their owners. The aim of this study was to investigate the prevalence of fosfomycin resistance and molecular characteristic of fosfomycin-resistant strains isolated from companion animals and their owners. A total of 171 samples collected from pets and pet owners in a Chinese veterinary teaching hospital were screened for the presence of phenotype and genotype of fosfomycin-resistance by selective media containing fosfomycin and PCR & sequencing. Among 171 samples tested, nineteen isolates were resistant to fosfomycin. Sixteen and three of these fosfomycin-resistant isolates were positive for fosA3 and fosA genes, respectively. The fosA3 gene was detected both in chromosomes and plasmids in bacteria. All of the fosA3 gene-positive isolates except one were CTX-M producers and nearly half (7/16) of them also harbored the rmtB gene. The fosA3 gene-carrying plasmids, which were readily transferrable to recipient E. coli J53 by conjugation, conferred resistance to multiple antimicrobial agents. Genetic structures were IS26-385bp-fosA3-1810bp-IS26 (n=11) and IS26-385bp-fosA3-588bp-IS26 (n=5). Molecular typing indicated that two fosA3-positive isolates from dogs were genetically identical to the isolates from the pet owners. Our results indicated that active transmission of fosA3-mediated fosfomycin resistance has occurred among Enterobacteriaceae isolated from pets and their owners by both horizontal transfer and clonal expansion. | 2016 | 27599932 |
| 965 | 1 | 0.9998 | Molecular Characterization of Multidrug-Resistant Escherichia coli Isolates from Bovine Clinical Mastitis and Pigs in the Vojvodina Province, Serbia. The aim of the study was to characterize multidrug-resistant (MDR) Escherichia coli isolates collected in Serbia from bovine clinical mastitis cases and diseased pigs, mainly with molecular methods. A total of 48 E. coli isolates was collected during the years 2013-2014, of which 22 were MDR and were included in further analysis. Phylogenetic typing showed that 17 isolates belonged to group A, while two isolates were classified in group B1 and a single one in group D. All isolates showed unique macrorestriction patterns. Phenotypic susceptibility testing revealed resistances of the isolates against up to 13 antimicrobial agents, including resistance to fluoroquinolones. A wide variety of resistance genes was detected by PCR amplification and sequencing of amplicons. Sequence analysis of the quinolone resistance determining regions of topoisomerase genes revealed mutations in gyrA, parC, and/or parE. Plasmid-mediated quinolone resistance genes were detected in two porcine (aac-6'-Ib-cr and qnrS, respectively) isolates and a single bovine (aac-6'-Ib-cr) isolate. Resistance genes were found to be located on conjugative plasmids in 16 cases, many of which conferred a multidrug resistance phenotype. In conclusion, the plentitude of resistance genes located on conjugative plasmids and integrons in E. coli from cows and pigs in Vojvodina, Serbia, pose a high risk for horizontal gene transfer in bacteria from livestock husbandry. | 2018 | 28520501 |
| 1084 | 2 | 0.9998 | The emergence of colistin-resistant Escherichia coli in chicken meats in Nepal. The emergence and dissemination of colistin resistance among Gram-negative bacteria is a global problem. We initiated a surveillance of colistin-resistant and -susceptible Escherichia coli in raw meats from chicken in Nepal. A total of 180 meat samples were collected; from these, 60 E. coli strains were isolated (33.33%), of which 16 (26.66%) were colistin-resistant and harboured the mcr-1 gene. All isolates were characterised by antibiotic susceptibility testing, the presence of antibiotic resistance genes, phylogenetic analysis and plasmid replicon typing. Most of the colistin-resistant E. coli had the antibiotic resistant pattern CIP/CN/SXT/TE (43.75%). Coexistence of tet, qnr, sul and dfr genes was detected in both colistin-resistant and -susceptible E. coli. Most colistin-resistant E. coli strains belonged to phylogroup C, whereas 10% of isolates belonged to phylogroup D. Inc FIB was the dominant plasmid Inc type in the isolates. Dissemination of antibiotic-resistant E. coli in raw meats is a public health concern in Nepal and requires further investigation to ascertain the sources of contamination. | 2019 | 31755930 |
| 1083 | 3 | 0.9998 | Molecular Characterization of Colistin-Resistant Escherichia coli Isolated from Chickens: First Report from Nepal. Dissemination of mcr-1 encoding colistin resistance in Gram-negative bacteria has created critical situation in poultry, livestock farming, and public health. In Nepal, for the first time, we initiated surveillance of colistin-resistant Escherichia coli in broilers from seven different chicken farms. A total of 324 cloacal swabs were collected and 118 E. coli were isolated, of which 27 (22.8%) were colistin resistance all harboring mcr-1 gene, but lacking ISApI1. Colistin-resistant isolates were characterized by antibiotic susceptibility testing, detecting antibiotic resistance genes, phylogenetic analysis, and plasmid replicon typing. These isolates belonged to the phylo-group A (70.37%) and phylo-group D (29.63%). In addition, most isolates (>80%) were resistant to ciprofloxacin, tetracycline, and sulfamethoxazole-trimethoprim. As much as 3 of the 27 mcr-1 encoding isolates were confirmed as extended-spectrum β-lactamase (ESBL) producer, all 3 isolates carrying bla(CTX-M) gene. We performed the conjugation experiment to check transferability of mcr-1, tet, and bla(CTX-M) genes, and only two donors were found to have transferred resistance to ticarcillin. The transfer of colistin and tetracycline resistance was not detected, which suggests the chromosomal location of mcr-1 and tet genes. The prevalence of Inc K/B and Inc I1 was 96.3% and 81.48%, respectively. This study shows the co-existence of mcr-1 with tet, sul, qnr, dfr, and bla(CTX-M) genes and dissemination of these resistant isolates in Nepalese chicken farms, which may pose huge threat to the livestock, especially chickens, and public health in Nepal. | 2019 | 30874473 |
| 885 | 4 | 0.9998 | Emergence of Fosfomycin Resistance by Plasmid-Mediated fos Genes in Uropathogenic ESBL-Producing E. coli Isolates in Mexico. Fosfomycin is currently a viable option against urinary tract infections, particularly against extended-spectrum β-lactamases (ESBL)-producing E. coli, due to its unique mechanism of action and its low resistance among bacteria. The objective of this study was to investigate two of the three most common mechanisms of resistance against this antibiotic among 350 ESBL-producing E. coli strains isolated from the urine of Mexican patients. The prevalence of fosfomycin resistance in our study was 10.9% (38/350). Of all resistant isolates analyzed, 23 (60.5%) were identified as fos-producing organisms, with 14 strains carrying fosA3 and 9, fosA1. Additionally, 11 (28.9%) fosfomycin-resistant isolates presented resistance due to impaired antibiotic transport and 8 (21.0%) both mechanisms. No resistance mechanism investigated in the study was found on 12 strains. All 38 confirmed ESBL-producing isolates carried a bla(CTX-M) subtype, 36 (94.5%) belonged to the O25b-ST131 clone, and all of them were able to transfer the fosfomycin resistance trait to recipient strains horizontally. This is the first study in Mexico demonstrating a plasmid-mediated fosfomycin resistance mechanism among clinical E. coli strains. Since our results suggest a strong association among fos and bla(CTX-M) genes and ST131 clones in uropathogenic E. coli, plasmid-mediated fosfomycin resistance should be closely monitored. | 2022 | 36290041 |
| 964 | 5 | 0.9998 | Distribution of plasmid-mediated quinolone resistance in Gram-negative bacteria from a tertiary hospital in Nigeria. BACKGROUND: Until recently, mechanisms of resistance to quinolones in Gram-negative bacteria were believed to be only chromosome encoded. However, emergence of plasmid-mediated quinolone resistance (PMQR) has been reported worldwide. AIM: This study investigated distribution of PMQR in Gram-negative bacteria from a tertiary hospital in eastern part of Nigeria. MATERIALS AND METHODS: Seventy-one nonduplicate Gram-negative bacterial isolates of eight species were analyzed for antimicrobial susceptibility, genotypic detection of various PMQRs, typed by random amplified polymorphic DNA (RAPD) and analysis of plasmids present, including replicon typing. RESULTS: The minimum inhibitory concentrations showed MIC90values as high as 256 μg/ml for fluoroquinolones. Carriage of PMQR was found to be 35.2%. Twenty (28.2%) isolates carried various qnr genes, of which seven (9.9%) qnrA1; four (5.6%) qnrB1; eight (11.3%) qnrS1 while one (1.4%) encoded qnrD1. Eighteen (25.4%) isolates were positive for aac(6')-Ib-cr while carriage of multiple genes exists in some strains. Similarly, 13 isolates (18.7%) were found to carry PMQR efflux pump gene, qepA. Conjugation experiments revealed that the plasmids once transferred coded for fluoroquinolone resistance. The transconjugant strains carried a common plasmid estimated to be 65 kb. These plasmids were untypable for replicon/incompatibility. Typing revealed high diversity among all species tested with no identical RAPD pattern seen. CONCLUSION: This study further confirms high level resistance to many antimicrobials in different species of Gram-negative bacteria including fluoroquinolones and spread of PMQR genes in Southern Nigeria. | 2016 | 27510669 |
| 1735 | 6 | 0.9998 | Multiple transmissible genes encoding fluoroquinolone and third-generation cephalosporin resistance co-located in non-typhoidal Salmonella isolated from food-producing animals in China. The aim of this study was to identify genes conferring resistance to fluoroquinolones and extended-spectrum β-lactams in non-typhoidal Salmonella (NTS) from food-producing animals in China. In total, 31 non-duplicate NTS were obtained from food-producing animals that were sick. Isolates were identified and serotyped and the genetic relatedness of the isolates was determined by pulsed-field gel electrophoresis of XbaI-digested chromosomal DNA. Antimicrobial susceptibility was determined using Clinical and Laboratory Standards Institute methodology. The presence of extended-spectrum β-lactamase (ESBL) and fluoroquinolone resistance genes was established by PCR and sequencing. Genes encoded on transmissible elements were identified by conjugation and transformation. Plasmids were typed by PCR-based replicon typing. The occurrence and diversity of numerous different transmissible genes conferring fluoroquinolone resistance [qnrA, qnrD, oqxA and aac(6')-Ib-cr] and ESBLs (CTX-M-27 and CTX-M-14), and which co-resided in different isolates and serovars of Salmonella, were much higher than in European countries. Furthermore, different plasmids encoded fluoroquinolone resistance (ca. 6 kb) and β-lactam resistance (ca. 63 kb) and these co-resided in isolates with mutations in topoisomerase genes (gyrA and parC) giving very resistant Salmonella. The presence of multidrug-resistant bacteria in food-producing animals in countries that export foodstuffs suggests that global transfer of antibiotic resistances from country to country on food is possible. | 2014 | 24581597 |
| 886 | 7 | 0.9998 | Detection of Plasmid-Mediated Resistance against Colistin in Multi-Drug-Resistant Gram-Negative Bacilli Isolated from a Tertiary Hospital. The aim of this study was to determine the prevalence of plasmid-mediated colistin resistance mcr-1 to mcr-5 genes among colistin and multi-drug-resistant Gram-negative bacilli strains isolated from patients in a tertiary hospital in Toluca, Mexico. The presence of mcr genes among the 241 strains collected was assessed by PCR. In the case of mcr-carrying E. coli, further PCR tests were performed to determine the presence of bla(CTX-M) and whether the strains belonged to the O25b-ST131 clone. Conjugation experiments were also carried out to assess the horizontal transmission of colistin resistance. A total of twelve strains (5.0%), of which four were E. coli; four were P. aeruginosa; three were K. pneumoniae, and one E. cloacae, were found to be resistant to colistin. Of these strains, two E. coli isolates were found to carry mcr-1, and Southern blot hybridization demonstrated its presence on an approximately 60 kb plasmid. Both mcr-1-carrying E. coli strains were found to co-express bla(CTX-M), belong to the O25b-ST131 clone, and horizontally transmit their colistin resistance. The results of this study confirm the presence of plasmid-mediated colistin resistance in hospitalized patients in Mexico and demonstrated that the multi-drug-resistant O25b-ST131 E. coli clone can acquire mcr genes and transmit such resistance traits to other bacteria. | 2023 | 37630556 |
| 1090 | 8 | 0.9997 | Distribution of extended-spectrum cephalosporin resistance determinants in Salmonella enterica and Escherichia coli isolated from broilers in southern Japan. This study was conducted to investigate the distribution and diversity of extended-spectrum cephalosporin (ESC) resistance determinants in Salmonella enterica and Escherichia coli obtained from the same cecal samples and to provide evidence of transmission of the resistance determinants among these bacteria in broiler farms in southern Japan. Salmonella enterica and E. coli were characterized by serotyping and multilocus sequence typing, respectively. An antimicrobial susceptibility test, plasmid analysis, and identification and localization of resistance genes were performed to determine the relatedness of ESC resistance determinants among the isolates. Of 48 flocks examined, 14 had S. enterica. In total, 57 S. enterica isolates were obtained, 45 of which showed ESC resistance. Extended-spectrum cephalosporin-resistant E. coli were also obtained from all of these ESC-resistant Salmonella-positive samples. β-Lactamase genes, blaTEM-52 (38 isolates), blaCTX-M-14 (1 isolate), and blaCMY-2 (6 isolates), were carried by conjugative untypable or IncP plasmids detected in the S. enterica serovars Infantis and Manhattan. The β-lactamase genes blaCTX-M-14 (3 isolates), blaCTX-M-15 (3 isolates), blaSHV-2 (1 isolate), blaSHV-12 (2 isolates), and blaCMY-2 (32 isolates) associated with IncI1-Iγ, IncFIB, IncFIC, IncK, IncB/O, and IncY plasmids were detected in E. coli co-isolates. Restriction mapping revealed similar plasmids in Salmonella Infantis and Salmonella Manhattan and in different sequence types of E. coli. Intraspecies transmission of plasmids was suggested within S. enterica and E. coli populations, whereas interspecies transmission was not observed. This study highlights the importance of plasmids as carriers of ESC resistance determinants. | 2013 | 23687161 |
| 884 | 9 | 0.9997 | Fecal carriage and molecular epidemiology of mcr-1-harboring Escherichia coli from children in southern China. BACKGROUND: The increase of multidrug-resistant Enterobacteriaceae bacteria has led to the reintroduction of colistin for clinical treatments, and colistin has become a last resort for infections caused by multidrug-resistant bacteria. Enterobacteriaceae bacteria carrying the mcr-1 gene are majorly related to colistin resistance, which may be the main reason for the continued increase in the colistin resistance rate of Enterobacteriaceae. The study aimed to investigate the sequence type and prevalence of Escherichia coli (E. coli) harboring the mcr-1 gene in the gut flora of children in southern China. METHODS: Fecal samples (n = 2632) of children from three medical centers in Guangzhou were cultured for E. coli. The mcr-1-harboring isolates were screened via polymerase chain reaction (PCR). The colistin resistance transfer frequency was studied by conjugation experiments. DNA sequencing data of seven housekeeping genes were used for multi-locus sequence typing analysis (MLST). RESULTS: PCR indicated that 21 of the 2632 E. coli (0.80%) isolates were positive for mcr-1; these strains were resistant to colistin. Conjugation experiments indicated that 18 mcr-1-harboring isolates could transfer colistin resistance phenotypes to E. coli J53. MLST analysis revealed that the 21 isolates were divided into 18 sequence types (STs); E. coli ST69 was the most common (14.3%), followed by E. coli ST58 (9.5%). CONCLUSION: These results demonstrate the colonization dynamics and molecular epidemiology of E. coli harboring mcr-1 in the gut flora of children in southern China. The mcr-1 gene can be horizontally transmitted within species; hence, it is necessary to monitor bacteria that harbor mcr-1 in children. | 2023 | 37196369 |
| 1731 | 10 | 0.9997 | Prevalence of Colistin Resistance in Escherichia coli in Eastern Turkey and Genomic Characterization of an mcr-1 Positive Strain from Retail Chicken Meat. Colistin is one of the most effective antibiotics against multidrug resistant Gram-negative bacteria. However, the recent emergence of plasmid-borne mobilized colistin resistance (mcr) genes is considered a serious antimicrobial resistance challenge worldwide. In this study, we report detection of an mcr-1 carrying Escherichia coli isolate (named ATAVET mcr-1 Turkey) from retail raw chicken meat in Turkey. Of the 11 (from 500 total tested) phenotypically colistin-resistant isolates, 1 was shown to carry the mcr-1 gene by PCR. Whole-genome sequencing indicated that mcr-1 was located on a ∼13 kb-long contig that was almost identical to the corresponding part in pZJ1635, an IncI2 plasmid encoding mcr-1 in the same genetic context in another E. coli strain. In addition, ATAVET mcr-1 Turkey harbored bla(CTX-M-8), qnrB19, mdf(A), tet(A), sul2, aph(3″)-Ib, aph(6)-Id, and floR resistance genes. Phylogenetic analysis based on whole genome and multilocus sequence typing indicated that ATAVET mcr-1 Turkey was more closely related to mcr-1 carrying E. coli isolates from food and human clinical samples previously reported from different parts of the world than to those from Turkey. These findings further emphasize the worldwide emergence and spread of mcr meditated colistin resistance in bacteria with zoonotic potential within animals and the food chain. | 2021 | 32721263 |
| 969 | 11 | 0.9997 | Dissemination of the rmtB gene carried on IncF and IncN plasmids among Enterobacteriaceae in a pig farm and its environment. OBJECTIVES: To investigate the prevalence and characterization of 16S rRNA methylase-producing bacteria in a pig farm and its environment in East China. METHODS: Enterobacteriaceae isolates and metagenomic DNA from 102 pig faecal samples from a pig farm and 97 soil samples taken in or around the farm were screened for the presence of 16S rRNA methylase genes. The clonal relationships of 16S rRNA methylase-positive isolates, plasmid content and other associated resistance genes were also characterized. RESULTS: Fifty-six rmtB-positive Enterobacteriaceae isolates, including 54 Escherichia coli, 1 Morganella morganii and 1 Proteus mirabilis, were recovered from 55 pig faecal samples. Nineteen rmtB-positive bacteria, including 13 E. coli, 2 M. morganii, 2 Leclercia adecarboxylata, 1 Enterobacter aerogenes and 1 Enterobacter cloacae, were recovered from 16 soil samples. Among the 75 rmtB-positive isolates, 31 and 25 also carried the qepA and bla(CTX-M) genes, respectively. The qepA gene co-localized with rmtB on the F2:A-:B1 plasmids and the bla(CTX-M-65) gene co-localized with rmtB on the F33:A-:B- plasmids. The rmtB gene was also found to be associated with the IncN plasmids. Clonal transmission of rmtB-positive E. coli isolates was observed between different pig groups and soil samples. CONCLUSIONS: Both horizontal gene transfer and clonal spread could be responsible for the dissemination of the rmtB gene in the pig farm and its environment. To our knowledge, this study is the first report of rmtB-positive bacteria from farmland soils and indicates that these antibiotic-resistant bacteria and/or resistance genes could be acquired by humans through the food chain. | 2011 | 21852287 |
| 1086 | 12 | 0.9997 | Antimicrobial Resistance Profiles and Co-Existence of Multiple Antimicrobial Resistance Genes in mcr-Harbouring Colistin-Resistant Enterobacteriaceae Isolates Recovered from Poultry and Poultry Meats in Malaysia. The co-existence of the colistin resistance (mcr) gene with multiple drug-resistance genes has raised concerns about the possibility of the development of pan-drug-resistant bacteria that will complicate treatment. This study aimed to investigate the antibiotic resistance profiles and co-existence of antibiotic resistance genes among the colistin-resistant Enterobacteriaceae isolates recovered from poultry and poultry meats. The antibiotic susceptibility to various classes of antibiotics was performed using the Kirby-Bauer disk diffusion method and selected antimicrobial resistance genes were detected using PCR in a total of 54 colistin-resistant Enterobacteriaceae isolates including Escherichia coli (E. coli) (n = 32), Salmonella spp. (n = 16) and Klebsiella pneumoniae (K. pneumoniae) (n = 6) isolates. Most of the isolates had multi-drug resistance (MDR), with antibiotic resistance against up to seven classes of antibiotics. All mcr-harbouring, colistin-resistant Enterobacteriaceae isolates showed this MDR (100%) phenotype. The mcr-1 harbouring E. coli isolates were co-harbouring multiple antibiotic resistance genes. The seven most commonly identified resistance genes ((bla)TEM, tetA, floR, aac-3-IV, aadA1, fosA, aac(6_)-lb) were detected in an mcr-1-harbouring E. coli isolate recovered from a cloacal swab. The mcr-5 harbouring Salmonella spp. isolate recovered from poultry meats was positive for (bla)TEM, tetA, floR, aac-3-IV, fosA and aac(6_)-lb genes. In conclusion, the colistin-resistant Enterobacteriaceae with mcr genes co-existing multiple clinically important antimicrobial resistance genes in poultry and poultry meats may cause potential future threats to infection treatment choices in humans and animals. | 2023 | 37370378 |
| 1507 | 13 | 0.9997 | Characterization of Five Escherichia coli Isolates Co-expressing ESBL and MCR-1 Resistance Mechanisms From Different Origins in China. Present study characterized five Escherichia coli co-expressing ESBL and MCR-1 recovered from food, food-producing animals, and companion animals in China. Antimicrobial susceptibility tests, conjugation experiments, and plasmid typing were performed. Whole genome sequencing (WGS) was undertaken for all five isolates using either PacBio RS II or Illumina HiSeq 2500 platforms. The cefotaxime and colistin resistance encoded by bla (CTX-M) and mcr-1 genes, respectively, was transferable by conjugation either together or separately for all five strains. Interestingly, the ESBL and mcr-1 genes could be co-selected by cefotaxime, while the colistin only selected the mcr-1-carrying plasmids during the conjugation experiments. Five E. coli sequence types (ST88, ST93, ST602, ST162, and ST457) were detected. Although diverse plasmid profiles were identified, IncI2, IncFIB, and IncFII plasmid types were predominant. These five clonally unrelated isolates harbored the mcr-1 gene located on similar plasmid backbones, which showed high nucleotide similarity to plasmid pHNSHP45. The mcr-1 gene can be co-transmitted with bla (CTX-M) genes through IncI2 plasmids with or without ISApl1 in our study. Characterization of these co-existence ESBL and mcr-1 isolates extends our understanding on the dissemination of these resistance markers among bacteria of diverse origins. | 2019 | 31555232 |
| 1022 | 14 | 0.9997 | Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. The intestinal tract is a huge reservoir of Enterobacteriaceae, some of which are opportunist pathogens. Several genera of these bacteria harbour intrinsic antibiotic resistance genes, such as ampC genes in species of Citrobacter, Enterobacter or Escherichia genera. In this work, beta-lactamases and other resistance mechanisms have been characterized in Enterobacteriaceae isolates recovered from healthy human faecal samples, focusing on the ampC beta-lactamase genes. Fifty human faecal samples were obtained, and 70 Enterobacteriaceae bacteria were isolated: 44 Escherichia coli, 4 Citrobacter braakii, 9 Citrobacter freundii, 8 Enterobacter cloacae, 1 Proteus mirabilis, 1 Proteus vulgaris, 1 Klebsiella oxytoca, 1 Serratia sp. and 1 Cronobacter sp. A high percentage of resistance to ampicillin was detected (57%), observing the AmpC phenotype in 22 isolates (31%) and the ESBL phenotype in 3 isolates. AmpC molecular characterization showed high diversity into bla CMY and bla ACT genes from Citrobacter and Enterobacter species, respectively, and the pulsed-field gel electrophoresis (PFGE) analysis demonstrated low clonality among them. The prevalence of people colonized by strains carrying plasmid-mediated ampC genes obtained in this study was 2%. The unique plasmid-mediated bla AmpC identified in this study was the bla CMY-2 gene, detected in an E. coli isolate ascribed to the sequence type ST405 which belonged to phylogenetic group D. The hybridization and conjugation experiments demonstrated that the ISEcp1-bla CMY-2-blc structure was carried by a ~78-kb self-transferable IncK plasmid. This study shows a high polymorphism among beta-lactamase genes in Enterobacteriaceae from healthy people microbiota. Extensive AmpC-carrier studies would provide important information and could allow the anticipation of future global health problems. | 2015 | 25501887 |
| 883 | 15 | 0.9997 | Detection of plasmid-mediated colistin resistance, mcr-1 gene, in Escherichia coli isolated from high-risk patients with acute leukemia in Spain. BACKGROUND: Bacterial infections in immunocompromised patients are associated with a high mortality and morbidity rate. In this high-risk group, the presence of multidrug-resistant (MDR) bacteria, particularly bacteria that harbor a transferable antibiotic resistance gene, complicates the management of bacterial infections. In this study, we investigated the presence of the transferable colistin resistance mcr genes in patients with leukemia in Spain. METHODS: 217 fecal samples collected in 2013-2015 from 56 patients with acute leukemia and colonized with MDR Enterobacteriaceae strains, were screened on September 2017 for the presence of the colistin resistance mcr genes (mcr-1 to -5) by multiplex PCR. mcr positive strains selected on LBJMR and MacConkey supplemented with colistin (2 μg/ml) media were phenotypically and molecularly characterized by antimicrobial susceptibility testing, minimum inhibitory concentration, multilocus sequence typing and plasmid characterization. RESULTS: Among 217 fecal samples, 5 samples collected from 3 patients were positive for the presence of the mcr-1 colistin-resistance gene. Four Escherichia coli strains were isolated and exhibited resistance to colistin with MIC = 4 μg/ml. Other genes conferring the resistance to β-lactam antibiotics have also been identified in mcr-1 positive strains, including bla(TEM-206) and bla(TEM-98). Three different sequence types were identified, including ST1196, ST140 and ST10. Plasmid characterization allowed us to detect the mcr-1 colistin resistance gene on conjugative IncP plasmid type. CONCLUSION: To the best of our knowledge, we have identified the mcr-1 gene for the first time in leukemia patients in Spain. In light of these results, strict measures have been implemented to prevent its dissemination. | 2019 | 31023570 |
| 889 | 16 | 0.9997 | First Known Report of mcr-Harboring Enterobacteriaceae in the Dominican Republic. Colistin is a last-resort antibiotic used to treat infections caused by multidrug-resistant Gram-negative bacteria. People with a history of travel to the Dominican Republic have become sick with pathogenic bacteria carrying the mobile colistin resistance gene, mcr-1, during and after traveling. This investigation aimed to identify mcr genes in Enterobacteriaceae isolated from food animal sources in the Dominican Republic. Three hundred and eleven samples were tested, from which 1354 bacterial isolates were obtained. Real-time PCR tests showed that 70.7% (220 out of 311) of the samples and 3.2% (44 out of 1354) of the isolates tested positive for the mcr gene. All RT-PCR presumptive mcr-positive isolates (n = 44) and a subset (n = 133) of RT-PCR presumptive mcr-negative isolates were subjected to whole-genome sequencing. WGS analysis showed that 39 isolates carried the mcr gene, with 37 confirmed as positive through RT-PCR and two as negative. Further, all of the mcr-positive genomes were identified as Escherichia coli and all contained a IncX4 plasmid replicon. Resistant determinants for other antibiotics important for human health were found in almost all isolates carrying mcr genes. | 2023 | 36982034 |
| 1085 | 17 | 0.9997 | The occurrence and molecular detection of mcr-1 and mcr-5 genes in Enterobacteriaceae isolated from poultry and poultry meats in Malaysia. The advent of antimicrobials-resistant (AMR), including colistin-resistant bacteria, poses a significant challenge to animal and human health, food safety, socio-economic growth, and the global environment. This study aimed to ascertain the colistin resistance prevalence and molecular mechanisms of colistin resistance in Enterobacteriaceae. The colistin resistance was determined using broth microdilution assay, PCR; and Sanger sequencing of mcr genes responsible for colistin resistance in Enterobacteriaceae (n = 627), including Escherichia coli (436), Salmonella spp. (n = 140), and Klebsiella pneumoniae (n = 51), obtained from chicken and chicken meats. Out of 627 Enterobacteriaceae, 8.6% of isolates exhibited colistin resistance phenotypically. Among these colistin resistant isolates, 9.3% (n = 37) were isolated from chicken meat, 7.2% (n = 11) from the cloacal swab of chicken and 7.9% (n = 6) from the litter samples. Overall, 12.96% of colistin-resistant isolates were positive with mcr genes, in which mcr-1 and mcr-5 genes were determined in 11.11% and 1.85% of colistin-resistant isolates, respectively. The E. coli isolates obtained from chicken meats, cloacal swabs and litter samples were found positive for mcr-1, and Salmonella spp. originated from the chicken meat sample was observed with mcr-5, whereas no mcr genes were observed in K. pneumoniae strains isolated from any of the collected samples. The other colistin resistance genes, including mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, mcr-9, and mcr-10 were not detected in the studied samples. The mcr-1 and mcr-5 genes were sequenced and found to be 100% identical to the mcr-1 and mcr-5 gene sequences available in the NCBI database. This is the first report of colistin resistance mcr-5 gene in Malaysia which could portend the emergence of mcr-5 harboring bacterial strains for infection. Further studies are needed to characterize the mr-5 harbouring bacteria for the determination of plasmid associated with mcr-5 gene. | 2023 | 37601372 |
| 1089 | 18 | 0.9997 | Diversity of plasmids harboring bla(CMY-2) in multidrug-resistant Escherichia coli isolated from poultry in Brazil. Multidrug-resistance (MDR) has been increasingly reported in Gram-negative bacteria from the intestinal microbiota, environment and food-producing animals. Resistance plasmids able to harbor different transposable elements are capable to mobilize antimicrobial resistance genes and transfer to other bacterial hosts. Plasmids carrying bla(CMY) are frequently associated with MDR. The present study assessed the presence of plasmid-encoded ampC genes (bla(cmy), bla(mox), bla(fox), bla(lat), bla(act), bla(mir), bla(dha), bla(mor)) in commensal E. coli isolated from apparently healthy broiler chickens. Furthermore, we characterized the plasmids and identified those harboring the resistance genes. We isolated 144/200 (72%) of E. coli isolates with resistance to cefotaxime and the resistance gene identified was bla(CMY-2). The pulsed-field gel electrophoresis (PFGE) analysis showed high diversity of the genetic profiles. The phylogenetic groups A, B1, B2, and D were identified among E. coli isolates and group D was the most prevalent. The PCR-based replicon typing (PBRT) analysis identified four distinct plasmid incompatibility groups (Inc) in MDR isolates. Moreover, plasmids harboring bla(CMY-2), ranged in size from 50kb to 150kb and 51/144 (35%) belonged to IncK, 21/144 (14.5%) to IncB/O, 8/144 (5.5%) to IncA/C, 1/144 (0.5%) to IncI, while 63/144 (44.5%) were not typeable by PBRT. Overall, a high prevalence of bla(CMY-2) genes was found in a diverse population of commensal MDR E. coli from poultry in Brazil, harbored into different plasmids. | 2017 | 28602519 |
| 1502 | 19 | 0.9997 | Tunisian Multicenter Study on the Prevalence of Colistin Resistance in Clinical Isolates of Gram Negative Bacilli: Emergence of Escherichia coli Harbouring the mcr-1 Gene. BACKGROUND: Actually, no data on the prevalence of plasmid colistin resistance in Tunisia are available among clinical bacteria. OBJECTIVES: This study aimed to investigate the current epidemiology of colistin resistance and the spread of the mcr gene in clinical Gram-negative bacteria (GNB) isolated from six Tunisian university hospitals. METHODS: A total of 836 GNB strains were inoculated on COL-R agar plates with selective screening agar for the isolation of GNB resistant to colistin. For the selected isolates, mcr genes, beta-lactamases associated-resistance genes and molecular characterisation were screened by PCRs and sequencing. RESULTS: Colistin-resistance was detected in 5.02% (42/836) of the isolates and colistin-resistant isolates harboured an ESBL (bla(CTX-M-15)) and/or a carbapenemase (bla(OXA-48), bla(VIM)) encoding gene in 45.2% of the cases. The mcr-1 gene was detected in four E. coli isolates (0.59%) causing urinary tract infections and all these isolates also contained the bla(TEM-1) gene. The bla(CTX-M-15) gene was detected in three isolates that also carried the IncY and IncFIB replicons. The genetic environment surrounding the mcr-carrying plasmid indicated the presence of pap-2 gene upstream mcr-1 resistance marker with unusual missing of ISApl1 insertion sequence. THE CONCLUSIONS: This study reports the first description of the mcr-1 gene among clinical E. coli isolates in Tunisia and provides an incentive to conduct routine colistin susceptibility testing in GNB clinical isolates. | 2022 | 36290048 |